Remove HWs.

This commit is contained in:
Justin Hsu 2019-08-29 11:04:49 -05:00
parent 9ad185885c
commit cfd3c84c4f
1 changed files with 6 additions and 6 deletions
website/docs/schedule

View File

@ -3,25 +3,25 @@
Date | Topic | Presenters | Notes Date | Topic | Presenters | Notes
:----:|-------|:----------:|:-----: :----:|-------|:----------:|:-----:
| <center> <h4> **Differential Privacy** </h4> </center> | | | <center> <h4> **Differential Privacy** </h4> </center> | |
9/4 | [Course welcome](../resources/slides/lecture-welcome.html) <br> **Reading:** [*How to Read a Paper*](https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf) | JH | HW1 Out 9/4 | [Course welcome](../resources/slides/lecture-welcome.html) <br> **Reading:** [*How to Read a Paper*](https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf) | JH |
9/6 | Basic private mechanisms <br> **Reading:** AFDP 3.2-4 | JH | 9/6 | Basic private mechanisms <br> **Reading:** AFDP 3.2-4 | JH |
9/9 | Composition and closure properties <br> **Reading:** AFDP 3.5 | JH | Paper Signups 9/9 | Composition and closure properties <br> **Reading:** AFDP 3.5 | JH | Paper Signups
9/11 | What does differential privacy actually mean? <br> **Reading:** [Lunchtime for Differential Privacy](https://github.com/frankmcsherry/blog/blob/master/posts/2016-08-16.md) | JH | 9/11 | What does differential privacy actually mean? <br> **Reading:** [Lunchtime for Differential Privacy](https://github.com/frankmcsherry/blog/blob/master/posts/2016-08-16.md) | JH |
9/13 | Differentially private machine learning <br> **Reading:** [*On the Protection of Private Information in Machine Learning Systems: Two Recent Approaches*](https://arxiv.org/pdf/1708.08022) <br> **Reading:** [*Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data*](https://arxiv.org/pdf/1610.05755) | | HW1 Due 9/13 | Differentially private machine learning <br> **Reading:** [*On the Protection of Private Information in Machine Learning Systems: Two Recent Approaches*](https://arxiv.org/pdf/1708.08022) <br> **Reading:** [*Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data*](https://arxiv.org/pdf/1610.05755) | |
| <center> <h4> **Adversarial Machine Learning** </h4> </center> | | | <center> <h4> **Adversarial Machine Learning** </h4> </center> | |
9/16 | Overview and basic concepts | JH | HW2 Out 9/16 | Overview and basic concepts | JH |
9/18 | Adversarial examples <br> **Reading:** [*Intriguing Properties of Neural Networks*](https://arxiv.org/pdf/1312.6199.pdf) <br> **Reading:** [*Explaining and Harnessing Adversarial Examples*](https://arxiv.org/abs/1412.6572) <br> **Reading:** [*Robust Physical-World Attacks on Deep Learning Models*](https://arxiv.org/pdf/1707.08945.pdf) | | 9/18 | Adversarial examples <br> **Reading:** [*Intriguing Properties of Neural Networks*](https://arxiv.org/pdf/1312.6199.pdf) <br> **Reading:** [*Explaining and Harnessing Adversarial Examples*](https://arxiv.org/abs/1412.6572) <br> **Reading:** [*Robust Physical-World Attacks on Deep Learning Models*](https://arxiv.org/pdf/1707.08945.pdf) | |
9/20 | Data poisoning <br> **Reading:** [*Poisoning Attacks against Support Vector Machines*](https://arxiv.org/pdf/1206.6389) | | 9/20 | Data poisoning <br> **Reading:** [*Poisoning Attacks against Support Vector Machines*](https://arxiv.org/pdf/1206.6389) | |
9/23 | Defenses and detection: challenges <br> **Reading:** [*Towards Evaluating the Robustness of Neural Networks*](https://arxiv.org/pdf/1608.04644.pdf) <br> **Reading:** [*Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods*](https://arxiv.org/pdf/1705.07263.pdf) | JH | 9/23 | Defenses and detection: challenges <br> **Reading:** [*Towards Evaluating the Robustness of Neural Networks*](https://arxiv.org/pdf/1608.04644.pdf) <br> **Reading:** [*Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods*](https://arxiv.org/pdf/1705.07263.pdf) | JH |
9/25 | Certified defenses <br> **Reading:** [*Certified Defenses for Data Poisoning Attacks*](https://arxiv.org/pdf/1706.03691.pdf) <br> **Reading:** [*Certified Defenses against Adversarial Examples*](https://arxiv.org/pdf/1801.09344) | | 9/25 | Certified defenses <br> **Reading:** [*Certified Defenses for Data Poisoning Attacks*](https://arxiv.org/pdf/1706.03691.pdf) <br> **Reading:** [*Certified Defenses against Adversarial Examples*](https://arxiv.org/pdf/1801.09344) | |
9/27 | Adversarial training <br> **Reading:** [*Towards Deep Learning Models Resistant to Adversarial Attacks*](https://arxiv.org/pdf/1706.06083.pdf) | | HW2 Due 9/27 | Adversarial training <br> **Reading:** [*Towards Deep Learning Models Resistant to Adversarial Attacks*](https://arxiv.org/pdf/1706.06083.pdf) | |
| <center> <h4> **Applied Cryptography** </h4> </center> | | | <center> <h4> **Applied Cryptography** </h4> </center> | |
9/30 | Overview and basic constructions | JH | HW3 Out 9/30 | Overview and basic constructions | JH |
10/2 | SMC for machine learning <br> **Reading:** [*Secure Computation for Machine Learning With SPDZ*](https://arxiv.org/pdf/1901.00329) <br> **Reading:** [*Helen: Maliciously Secure Coopetitive Learning for Linear Models*](https://arxiv.org/pdf/1907.07212) | | 10/2 | SMC for machine learning <br> **Reading:** [*Secure Computation for Machine Learning With SPDZ*](https://arxiv.org/pdf/1901.00329) <br> **Reading:** [*Helen: Maliciously Secure Coopetitive Learning for Linear Models*](https://arxiv.org/pdf/1907.07212) | |
10/4 | Secure data collection at scale <br> **Reading:** [*Prio: Private, Robust, and Scalable Computation of Aggregate Statistics*](https://people.csail.mit.edu/henrycg/files/academic/papers/nsdi17prio.pdf) | | 10/4 | Secure data collection at scale <br> **Reading:** [*Prio: Private, Robust, and Scalable Computation of Aggregate Statistics*](https://people.csail.mit.edu/henrycg/files/academic/papers/nsdi17prio.pdf) | |
10/7 | Verifiable computing <br> **Reading:** [*SafetyNets: Verifiable Execution of Deep Neural Networks on an Untrusted Cloud*](https://arxiv.org/pdf/1706.10268) | JH | 10/7 | Verifiable computing <br> **Reading:** [*SafetyNets: Verifiable Execution of Deep Neural Networks on an Untrusted Cloud*](https://arxiv.org/pdf/1706.10268) | JH |
10/9 | Side channels and implementation issues <br> **Reading:** [*On Significance of the Least Significant Bits For Differential Privacy*](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.5957&rep=rep1&type=pdf) | | 10/9 | Side channels and implementation issues <br> **Reading:** [*On Significance of the Least Significant Bits For Differential Privacy*](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.5957&rep=rep1&type=pdf) | |
10/11 | Model watermarking <br> **Reading:** [*Protecting Intellectual Property of Deep Neural Networks with Watermarking*](https://gzs715.github.io/pubs/WATERMARK_ASIACCS18.pdf) <br> **Reading:** [*Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring*](https://arxiv.org/pdf/1802.04633) | | HW3 Due <br> MS1 Due 10/11 | Model watermarking <br> **Reading:** [*Protecting Intellectual Property of Deep Neural Networks with Watermarking*](https://gzs715.github.io/pubs/WATERMARK_ASIACCS18.pdf) <br> **Reading:** [*Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring*](https://arxiv.org/pdf/1802.04633) | | MS1 Due
| <center> <h4> **Advanced Topic: Algorithmic Fairness** </h4> </center> | | | <center> <h4> **Advanced Topic: Algorithmic Fairness** </h4> </center> | |
10/14 | Overview and basic notions <br> **Reading:** Chapter 2 from [Barocas, Hardt, and Narayanan](https://fairmlbook.org/demographic.html) | JH | 10/14 | Overview and basic notions <br> **Reading:** Chapter 2 from [Barocas, Hardt, and Narayanan](https://fairmlbook.org/demographic.html) | JH |
10/16 | Individual and group fairness <br> **Reading:** [*Fairness through Awarness*](https://arxiv.org/pdf/1104.3913) <br> **Reading:** [*Equality of Opportunity in Supervised Learning*](https://arxiv.org/pdf/1610.02413) | | 10/16 | Individual and group fairness <br> **Reading:** [*Fairness through Awarness*](https://arxiv.org/pdf/1104.3913) <br> **Reading:** [*Equality of Opportunity in Supervised Learning*](https://arxiv.org/pdf/1610.02413) | |