Edit links.
This commit is contained in:
parent
0678e7643e
commit
6eba1659cf
|
@ -9,10 +9,10 @@
|
|||
9/9 | Composition and closure properties <br> **Reading:** [Dwork and Roth](https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf) 3.5 | Justin | --- | [Signups](https://docs.google.com/spreadsheets/d/1Qiq6RtBiHD6x7t-wPqAykvTDdbbBvZYSMZ9FrKUHKm4/edit?usp=sharing) Due
|
||||
9/11 | What does differential privacy actually mean? <br> **Reading:** [Lunchtime for Differential Privacy](https://github.com/frankmcsherry/blog/blob/master/posts/2016-08-16.md) | Justin | --- |
|
||||
9/14 | Private machine learning <br> **Reading:** [*On the Protection of Private Information in Machine Learning Systems: Two Recent Approaches*](https://arxiv.org/pdf/1708.08022) <br> **Reading:** [*Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data*](https://arxiv.org/pdf/1610.05755) | | |
|
||||
9/16 | Privately generating synthetic data <br> **Reading:** [*A Simple and Practical Algorithm for Differentially Private Data Release*](https://papers.nips.cc/paper/4548-a-simple-and-practical-algorithm-for-differentially-private-data-release.pdf) <br> **Reading:** [*Private Post-GAN Boosting*](https://arxiv.org/abs/2007.11934) | | |
|
||||
9/16 | Privately generating synthetic data <br> **Reading:** [*A Simple and Practical Algorithm for Differentially Private Data Release*](https://papers.nips.cc/paper/4548-a-simple-and-practical-algorithm-for-differentially-private-data-release.pdf) <br> **Reading:** [*Private Post-GAN Boosting*](https://arxiv.org/pdf/2007.11934) | | |
|
||||
| <center> <h4> **Adversarial Machine Learning** </h4> </center> | |
|
||||
9/18 | Overview and basic concepts | Justin | --- |
|
||||
9/21 | Adversarial examples <br> **Reading:** [*Intriguing Properties of Neural Networks*](https://arxiv.org/pdf/1312.6199.pdf) <br> **Reading:** [*Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples*](https://arxiv.org/abs/1605.07277) <br> **See also:** [*Explaining and Harnessing Adversarial Examples*](https://arxiv.org/pdf/1412.6572) | | |
|
||||
9/21 | Adversarial examples <br> **Reading:** [*Intriguing Properties of Neural Networks*](https://arxiv.org/pdf/1312.6199.pdf) <br> **Reading:** [*Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples*](https://arxiv.org/pdf/1605.07277) <br> **See also:** [*Explaining and Harnessing Adversarial Examples*](https://arxiv.org/pdf/1412.6572) | | |
|
||||
9/23 | Data poisoning <br> **Reading:** [*Poisoning Attacks against Support Vector Machines*](https://arxiv.org/pdf/1206.6389) <br> **Reading:** [*Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks*](https://arxiv.org/pdf/1804.00792) | | |
|
||||
9/25 | Defenses and detection: challenges <br> **Reading:** [*Towards Evaluating the Robustness of Neural Networks*](https://arxiv.org/pdf/1608.04644.pdf) <br> **Reading:** [*Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods*](https://arxiv.org/pdf/1705.07263.pdf) | Justin | --- |
|
||||
9/28 | Certified defenses <br> **Reading:** [*Certified Defenses for Data Poisoning Attacks*](https://arxiv.org/pdf/1706.03691.pdf) <br> **Reading:** [*Certified Defenses against Adversarial Examples*](https://arxiv.org/pdf/1801.09344) | | |
|
||||
|
|
Reference in New Issue