Demote some papers.

This commit is contained in:
Justin Hsu 2019-10-28 00:09:17 -05:00
parent 69d92deda7
commit 1c4902f0d8

View File

@ -14,21 +14,21 @@
9/20 | Data poisoning <br> **Reading:** [*Poisoning Attacks against Support Vector Machines*](https://arxiv.org/pdf/1206.6389) <br> **Reading:** [*Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks*](https://arxiv.org/pdf/1804.00792) | Somya/Zi | Miru/Pierre |
9/23 | Defenses and detection: challenges <br> **Reading:** [*Towards Evaluating the Robustness of Neural Networks*](https://arxiv.org/pdf/1608.04644.pdf) <br> **Reading:** [*Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods*](https://arxiv.org/pdf/1705.07263.pdf) | JH | --- |
9/25 | Certified defenses <br> **Reading:** [*Certified Defenses for Data Poisoning Attacks*](https://arxiv.org/pdf/1706.03691.pdf) <br> **Reading:** [*Certified Defenses against Adversarial Examples*](https://arxiv.org/pdf/1801.09344) | Joseph/Nils | Siddhant/Goutham |
9/27 | Adversarial training <br> **Reading:** [*Towards Deep Learning Models Resistant to Adversarial Attacks*](https://arxiv.org/pdf/1706.06083.pdf) <br> **Reading:** [*Ensemble Adversarial Training: Attacks and Defenses*](https://arxiv.org/pdf/1705.07204) | Siddhant/Goutham | Somya/Zi |
9/27 | Adversarial training <br> **Reading:** [*Towards Deep Learning Models Resistant to Adversarial Attacks*](https://arxiv.org/pdf/1706.06083.pdf) <br> **See also:** [*Ensemble Adversarial Training: Attacks and Defenses*](https://arxiv.org/pdf/1705.07204) | Siddhant/Goutham | Somya/Zi |
| <center> <h4> **Applied Cryptography** </h4> </center> | | |
9/30 | Overview and basic constructions <br> **See also:** [Boneh and Shoup](https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf), 11.6, 19.4 <br> **See also:** [Evans, Kolesnikov, and Rosulek](https://securecomputation.org/), Chapter 3 | JH | --- |
10/2 | SMC for machine learning <br> **Reading:** [*Secure Computation for Machine Learning With SPDZ*](https://arxiv.org/pdf/1901.00329) <br> **Reading:** [*Helen: Maliciously Secure Coopetitive Learning for Linear Models*](https://arxiv.org/pdf/1907.07212) | Varun/Vibhor/Adarsh | --- |
10/4 | Secure data collection at scale <br> **Reading:** [*Prio: Private, Robust, and Scalable Computation of Aggregate Statistics*](https://people.csail.mit.edu/henrycg/files/academic/papers/nsdi17prio.pdf) | Abhirav/Rajan | --- |
10/7 | Verifiable computing <br> **Reading:** [*SafetyNets: Verifiable Execution of Deep Neural Networks on an Untrusted Cloud*](https://arxiv.org/pdf/1706.10268) | JH | --- |
10/9 | Side channels and implementation issues <br> **Reading:** [*On Significance of the Least Significant Bits For Differential Privacy*](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.5957&rep=rep1&type=pdf) | JH | --- |
10/11 | Model watermarking <br> **Reading:** [*Protecting Intellectual Property of Deep Neural Networks with Watermarking*](https://gzs715.github.io/pubs/WATERMARK_ASIACCS18.pdf) <br> **Reading:** [*Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring*](https://arxiv.org/pdf/1802.04633) | Noor/Shashank | Joseph/Nils | MS1 Due
10/11 | Model watermarking <br> **Reading:** [*Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring*](https://arxiv.org/pdf/1802.04633) | Noor/Shashank | Joseph/Nils <br> **See also:** [*Protecting Intellectual Property of Deep Neural Networks with Watermarking*](https://gzs715.github.io/pubs/WATERMARK_ASIACCS18.pdf) | MS1 Due
| <center> <h4> **Algorithmic Fairness** </h4> </center> | | |
10/14 | Overview and basic notions <br> **Reading:** [Barocas, Hardt, and Narayanan](https://fairmlbook.org/index.html), Chapter 1-2 | JH | --- |
10/16 | Individual and group fairness <br> **Reading:** [*Fairness through Awarness*](https://arxiv.org/pdf/1104.3913) <br> **Reading:** [*Equality of Opportunity in Supervised Learning*](https://arxiv.org/pdf/1610.02413) | JH | Jack/Jack |
10/18 | Inherent tradeoffs <br> **Reading:** [*Inherent Trade-Offs in the Fair Determination of Risk Scores*](https://arxiv.org/pdf/1609.05807) | Bobby | --- |
10/21 | Defining fairness: challenges <br> **Reading:** [*50 Years of Test (Un)fairness: Lessons for Machine Learning*](https://arxiv.org/pdf/1811.10104) <br> **Reading:** [Barocas, Hardt, and Narayanan](https://fairmlbook.org/causal.html), Chapter 4 | JH | Bobby |
10/23 | Fairness in unsupervised learning <br> **Reading:** [*Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings*](https://arxiv.org/pdf/1607.06520) <br> **Reading:** [*Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints*](https://arxiv.org/pdf/1707.09457) | Zach/Jialu | Noor/Shashank |
10/25 | Beyond observational measures <br> **Reading:** [*Avoiding Discrimination through Causal Reasoning*](https://arxiv.org/pdf/1706.02744) <br> **Reading:** [*Counterfactual Fairness*](https://arxiv.org/pdf/1703.06856) | Nat/Geetika | Varun/Vibhor/Adarsh |
10/23 | Fairness in unsupervised learning <br> **Reading:** [*Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings*](https://arxiv.org/pdf/1607.06520) <br> **See also:** [*Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints*](https://arxiv.org/pdf/1707.09457) | Zach/Jialu | Noor/Shashank |
10/25 | Beyond observational measures <br> **Reading:** [*Avoiding Discrimination through Causal Reasoning*](https://arxiv.org/pdf/1706.02744) <br> **See also:** [*Counterfactual Fairness*](https://arxiv.org/pdf/1703.06856) | Nat/Geetika | Varun/Vibhor/Adarsh |
| <center> <h4> **PL and Verification** </h4> </center> | | |
10/28 | Overview and basic notions | JH | --- |
10/30 | Probabilistic programming languages <br> **Reading:** [*Probabilistic Programming*](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fose-icse2014.pdf) | Miru/Pierre | Nat/Geetika |