This repository has been archived on 2024-11-04. You can view files and clone it, but cannot push or open issues or pull requests.
cs763/syllabus.md

1.5 KiB

Security and Privacy are rapidly emerging as critical research areas. Vulnerabilities in software are found and exploited almost everyday and with increasingly serious consequences (e.g., the Equifax massive data breach). Moreover, our private data is increasingly at risk and thus techniques that enhance privacy of sensitive data (known as privacy-enhancing technologies (PETS)) are becoming increasingly important. Also, machine-learning (ML) is increasingly being utilized to make decisions in critical sectors (e.g., health care, automation, and finance). However, in deploying these algorithms presence of malicious adversaries is generally ignored.

This advanced topics class will tackle techniques related to all these themes. We will investigate techniques to make software more secure. Techniques for ensuring privacy of sensitive data will also be covered. Adversarial ML (what happens to ML algorithms in the presence of adversaries?) will be also be discussed. List of some topics that we will cover (obviously not complete) are given below.

Software Security

  • Secure information flow
  • Finding vulnerabilities
  • Defensive measures and mitigations

Differential Privacy

  • Basic mechanisms
  • Local Differential Privacy

Cryptographic Techniques

  • Zero-knowledge proofs
  • Secure multi-party computation
  • Verifiable computation

Adversarial Machine Learning

  • Training-time attacks
  • Test-time attacks
  • Model theft attacks

Grading will be based on three components:

  • Reading research papers and writing reviews
  • Homeworks
  • Class project