Fill in schedule of presenters.

This commit is contained in:
Justin Hsu 2020-09-14 20:10:38 -05:00
parent 8f7b2bad9f
commit 3116fd0303
1 changed files with 18 additions and 18 deletions

View File

@ -8,34 +8,34 @@
9/7 | <center> **NO CLASS: LABOR DAY** </center> | | |
9/9 | Composition and closure properties <br> **Reading:** [Dwork and Roth](https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf) 3.5 | Justin | --- | [Signups](https://docs.google.com/spreadsheets/d/1Qiq6RtBiHD6x7t-wPqAykvTDdbbBvZYSMZ9FrKUHKm4/edit?usp=sharing) Due
9/11 | What does differential privacy actually mean? <br> **Reading:** [Lunchtime for Differential Privacy](https://github.com/frankmcsherry/blog/blob/master/posts/2016-08-16.md) | Justin | --- |
9/14 | Private machine learning <br> **Reading:** [*On the Protection of Private Information in Machine Learning Systems: Two Recent Approaches*](https://arxiv.org/pdf/1708.08022) <br> **Reading:** [*Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data*](https://arxiv.org/pdf/1610.05755) | | |
9/16 | Privately generating synthetic data <br> **Reading:** [*A Simple and Practical Algorithm for Differentially Private Data Release*](https://papers.nips.cc/paper/4548-a-simple-and-practical-algorithm-for-differentially-private-data-release.pdf) <br> **Reading:** [*Private Post-GAN Boosting*](https://arxiv.org/pdf/2007.11934) | | |
9/14 | Private machine learning <br> **Reading:** [*On the Protection of Private Information in Machine Learning Systems: Two Recent Approaches*](https://arxiv.org/pdf/1708.08022) <br> **Reading:** [*Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data*](https://arxiv.org/pdf/1610.05755) | Nathan/Matt T. | Saniya/Marcus |
9/16 | Privately generating synthetic data <br> **Reading:** [*A Simple and Practical Algorithm for Differentially Private Data Release*](https://papers.nips.cc/paper/4548-a-simple-and-practical-algorithm-for-differentially-private-data-release.pdf) <br> **Reading:** [*Private Post-GAN Boosting*](https://arxiv.org/pdf/2007.11934) | Zijian/Yuchen | Deepan/Kendall |
| <center> <h4> **Adversarial Machine Learning** </h4> </center> | |
9/18 | Overview and basic concepts | Justin | --- |
9/21 | Adversarial examples <br> **Reading:** [*Intriguing Properties of Neural Networks*](https://arxiv.org/pdf/1312.6199.pdf) <br> **Reading:** [*Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples*](https://arxiv.org/pdf/1605.07277) <br> **See also:** [*Explaining and Harnessing Adversarial Examples*](https://arxiv.org/pdf/1412.6572) | | |
9/23 | Data poisoning <br> **Reading:** [*Poisoning Attacks against Support Vector Machines*](https://arxiv.org/pdf/1206.6389) <br> **Reading:** [*Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks*](https://arxiv.org/pdf/1804.00792) | | |
9/21 | Adversarial examples <br> **Reading:** [*Intriguing Properties of Neural Networks*](https://arxiv.org/pdf/1312.6199.pdf) <br> **Reading:** [*Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples*](https://arxiv.org/pdf/1605.07277) <br> **See also:** [*Explaining and Harnessing Adversarial Examples*](https://arxiv.org/pdf/1412.6572) | Deepan and Kendall | Keaton/Anna |
9/23 | Data poisoning <br> **Reading:** [*Poisoning Attacks against Support Vector Machines*](https://arxiv.org/pdf/1206.6389) <br> **Reading:** [*Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks*](https://arxiv.org/pdf/1804.00792) | Grishma/Lokit | Amos/Suleman |
9/25 | Defenses and detection: challenges <br> **Reading:** [*Towards Evaluating the Robustness of Neural Networks*](https://arxiv.org/pdf/1608.04644.pdf) <br> **Reading:** [*Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods*](https://arxiv.org/pdf/1705.07263.pdf) | Justin | --- |
9/28 | Certified defenses <br> **Reading:** [*Certified Defenses for Data Poisoning Attacks*](https://arxiv.org/pdf/1706.03691.pdf) <br> **Reading:** [*Certified Defenses against Adversarial Examples*](https://arxiv.org/pdf/1801.09344) | | |
9/30 | Adversarial training <br> **Reading:** [*Towards Deep Learning Models Resistant to Adversarial Attacks*](https://arxiv.org/pdf/1706.06083.pdf) <br> **See also:** [*Ensemble Adversarial Training: Attacks and Defenses*](https://arxiv.org/pdf/1705.07204) | | |
9/28 | Certified defenses <br> **Reading:** [*Certified Defenses for Data Poisoning Attacks*](https://arxiv.org/pdf/1706.03691.pdf) <br> **Reading:** [*Certified Defenses against Adversarial Examples*](https://arxiv.org/pdf/1801.09344) | Yucheng/Matt W. | Roger/Zifan |
9/30 | Adversarial training <br> **Reading:** [*Towards Deep Learning Models Resistant to Adversarial Attacks*](https://arxiv.org/pdf/1706.06083.pdf) <br> **See also:** [*Ensemble Adversarial Training: Attacks and Defenses*](https://arxiv.org/pdf/1705.07204) | Nikhil/Scott | Grishma/Lokit |
| <center> <h4> **Applied Cryptography** </h4> </center> | | |
10/2 | Overview and basic constructions <br> **Reading:** [Boneh and Shoup](http://toc.cryptobook.us/), 11.6, 19.4 <br> **See also:** [Evans, Kolesnikov, and Rosulek](https://securecomputation.org/), Chapter 3 | Justin | --- |
10/5 | Secure data collection at scale <br> **Reading:** [*Prio: Private, Robust, and Scalable Computation of Aggregate Statistics*](https://people.csail.mit.edu/henrycg/files/academic/papers/nsdi17prio.pdf) | | |
10/7 | Verifiable computing <br> **Reading:** [*SafetyNets: Verifiable Execution of Deep Neural Networks on an Untrusted Cloud*](https://arxiv.org/pdf/1706.10268) | | |
10/9 | Side channels and implementation issues <br> **Reading:** [*On Significance of the Least Significant Bits For Differential Privacy*](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.5957&rep=rep1&type=pdf) | | |
10/12 | Model watermarking <br> **Reading:** [*Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring*](https://arxiv.org/pdf/1802.04633) <br> **See also:** [*Protecting Intellectual Property of Deep Neural Networks with Watermarking*](https://gzs715.github.io/pubs/WATERMARK_ASIACCS18.pdf) | | | MS1 Due
10/5 | Secure data collection at scale <br> **Reading:** [*Prio: Private, Robust, and Scalable Computation of Aggregate Statistics*](https://people.csail.mit.edu/henrycg/files/academic/papers/nsdi17prio.pdf) | Saniya/Marcus | Jinwoo/Mazharul |
10/7 | Verifiable computing <br> **Reading:** [*SafetyNets: Verifiable Execution of Deep Neural Networks on an Untrusted Cloud*](https://arxiv.org/pdf/1706.10268) | Mike | Siyang/Dan |
10/9 | Side channels and implementation issues <br> **Reading:** [*On Significance of the Least Significant Bits For Differential Privacy*](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.5957&rep=rep1&type=pdf) | Siyang/Dan | Nathan/Matt T. |
10/12 | Model watermarking <br> **Reading:** [*Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring*](https://arxiv.org/pdf/1802.04633) <br> **See also:** [*Protecting Intellectual Property of Deep Neural Networks with Watermarking*](https://gzs715.github.io/pubs/WATERMARK_ASIACCS18.pdf) | Amos/Suleman | Sidharth/Martin | MS1 Due
| <center> <h4> **Algorithmic Fairness** </h4> </center> | | |
10/14 | Overview and basic notions <br> **Reading:** [Barocas, Hardt, and Narayanan](https://fairmlbook.org/index.html), Chapter 1-2 <br> **See also:** [*50 Years of Test (Un)fairness: Lessons for Machine Learning*](https://arxiv.org/pdf/1811.10104) | Justin | --- |
10/16 | Individual and group fairness <br> **Reading:** [*Fairness through Awarness*](https://arxiv.org/pdf/1104.3913) <br> **Reading:** [*Equality of Opportunity in Supervised Learning*](https://arxiv.org/pdf/1610.02413) | | |
10/19 | Inherent tradeoffs <br> **Reading:** [*Inherent Trade-Offs in the Fair Determination of Risk Scores*](https://arxiv.org/pdf/1609.05807) | | |
10/16 | Individual and group fairness <br> **Reading:** [*Fairness through Awarness*](https://arxiv.org/pdf/1104.3913) <br> **Reading:** [*Equality of Opportunity in Supervised Learning*](https://arxiv.org/pdf/1610.02413) | Sidharth/Martin | Vishal/Nikita |
10/19 | Inherent tradeoffs <br> **Reading:** [*Inherent Trade-Offs in the Fair Determination of Risk Scores*](https://arxiv.org/pdf/1609.05807) | Shiyu/Rita | Rishabh/Aaron |
10/21 | Fairness and causality <br> **Reading:** [Barocas, Hardt, and Narayanan](https://fairmlbook.org/causal.html), Chapter 4 | Justin | --- |
10/23 | Fairness in unsupervised learning <br> **Reading:** [*Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings*](https://arxiv.org/pdf/1607.06520) <br> **See also:** [*Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints*](https://arxiv.org/pdf/1707.09457) | | |
10/26 | Testing fairness, empirically <br> **Reading:** [Barocas, Hardt, and Narayanan](https://fairmlbook.org/testing.html), Chapter 5 | Justin | --- |
10/23 | Fairness in unsupervised learning <br> **Reading:** [*Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings*](https://arxiv.org/pdf/1607.06520) <br> **See also:** [*Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints*](https://arxiv.org/pdf/1707.09457) | Keaton/Anna | Shiyu/Rita |
10/26 | Testing fairness, empirically <br> **Reading:** [Barocas, Hardt, and Narayanan](https://fairmlbook.org/testing.html), Chapter 5 | Rishabh/Aaron | Mike |
| <center> <h4> **PL and Verification** </h4> </center> | | |
10/28 | Overview and basic notions | Justin | --- |
10/30 | Probabilistic programming languages <br> **Reading:** [*Probabilistic Programming*](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fose-icse2014.pdf) | | |
11/2 | Verifying probabilistic programs <br> **Reading:** [*A Program Logic for Union Bounds*](https://arxiv.org/pdf/1602.05681) <br> **See also:** [*Advances and Challenges of Probabilistic Model Checking*](https://www.prismmodelchecker.org/papers/allerton10.pdf) | | |
11/4 | Languages for differential privacy <br> **Reading:** [*Distance Makes the Types Grow Stronger: A Calculus for Differential Privacy*](https://www.cis.upenn.edu/~bcpierce/papers/dp.pdf) <br> **See also:** [*Programming Language Techniques for Differential Privacy*](https://siglog.hosting.acm.org/wp-content/uploads/2016/01/siglog_news_7.pdf) | | |
11/6 | Verifying neural networks <br> **Reading:** [*AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation*](https://files.sri.inf.ethz.ch/website/papers/sp2018.pdf) <br> **See also:** [*DL2: Training and Querying Neural Networks with Logic*](http://proceedings.mlr.press/v97/fischer19a/fischer19a.pdf) | | | MS2 Due
10/30 | Probabilistic programming languages <br> **Reading:** [*Probabilistic Programming*](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fose-icse2014.pdf) | Vishal/Nikita | Zijian/Yuchen |
11/2 | Verifying probabilistic programs <br> **Reading:** [*A Program Logic for Union Bounds*](https://arxiv.org/pdf/1602.05681) <br> **See also:** [*Advances and Challenges of Probabilistic Model Checking*](https://www.prismmodelchecker.org/papers/allerton10.pdf) | Jinwoo/Mazharul | Yucheng/Matt W. |
11/4 | Languages for differential privacy <br> **Reading:** [*Distance Makes the Types Grow Stronger: A Calculus for Differential Privacy*](https://www.cis.upenn.edu/~bcpierce/papers/dp.pdf) <br> **See also:** [*Programming Language Techniques for Differential Privacy*](https://siglog.hosting.acm.org/wp-content/uploads/2016/01/siglog_news_7.pdf) | Ashish/Athena | Nikhil/Scott |
11/6 | Verifying neural networks <br> **Reading:** [*AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation*](https://files.sri.inf.ethz.ch/website/papers/sp2018.pdf) <br> **See also:** [*DL2: Training and Querying Neural Networks with Logic*](http://proceedings.mlr.press/v97/fischer19a/fischer19a.pdf) | Roger/Zifan | Ashish/Athena | MS2 Due
| <center> <h4> **No Lectures: Work on Projects** </h4> </center> | | |
12/7 | <center> **Project Presentations** </center> | | |
12/9 | <center> **Project Presentations** </center> | | |