
Formal Certification of Randomized Algorithms

Abstract
Randomized algorithms are a rich and fascinating class of algo-
rithms, with broad applications in computer science and beyond.
They also pose a formidable challenge for formal verification: even
intuitive properties of simple programs can have elaborate proofs,
requiring intricate termination analyses, sophisticated tools from
probability theory, or complex probabilistic invariants. We present a
deductive verification platform for reasoning about general proper-
ties of probabilistic programs, including high-probability bounds on
error and expected running time, in several steps.

First, we define an expressive assertion language which naturally
captures notions such as probability, expectation, independence, and
distribution laws. Second, we describe a program logic with a rich
set of rules for reasoning about loops with different termination
behaviors, and prove its soundness. Third, we propose new math-
ematical libraries for probability theory, which allow for a tight
integration between the libraries and the program logic.

We realize our system in a prototype combining interactive veri-
fication (in the style of proof assistants) and automatic verification
(in the style of program verifiers), and we demonstrate its utility by
building machine-checked proofs for a broad collection of examples
from the algorithms literature. The examples demonstrate different
uses of randomization, diverse properties, and significantly differ-
ent proof styles. Altogether, our work demonstrates that deductive
verification of general randomized algorithms is practical, today.

1. Introduction
Randomized algorithms are one of the richest areas in algorithms
research. Blessed with the power to draw random samples during
computation, randomized algorithms are able to fulfill a world of
guarantees that deterministic algorithms simply cannot achieve;
examples include differential privacy and security properties like
indistinguishability. Similarly, there are many problems where sim-
ple randomized algorithms achieve efficiency unmatched by known
deterministic algorithms. Beyond computer science, randomized
computations are an effective tool for modeling uncertainty in real-
world settings, like distributed systems, biological processes, etc.

Verification of randomized algorithms is a vibrant field of re-
search, with concentrated activity in model checking, program anal-
ysis, and interactive proofs. Research in model checking has ar-
guably achieved the broadest impact, notably through tools and
case studies—for instance, the website1 of the probabilistic model
checker PRISM lists about two dozen tools. In contrast, interac-
tive proofs of randomized algorithms has received only scattered
attention, resulting in a paucity of tools and verified examples.

Accordingly, many randomized algorithms simply cannot be for-
mally verified today. On the one hand, model checking and program
analysis tools favor automation at the expense of expressiveness,
limiting the scope of verifiable properties, and in some cases only
verifying specific instances of algorithms rather than the general
algorithms that appear in the literature. On the other hand, promi-
nent tools for interactive verification of probabilistic programs like
EasyCrypt [4, 6] are sufficiently expressive but target relational
(more precisely 2-safety) properties, offering poor support for more
traditional properties.

The central challenges. Based on an examination of randomized
algorithms from standard textbooks and papers in both programming

1 See http://www.prismmodelchecker.org/.

languages and algorithms research, we have identified several main
obstacles to verification.

1. Complex computations. Many probabilistic programs perform
complex computations over mathematical objects (from discrete
mathematics, algebra, geometry, etc). For instance, programs for
sampling Gaussian distributions over integer lattices [16] rely on
the Gram-Schmidt decomposition to compute an orthonormal basis
on the Euclidean space Rn; recent breakthroughs for computing
discrete logarithms over fields of small characteristic [24] use the
index calculus method; etc.

2. Rich properties. Randomized algorithms are designed for a wide
range of purposes, and satisfy an extensive variety of properties.
The most traditional properties are (i) correctness: the algorithm
should compute the right answer; (ii) precision: the algorithm should
have low probability of failure; and (iii) computational efficiency,
expressed probabilistically or in terms of expected value. However,
there is also mountain of domain-specific properties. For instance,
proofs of cryptographic algorithms often establish that a “bad” event
has low probability in a probabilistic experiment, or that the secret
key is probabilistically independent from the view of the adversary.

In order to prove the target property, proofs of randomized
algorithms also rely on intermediate properties to describe program
invariants. Proofs may use higher-level properties from probability
theory like independence of random variables and assertions about
the distribution law of certain samples, or they may use non-
probabilistic assertions to track intermediate computations.

3. The need for mathematical tools. Proofs of randomized algo-
rithms commonly invoke advanced tools from probability theory.
A typical example is a concentration bound, which provides an
upper bound on the deviation of a sum of independent random vari-
ables from its expectation; accordingly, applying this kind of bound
requires first stating and proving independence between program
expressions, and getting a handle on the expected value of the sum.
Proofs may also utilize domain-specific mathematical theorems
from fields like algebra or analysis.

Contributions. We present an interactive verification platform for
randomized algorithms, demonstrating its use by proving correctness
or efficiency for a representative set of examples from first principles.
In more detail, we make the following contributions.

1. A sound and usable program logic. We formalize an expressive
program logic for pWhile, a core imperative language with proba-
bilistic sampling, and prove its soundness. The language we choose
is both general, in the sense that it does not impose any restriction
on the way the control-flow of programs can depend on probabilistic
values, and extensible, in the sense that the set of expressions can
be tailored to examples.

We also base our development on a very rich assertion language,
which can concisely encode useful notions and facts from probability
theory. In particular, we use assertions for modeling properties of
standard distributions, elementary properties of probability and
expectation, probabilistic independence, and more. Notably, we
make crucial use of big operators, which are critical for handling
the complex invariants common in randomized algorithms.

Our proof system includes a rich set of rules, especially for
handling while loops. Informally, each rule is an instance of the
usual rule for loops, augmented with a pair of additional premises;
typically, a first premise constrains the termination behavior of the

1 2015/8/17

http://www.prismmodelchecker.org/

loop, while the second premise constrains the assertion used as loop
invariant. The two premises are closely linked, i.e., the restriction
on loop invariants depends on the termination behavior of the loop.
Our rules consider certain termination, almost-sure termination,
and arbitrary termination. The rules are not mutually exclusive—
for instance, the rule for arbitrary termination is convenient in the
common case where we want to upper bound the probability of a
bad event, regardless of the actual termination behavior of the loop.

2. A functional implementation. We have built a prototype, called
Ellora, on top of the EasyCrypt proof assistant. Starting from
EasyCrypt is beneficial for several reasons. First, EasyCrypt was
designed specifically for verifying probabilistic programs, and
features facilities to easily write probabilistic programs, reason
about memories, apply Hoare rules, etc. Second, EasyCrypt offers
an expressive higher-order logic for defining mathematical notions,
and a mature set of libraries (for reals, integers, arrays, lists, etc).
Third, EasyCrypt combines the benefits of proof assistants and
program verifiers by letting users invoke external tools, like SMT-
solvers, at any point during interactive, tactic-based proofs.

Conversely, Ellora includes two elements which could grow
EasyCrypt. First, Ellora includes several new mathematical libraries,
covering big operators, infinite series, and discrete probability,
for instance. For probability theory in particular, our library is
both more foundational and richer than the EasyCrypt library,
which is axiomatic. Second, Ellora treats program state as first-
class. As a consequence, assertions in Ellora are foundational and
easily extensible—in EasyCrypt, definitions or constructs involving
program state must be handled in the trusted computing base. Taken
together, these elements have the potential to make EasyCrypt
foundational, as we discuss in § 7.

3. Formalized verification of example algorithms. We formalize
a representative set of examples, including approximation algo-
rithms, property testing algorithms, and other examples from the
cryptography and privacy literature. Taken together, our examples
demonstrate that machine-checked proofs of randomized algorithms
are now within reach.

Structure of the paper. To warm up, we begin by outlining the
proof of the coupon collector process, demonstrating the chief
difficulties in verifying randomized algorithms, and demonstrating
our program logic in action (§ 2). Next, we describe the syntax and
semantics of programs and assertions (§ 3 and 4) in our system.
We follow with the core rules of the program logic (§ 5) and
derived assertions and rules for reasoning about the key notions of
independence and probability laws (§ 6). We conclude by detailing
our implementation (§ 7) and several case studies (§ 8).

2. A motivating example
Suppose there are N types of coupons, and every day we receive a
uniformly random coupon. On average, how many days will it take
to collect at least one of each kind of coupon?

This process is known as the coupon collector process, a standard
example of a randomized algorithm and a useful tool to model phe-
nomena in domains from population genetics to cache scheduling.
Verifying this example requires (i) performing precise reasoning
in a general probabilistic language; (ii) expressing and reasoning
about complex program invariants; and (iii) applying tools from
probability theory.

The proof, on paper. We view the process as a sequence of phases,
with each phase ending when a new coupon is collected. Abstracting
a bit more, we can model each coupon draw as a coin flip. In the
first phase, we receive a new coupon immediately. In the second
phase, we repeatedly flip a biased coin that is heads with probability

(N − 1)/N until we see a heads. In phase i, we flip a coin biased
with probability (N − i + 1)/N until we see a heads, and so on.
Our goal is to bound the average, or expected, number of coin flips
before we stop.

On paper, we can analyze this process by describing the distribu-
tion of the waiting time for each phase. If we flip a coin with bias p
until we see the first heads, the number of flips follows a distribution
known as the geometric distribution with parameter p. By applying a
probability theory fact about the geometric distribution, the expected
waiting time is 1/p flips. Finally, we execute for N phases until
we have collected all the coupons. By linearity of expectation, the
average total time is the sum of the average times for each phase.

Coding the coupon collector. We now sketch the verification of
this example. For now, we simplify aspects of the verification; we
will fill in the details later in § 8. The first step is to express the
waiting time of the process; we use the following program:

var int cp[N], t[N];
var int X = 0;

for p = 1 to N do:
ct ← 0;

cur $← Unif(N);
while (cp[cur] = 1) do:
ct ← ct + 1;

cur $← Unif(N);
end
t[p] ← ct;
cp[cur] ← 1;
X ← X + t[p];

end

We remember which coupons we have seen so far in the cp array, and
the time we waited for each of the past coupons in the t array; both
arrays are initialized with all zeros. The outer for loop iterates over
the number of coupons we have seen so far, where each iteration
corresponds to one phase.

In each iteration, we first sample the current coupon from the
uniform distribution on {1, . . . ,N}, denoted by Unif(N). Then, while
the current coupon isn’t new, we keep sampling coupons in the inner
while loop while incrementing a counter ct to record the number
of iterations. Once we see a new coupon, we exit the while loop,
record the new coupon, and record how long we waited. Then, we
move on to the next coupon.

Reasoning about loops and termination: the inner loop. We first
focus on the inner while loop, which is the most difficult to verify.
We will show that the waiting time stored in t[p] is distributed
according to a geometric distribution with the parameter depending
on the phase, i.e.,

t[p] ∼ Geom((N - p + 1)/N).

We begin the analysis with a termination analysis. Note that
there is no constant bound on the number of iterations performed by
the inner loop; for any natural number k, there is some small, but
non-zero probability that we will draw k old coupons without seeing
a new one. Nevertheless, there is some fixed, non-zero probability
of exiting the loop at every iteration—here, every iteration we exit
with probability (N− p+ 1)/N. This fact is enough to prove that the
loop terminates with probability 1—almost-sure termination.

Our verification uses a rule for reasoning about probabilistic
while commands that terminate almost-surely. Roughly, we track
the probability that the counter ct is equal to 1, 2, . . . as we proceed
through the loop, by computing the probability that we exit (i.e.,
we draw a new coupon) and the probability that we continue (i.e.,
we draw an old coupon). The key portion of the (simplified) loop
invariant is:

2 2015/8/17

∀i ∈ N. Pr[ct = i ∧ cp[cur] = 0] =

(
p− 1

N

)i(
N− p + 1

N

)
.

The formula ct = i ∧ cp[cur] asserts that the guard is false and the
counter is i—i.e., that we exit the loop on the ith iteration.

At the end of the loop, we know that Pr[cp[cur] = 0] is equal
to the probability of termination (exactly 1), so we can conclude

∀i ∈ N. Pr[ct = i] =

(
p− 1

N

)i(
N− p + 1

N

)
.

With this assertion, we have completely characterized the distribu-
tion of the waiting time ct, which we store into t[p]. In our assertion
logic, we can now wrap this fact into a more concise form by using
the definition of geometric distribution:

t[p] ∼ Geom((N - p + 1)/N).

Reasoning about complex invariants: the outer loop. Now, we
turn to the outer for loop. Here, since we know there are exactly N it-
erations, the loop and termination reasoning is more straightforward.
The relevant part of the outer loop invariant is:

∀i ∈ [p− 1]. t[i] ∼ Geom

(
N− i+ 1

N

)
∧ �

(
X =

∑
j∈[p−1]t[j]

)
,

where we use notation [n] , {1, . . . , n} in the sum index.
The first conjunct says that each waiting time t[i] is distributed as

a geometric distribution with the given parameter, while the second
conjunct states that the accumulator X is a sum of the waiting times;
�φ means φ is true on all possible program executions. This sum is
actually an example of a big operator, a concise and flexible way to
reason about a group of expressions. These operators are useful for
analyzing randomized algorithms, when the number of expressions
we want to manipulate may be large, or not fixed statically.

Applying theorems: completing the reasoning. Now, we wish to
bound the expected total waiting time X. This reasoning involves a
few facts from probability theory. Our assertion language, with the
help of some defined assertions, is rich enough to concisely state
useful axioms from probability theory.

First, we apply a fact about linearity of expectations to deduce

E[X] = E
[∑

i∈[N]t[i]
]

=
∑
i∈[N]E[t[i]].

Then, we use a fact about the expected value of the geometric
distribution:

E[X] =
∑
i∈[N]

(
N

N− i+ 1

)
,

thus concluding the proof.

3. Programs
3.1 Syntax
We base our theoretical development on pWhile, a core probabilistic
imperative language that can conveniently capture a wide range of
randomized algorithms. This language extends the While language
with two constructs: abort, which halts the computation with no
result, and probabilistic assignment x $← g, which assigns a value
sampled according to the distribution g to the program variable x.
The syntax of statements is defined by the grammar:

s ::= skip | abort | x := e | x $← g | s; s
| if e then s else s | while e do s

where x, e, and g range over the setsX of variables, E of expressions
and D of distribution expressions respectively. The set E is defined
inductively from the set X and a set F of function symbols, while

the set D is defined by combining a set of distribution symbols S
with expressions in E . For instance, e1 + e2 is a valid expression;
Bern(e), the Bernoulli distribution with parameter e, is a valid
distribution expression.

We assume that expressions, distribution expressions, and state-
ments are typed. Program variables and (standard) expressions are
assigned ground types: either a primitive type (booleans, integers,
etc.), or a type of the form C T where T is a list of ground types
and C is a type constructor (like products, lists, or arrays, and other
container types). In addition, we consider distribution types of the
form D T where T is a ground type, and function types, of the form
T1 × . . . × Tn → T where the Tis are ground types or distribu-
tion types. Base types are used for (standard) expressions, whereas
distribution types are used for distribution expressions. As usual,
each function symbol is given a function type, and we use a simple
type system to ensure that functions are applied to arguments of the
correct type.

The type system extends to statements in the expected way. For
instance, an assignment x := e is well-typed if x and e have the
same type T , whereas a probabilistic assignment x $← g is well-
typed if x has type T and g has type D T .

3.2 Semantics
Our semantics is based on sub-distributions over a discrete (finite or
countably infinite) set A, i.e., a function µ : A→ R+ such that

wt(µ) =
∑
a∈A

µ(a) ≤ 1.

When the weight is equal to 1, we call µ a (proper-)distribution.
We let Distr A denote the set of sub-distributions over A. A
trivial example of a sub-distribution is the null sub-distribution
0A ∈ Distr A, which maps each element of A to 0. Note that the
probabilities of µ can be real numbers; in particular, Distr A is not
discrete.

We interpret every ground type T as a discrete set [[T]] and D
as the function that maps every discrete set A to the set Distr A;
other constructors C are interpreted as functions [[C]] from Set to
Set such that the image of a discrete set is discrete.

Next, we define the set State of states as well-typed finite maps
from variables to values, where the set V of values is defined as⋃
T [[T]], with T ranging over all discrete types. By construction,

the set State is countable. Finally, we define the set pState of
probabilistic states simply as Distr State. Note that one can equip
pState with the standard monadic constructions for lifting a state
to a probabilistic state (unit m), and for monadic composition
(Mlet x = µ in M).

The semantics of statements is defined in two steps. We first
define the semantics [[e]]m of an expression e ∈ E and [[g]]m of a
distribution expression g ∈ D. The semantics is parametrized by a
state m, and is defined in the usual way; in particular, [[e]]m ∈ [[T]]
when e has type T , and [[g]]m ∈ Distr [[T]] when g has type
D T . For simplicity, we require all distribution expressions to be
interpreted as proper distributions.

Now, we can define the semantics [[s]]µ of a statement. The
semantics is parametrized by a probabilistic state µ, and is defined
by the equations of Figure 1. The semantics of while loops can
be defined as the least fixed point of a continuous and monotonic
operator over pState. However, it is more convenient to make the
construction explicit [3, 17]. Given a loop while b do s, we define:

• its nth truncated iterate as (if b then s)n;assert¬b
• its nth iterate as (if b then s)n,

for every natural number n, where if b then s is shorthand
for if b then s else skip, and assert¬b is shorthand for
if b then abort. Then, the semantics of a while loop is the

3 2015/8/17

limit of its truncated iterates:

[[while b do s]]µ = lim
n→∞

[[(if b then s)n;assert¬b]]µ.

The sequence is increasing and bounded, so the limit is defined.
In constrast, the limit of (non-truncated) iterates does not al-

ways exists. However, the limit of iterates exists and coincides with
the limit of truncated iterates when the loop satisfies a lossless-
ness property—we now turn to this property, which is related to
termination behavior of the loop.

3.3 Termination and preservation of weight
For deterministic programs, program termination is binary: either
a program terminates on its input, or it loops forever. When we
introduce randomness into the program, the termination behav-
ior may depend on random sampling, introducing new kinds of
(non-)termination. In our sub-distrubtion semantics, the probability
of non-termination is 1 − wt(µ). A statement s is lossless iff for
every sub-distribution µ,

wt([[s]]µ) = wt(µ).

Programs that are not lossless strictly reduce the sub-distribution
weight, and are called lossy.

We are now ready to introduce two notions of termination for
loops. While the definitions are semantic in nature, we will later see
how to enforce termination with a proof system (§ 5). We say that a
loop while b do s is:

• certainly (c.) terminating if there exists N such that for every
sub-distribution µ:

wt([[while b do s]]µ) = wt([[(if b then s)N ;assert¬b]]µ).

This is sufficient to ensure that the semantics of the loop
coincides with the semantics of its N -th iterate.
• almost surely (a.s.) terminating if it is lossless.

Certain termination is similar to termination in deterministic pro-
grams, whereas almost sure termination is more probabilistic in
nature: the program always terminates, but we may not be able to
give a single finite bound for all executions since particular execu-
tions may proceed arbitrarily long. Note that certain termination
does not entail losslessness.

For a few examples of the different termination behaviors,
for loops are certainly terminating; the bounded one-dimensional
random walk is almost surely terminating, but it is not certainly
terminating; random walks in dimension 3 and higher are lossy
[30].

4. Assertions
Our assertion language, outlined in Figure 2, contains S-assertions
and P-assertions, which are interpreted over states and probabilistic
states respectively. We introduce the two classes of assertions and
then follow with their semantics.

4.1 State layer
The first layer of assertions contains state assertions, or S-assertions,
which predicate over elements of State.

State assertions are formulae over state expressions ẽ. These
expressions are built from program expressions e and two new
classes of variables only present in assertions: logical variables ẏ
are bound by quantifiers and big operators, while integral variables
t̂ are bound by integrals.

State expressions can also be combined in two new ways. A
big operator has the form O{ẏ|φ}ẽ, where O is a “big” version
of a commutative and associative binary operation with a neutral
element—think Σ for +, or Π for ×. The bound logical variable ẏ

v ::= ẏ | t̂ (Extended variables)

ẽ ::= e | v | 1φ | ẽ+ ẽ | ẽ× ẽ |
∑
{ẏ|φ}

ẽ |
∏
{ẏ|φ}

ẽ | . . . (S-expr.)

φ ::= ẽ ./ ẽ | FO(φ) (S-assn.)

p ::=

∮
Γ

ẽ | p+ p | p× p |
∑
{ẏ|φ}

p |
∏
{ẏ|φ}

p | . . . (P-expr.)

η ::= p ./ p | FO(η) | η ⊕ η (P-assn.)

Figure 2. Assertion syntax

represents the index, which ranges over the natural numbers satis-
fying the state assertion φ; we require this filter to be deterministic
and true for at most finitely many indices. State expressions also
contain characteristic functions 1φ of state assertions φ (which take
a state m and return 1 if φ holds on m and 0 otherwise).

State assertions φ are built from atomic state assertions using
the usual connectives and quantifiers of first-order logic (denoted
by FO(φ) in the syntax). Atomic state assertions are well-typed
applications of predicates to state expressions; in the figure, we only
consider binary predicates ./, typically < and =.

4.2 Probabilistic layer
Since our program state is represented by a sub-distribution µ ∈
pState, we need assertions that predicate over elements of pState.
These are probability assertions, or P-assertions, and they form the
second assertion layer. P-assertions express pre- and post-conditions
in our program logic.

We begin by defining the probabilistic counterpart of state
expressions, which we call probability expressions p. These are
generalized polynomial expressions (built using constants, addition,
multiplication, and their corresponding big operators) over integral
expressions

∮
Γ
ẽ, where ẽ is a state expression, and Γ is list of

pairs (t̂, g) binding integration variables to distribution expressions.
Integral expressions calculate the expected value of ẽ on the state,
where integration variables t̂ are drawn from their corresponding
distribution g. When Γ is empty, we will frequently write the integral
expression as

∮
ẽ.

Probabilistic assertions η are built from atomic probabilistic
assertions on probabilistic expressions using the usual connectives
and quantifiers, and a binary connective ⊕ called split. Informally, a
probabilistic state µ satisfies the assertion η1 ⊕ η2 if µ can be split
as µ = µ1 + µ2 such that µ1 and µ2 satisfy η1 and η2 respectively.

4.3 Semantics of assertions
Now, we turn to the semantics of expressions and assertions. The
interpretation of logical variables is given by a logical valuation
ρ that maps logical variables to values, while the interpretation of
program variables depends on the assertion layer.

In the first layer, S-expressions and S-assertions are interpreted
in a state. Accordingly, their interpretations [[ẽ]]ρm and [[φ]]ρm are
parametrized by a state m. S-expressions are interpreted as values,
while S-assertions are interpreted as booleans.

In the probabilistic layer, P-expressions and P-assertions are
interpreted in a probabilistic state; their interpretations [[p]]ρµ and
[[η]]ρµ are parametrized by a probabilistic state µ. P-expressions are
interpreted as real numbers; P-assertions are interpreted as booleans.
We will use notation when η is valid in µ with logical variables ρ:

µ; ρ |= η , [[η]]ρµ = >.
An excerpt of the semantics for assertions (along with state

and probability expressions) is presented in Figure 3. We highlight

4 2015/8/17

[[skip]]µ = µ

[[abort]]µ = 0

[[x := e]]µ = Mletm = µ in unitm[x := [[e]]m]

[[x $← g]]µ = Mletm = µ in Mlet v = [[g]]m in unitm[x := v]

[[s1; s2]]µ = [[s2]][[s1]]µ

[[if e then s1 else s2]]µ = Mletm = µ in (if [[e]]m then [[s1]](unit m) else [[s2]](unit m))

[[while e do s]]µ = [[if e then s;while e do s]]µ

Figure 1. Equational theory of programs

[[ẏ]]ρm , ρ(ẏ)

[[1φ]]ρm , 1[[φ]]
ρ
m

[[
∑
{ẏ|φ} ẽ]]

ρ
m ,

∑
{t|[[φ]]

ρ
m}[[ẽ]]

ρ[ẏ:=t]
m

[[o(ẽ)]]ρm , o([[ẽ]]ρm)

[[ẽ1 ./ ẽ2]]ρm , [[ẽ1]]ρm ./ [[ẽ2]]ρm ./ ∈{=, <}
[[FO(φ)]]ρm , FO([[φ]]ρm)

[[
∮

Γ
ẽ]]ρµ ,

∑
m

∑
tg

[[ẽ]]ρm
∏

(−,g)∈Γ [[g]]ρm(tg) µ(m)

[[o(p)]]ρµ , o([[p]]ρµ)

[[p1 ./ p2]]ρµ , [[p1]]ρµ ./ [[p2]]ρµ ./ ∈{=, <}
[[η1 ⊕ η2]]ρµ , ∃µ1, µ2, µ = µ1 + µ2 ∧ [[η1]]ρµ1

∧ [[η2]]ρµ2

[[FO(η)]]ρµ , FO([[η]]ρµ)

Figure 3. Semantics of assertions (excerpt)

the atomic P-expressions, the integral expressions with the form∮
Γ
ẽ. When interpreted in a probabilistic state µ, the outer sum is

a weighted sum over all memories m ∈ State, weighted by µ(m).
Inside the outer sum, we create one summation variable tg for each
binding (t, g) ∈ Γ, and we compute a weighted sum over all tg with
tg ranging over all values in the ground type of distribution g, and
the weight being g(tg).

In general, there are distributions and expressions where the
integral semantics is either infinite, or not even defined. So, we
require all sums to be well-defined and finite for an assertion
involving integral expressions to hold.

4.4 Probability, expectation and necessity
With our assertion logic, we can define assertions to make certain
properties easier to express. We will discuss defined assertions
further in § 6, but for now we introduce some simple abbreviations
that will be used throughout the paper.

Integral expressions can represent the probability of state formu-
lae: the quantity

∮
Γ
1φ interpreted in some probabilistic state µ is

simply the probability that φ holds when for each (t, g) ∈ Γ, t is
drawn from g, and when the program variables are drawn according
to the distribution µ. For readability, we will use the notation:

Pr[φ] ,
∮
1φ.

This expression is analogous to the usual definition of probability,
but for sub-distributions. For instance, Pr[>] is not always inter-
preted as 1! In general, it is the total weight of the probabilistic
state, which can range from 0 to 1. However, we continue to have
Pr[φ] + Pr[¬φ] = Pr[>] for every state assertion φ in any proba-
bilistic state.

Frequently, we want to claim that a sub-distribution is a proper
distribution with weight 1, which is captured by the following
probabilistic assertion:

L , Pr[>] = 1.

We also often want to state that a state formula φ holds on all
possible terminating executions. This can be written

�φ , Pr[¬φ] = 0.

This � modality is similar to a necessity operator in modal logic.

5. Proof system
We are now well-prepared for the core of our system: the program
logic. We first introduce judgments and structural rules. Then, we
present the main rules for program constructs, including a rich set
of rules for loops. Finally, we discuss on useful derived rules.

5.1 Judgments and structural rules
Judgments are of the form {η} s {η′}, where η and η′ are
P-assertions.

Definition 1. A judgment {η} s {η′} is valid, written |= {η} s {η′},
iff [[s]]µ; ρ |= η′ for every probabilistic state µ and logical valuation
ρ such that µ; ρ |= η.

Validity of judgments is preserved under standard structural rules,
like the rule of consequence:

CONS
η0 ⇒ η1 {η1} s {η2} η2 ⇒ η3

{η0} s {η3}
Besides serving its usual role, the rule of consequence serves
as the interface between the program logic and theorems from
mathematical and probability theory. For instance, we use this rule
to apply concentration bounds and other mathematical theorems.

5.2 Non-looping constructs
Figure 4 gathers the rules for non-looping constructs. The rules
for skip, assignments and sequences are all straightforward. The
rule for abort requires �⊥ to hold after execution; this assertion
uniquely characterizes the null sub-distribution.2

The rule for random assignment is a generalization of the usual
rule for deterministic assignment, using a probabilistic substitution
operator P . Informally, Pgx(η) replaces all occurrences of x in η
with a new integration variable t̂, and records that t̂ should be drawn
according to the distribution g. More formally, Pgx(η) is defined as
a substitution on η; the case for integrals is

Pgx
(∮

Γ′
ẽ

)
=

∮
(t̂,g)::Γ′[t̂/x]

ẽ[t̂/x].

2�⊥ should not be confused with the probabilistic assertion ⊥, which is
not satisfied by any sub-distribution.

5 2015/8/17

SKIP {η} skip {η}

ABORT {η} abort {�⊥}

ASSGN {η[x := e]} x := e {η}

SAMPLE {Pgx(η)} x $← g {η}

SEQ
{η0} s1 {η1} {η1} s2 {η2}

{η0} s1; s2 {η2}

IF
{η1} s1 {η′1} {η2} s2 {η′2}

{(η1 ∧�e)⊕ (η2 ∧�¬e)} if e then s1 else s2 {η′1 ⊕ η′2}

Figure 4. Core rules: non-looping constructs

Note that we do not perform the substitution in the new distribution
g. Moreover, P acts as the identity on constants.

The rule for conditionals is unusual in that the post-condition
must be of the form η1 ⊕ η2. Intuitively, the split post-condition
(and pre-condition) reflects the semantics of a conditional statement,
which first splits the initial probabilistic state depending on the
guard, runs both branches, and recombines the results.

5.3 Loops
A well-known issue with probabilistic programs is that the standard
Hoare rule for while loops is unsound. For instance, the judgment
{>} while true do skip {>} is not valid, although > is a valid
invariant for skip. In order to recover soundness, our rules for
while loops (Figure 5) constrain the termination behavior of the
loop and the assertions used for the loop invariant, using two kinds
of side-conditions.

Probabilistic variants. When proving termination of deterministic
programs, a typical tool is to find a variant—an expression in
the language—that decreases by a fixed amount every iteration,
with the loop exiting when the measure reaches 0. The situation
is more complicated in the probabilistic case, since a loop with a
probabilistic guard may not have a measure that always decreases.
Nonetheless, we can use three probabilistic versions of the variant:

1. Deterministic variant. The first kind of variant decreases
deterministically each iteration, just like variants for determinstic
program. This kind of variant proves certain termination of loops
if the variant is initially bounded above, and forms part of rule
[WHILE-C].

2. Bounded variant. The second kind of variant decreases prob-
abilistically, but with probability at least ε > 0. When the variant
does not decrease, it can either stay constant or increases. We require
that throughout all iterations, the variant must be bounded above
by some fixed constant K. Both ε and K are fixed constants for
the loop. This kind of variant ensures a.s. termination of loops, and
forms part of rule [WHILE-PVB].

3. Unbounded variant. The final kind of variant can be un-
bounded, but the probability of strictly decreasing must be at least
the probability of staying constant or increasing. Furthermore, the
variant can increase by at most 1 every iteration. This kind of variant
is also sufficient for proving a.s. termination, but the argument is
more subtle than in the other cases. This variant forms part of rule
[WHILE-PVU].

Each variant is formalized with a logical assertion ensuring that (a)
some measure decreases (probabilistically) at every iteration, and
(b) the program exits the loop when the measure reaches 0.

Closedness properties. Besides termination, we require the loop
invariant to satisfy certain closedness properties. Closedness is a
predicate on assertions, and guarantees that the invariant is preserved
under the limit construction used to interpret while loops. We give a
brief intuition for these properties, and why they are sufficient for
the soundness of the while rules.

We consider the two cases: either the loop is lossless, or it is
lossy. If the while loop is lossless, its semantics can be given as the
limit of its non-truncated iterates:

[[while b do s]]µ = lim
n→∞

[[(if b then s)n]]µ.

Intuitively, this is because the assert statement for the truncated
iterate n filters out executions that have not terminated after n steps,
but the weight of such executions tends to 0 as n grows since the
while loop is lossless.

Now assume that |= {η} if bthens {η}. Then for every n ∈ N,
we also have |= {η} (if b then s)n {η}. In order to conclude that
|= {η} while b do s {η}, it is therefore sufficient to know that η
is stable under limits. This precisely corresponds to the notion of
topological closedness, which we require for our rules for almost-
surely terminating loops ([WHILE-PVB] and [WHILE-PVU]).

Definition 2. An assertion η is t-closed iff for every sequence
(µn)n∈N of sub-distributions and logical valuation ρ s.t.
limn→∞ µn = µ, if µn; ρ |= η for all n ∈ N then µ; ρ |= η.

If the while loop is lossy, we have |= {η} while b do s {η} if
we know (i) |= {η} (if b then s)n {η} as we take the limit in n,
and (ii) |= {η} assert¬b {η}. These considerations motivate the
following definition of downwards closedness.

Definition 3. An assertion η is d-closed if for every logical valua-
tion ρ,

• for every increasing sequence (µn)n∈N of sub-distributions s.t.
limn→∞ µn = µ, we have µn; ρ |= η for every n ∈ N implies
µ; ρ |= η, and
• for sub-distributions µ and µ′ such that µ′(m) ≤ µ(m) for

each m ∈ State, µ; ρ |= η implies µ′; ρ |= η.

The first requirement guarantees (i): the loop invariant η will take
the limit when unrolling the loop; note that this requirement only
needs to considers increasing sequences of sub-distributions, since
the truncated loop iterates are increasing. The second requirement
guarantees (ii), since the assert statement only lowers the weight
of the distribution.

To establish the closedness side-conditions, we use a proof
system for t- and d-closedness. Both properties are closed under
boolean combinations, universal quantification, and bounded ex-
istential quantification, and under logical equivalence. Therefore
typical rules of the proof systems include:

η1 tclosed η2 tclosed

η1 ◦ η2 tclosed

η1 tclosed η1 ⇔ η2

η2 tclosed

η tclosed

∀ẏ. η tclosed

η tclosed

∃ẏ.ψ ∧ η tclosed
,

where ◦ ranges over {∧,∨} and ψ is satisfied by finitely many
values. Analagous rules prove d-closed.

An important technical point is that closedness of atomic P-
assertions may not hold in general. The rules for such atomic
assertions are:

p1, p2 bounded
p1 ./ p2 tclosed

./ ∈{≤,≥,=}
p pos-bounded
p ≤ c dclosed

,

6 2015/8/17

where p1, p2 bounded means that they only contain integrals
∮

Γ
ẽ

where ẽ is bounded by a finite value for all substitutions of variables
(program, logical, and integral). This is true, for instance, if ẽ = 1φ
(when the integral represents the probability of a certain event).
Similarly, p pos-bounded means p is a polynomial with non-negative
coefficients of integral expressions

∮
Γ
ẽ with ẽ non-negative and

bounded above under all substitutions of variables.
To see why t-closedness may fail when the integral is not

bounded, let us consider a small example. For simplicity, we
consider the distribution of a single variable rather than a whole
state, though the example generalizes directly. Consider a sequence
of distributions (ζi)i∈N+ on N, where

ζi(j) =

 1/i : j = i
1− 1/i : j = 0
0 : otherwise.

Then, limn→∞ ζi = ζ∗, where ζ∗ returns 0 with probability 1.
However,

∮
ζi = 1 for all i, but

∮
ζ∗ 6= 1, violating t-closedness.

Proof rules. We tour the while rules loops presented in Figure 5.
The rule [WHILE-G] requires that the invariant is d-closed,

but does not restrict the termination behavior of the loop. Be-
sides [WHILE-FALSE], it is the sole rule for reasoning about non-
terminating loops. However, it is also convenient for reasoning about
terminating loops if the post-condition is d-closed.

The rule [WHILE-C] applies to certainly terminating loops,
by requiring a state expression ẽ that certainly decreases at each
iteration until it is 0, when the guard of the loop must be false. There
is no requirement on the closedness of the loop invariant.

The rules [WHILE-PVB] and [WHILE-PVU] require that the
loop invariant is t-closed, and enforce a.s. termination of the
loop. Informally, rule [WHILE-PVB] assumes that the variant ẽ is
(B)ounded and decreases with strictly positive probability; note that
ε is a strictly positive real constant, not an expression. In contrast,
rule [WHILE-PVU] allows an (U)nbounded variant, but it requires
that variant increases by at most one at each iteration, and that it is
more likely to decrease than not.

The rule [WHILE-FALSE] captures the fact that a loop whose
guard is falsified by the precondition behaves like a skip instruction
for this precondition. Similarly, the rule [WHILE-TRUE] considers
loops whose guard is always true relative to a precondition η; in this
case the loop has the same semantics as abort; this can be seen
since the postcondition η ∧�¬b entails �b ∧�¬b and �⊥.

We conclude this section by remarking that one can generalize
the rules [WHILE-PVB], [WHILE-PVU], and [WHILE-C], by
considering loops invariants of the form η ∧�φ and strengthening
the precondition of the variant premise with �φ.

5.4 Soundness
We can prove soundness of our logic; details are in the appendix.

Theorem 1 (Soundness). Every judgment {η} s {η′} provable
using the rules of our logic is valid.

Proof. By induction on the derivation of {η} s {η′}.

5.5 Specialized rules
The core rules that involve branching, such as the conditional and
looping rules, are powerful but somewhat heavy to use. When the
guard is a deterministic expression—a common case in randomized
algorithms—it is often simpler to use specialized versions of the
rules. These rules are simply the normal Hoare logic rules for a
deterministic language, tweaked for our setting.

To express these rules, we introduce a simple abbreviation to
describe a deterministic boolean expression:

�e , �e ∨�¬e.

With this abbreviation, we can state deterministic rules that recover
the usual Hoare rules for a deterministic language. For instance:

IF-D
{η ∧�e} s1 {η′} {η ∧�¬e} s2 {η′}
{η ∧�e} if e then s1 else s2 {η′}

This rule allows reasoning about the branches separately; there is no
need to reason about splitting the probabilistic state as in rule [IF],
since the control flow is deterministic. This rule is derivable from
the core system. We can also give a deterministic rule for loops:

WHILE-D
{η ∧�b} s {η ∧�b}

{η ∧�b} while b do s {η ∧�¬b}
Since the guard may be modified by the loop body, we require that
the guard must remain deterministic after executing the loop body,
assuming the guard was initially true (deterministically). This rule
is derivable from rule [WHILE-C] if we can find a deterministic
invariant; otherwise, its soundness must be proved separately.

Computing preconditions is another standard tool for simpli-
fying (and automating) proofs. Given a statement s and an asser-
tion η, a precondition calculus computes an assertion η? such that
{η?} s {η} is a valid statement. It is possible to define a precon-
dition calculus for loop-free statements, similar to lines of Chadha
et al. [8]. Importantly, our calculus, denoted by pc as usual, is de-
fined by induction on the assertion, then on the statement, to handle
the peculiar form of the rule [IF]. The full definition of pc is given
in the Appendix. Our derivations freely use the rule:

PRECOND {pc(s, η)} s {η} .

6. Distribution laws and independence
The core logic features expressive assertions, but they are also ver-
bose and can be cryptic. In this section, we define derived assertions
and derived rules for higher-level properties that are ubiquitous in
proofs about randomized algorithms. The derived assertions enable
compact assertions, crucial when working with complex invariants.
Furthermore, these properties smooth the interface with theorems
from probability theory, which are often stated in terms of higher-
level properties. Since the assertions are defined, we can always
unfold their definitions when necessary.

We will use the following notation for expected value:

E[ẽ] ,
∮
ẽ.

6.1 Distribution assertions.
When analyzing a random draw from a distribution, a fundamental
piece of information is the shape of the distribution—whether it is a
coin flip distribution or a normal distribution—along with associated
parameters like the probability of flipping heads, or the mean and
variance. While we can already track this information simply by
recording the probability of each possible outcome of a random
variable (using a universal quantifier for variables that have infinite
support), such an encoding is verbose, cumbersome to use, and
obscures the shape of the distribution. To alleviate this issue, we
define shape assertions: x ∼ g states that x is distributed according
to the distribution expression g. For example, we can record that a
variable has a Bernoulli (coin flip) distribution with bias w:

x ∼ Bern(w) , Pr[x] = w ∧ Pr[¬x] = 1− w.

We can also represent distributions with infinite support, like the
geometric distribution with parameter w:

x ∼ Geom(w) , ∀ẏ ∈ N. Pr[x = ẏ] = (1− w)ẏw.

7 2015/8/17

GENERIC RULE:

WHILE-X
{η} if b then s {η} CX
{η} while b do s {η ∧�¬b}

SIDE CONDITION: ẽ : N
CG , η dclosed CFALSE , η ⇒ �¬b CTRUE , η ⇒ �b

CC , {L ∧�(ẽ = k ∧ 0 < k ∧ b)} s {L ∧�(ẽ < k)}
|= η ⇒ (∃ẏ. �ẽ ≤ ẏ ∧�(ẽ = 0⇒ ¬b))

CPVB , {L ∧�(ẽ = k ∧ 0 < k ≤ K ∧ b)} s {L ∧�(0 ≤ ẽ ≤ K) ∧ Pr[ẽ < k] ≥ ε}
|= η ⇒ �(0 ≤ ẽ ≤ K ∧ ẽ = 0⇒ ¬b)
|= η tclosed

CPVU , {L ∧�(ẽ = k ∧ 0 < k ∧ b)} s {L ∧�(ẽ ≤ k + 1) ∧ Pr[ẽ < k] ≥ Pr[ẽ ≥ k]}
|= η ⇒ �(ẽ = 0⇒ ¬b)
|= η tclosed

Figure 5. Core rules: loops

A natural place to introduce shape assertions is when sampling
from a distribution. We have the following derived rule:

SHAPE {L} x $← g {x ∼ g} .

Shape assertions also provide a convenient hook where we can
interface with facts about the distribution. For instance, we can
encode facts about the range:

ẽ ∼ Unif(0, 1)⇒ �(0 ≤ ẽ ≤ 1),

and the expectation and variance:

ẽ ∼ Geom(c)⇒ E[ẽ] = 1/c ∧ E[ẽ · ẽ] = (1− c)/c2,

for c ∈ (0, 1) a constant. These assertions can be further manipu-
lated via facts about expected value, like linearity of expectation.

6.2 Independence.
A very common property when analyzing randomized algorithms is
independence of random variables. Informally, this property states
that a collection of samples are drawn from distinct sources of
randomness. This is a key piece of information, even when analyzing
extremely simple algorithms. For instance, if we know that two
samples follow a fair coin flip distribution, the probability that both
samples are heads could be 1/2 (if both samples are actually from
the same coin) to 0 (if the samples always take opposite values) and
all values in between, depending on the correlation between the two
samples. If the samples are independent, then there is no correlation
and the probability of seeing two heads is exactly 1/4.

We can directly encode the following definition of independence:

#〈x1, . . . , xn〉 , ∀a1, . . . , an ∈ Z.
(Pr[>])n−1 Pr[x1 = a1 ∧ · · · ∧ xn = an]

= Pr[x1 = a1]× · · · × Pr[xn = an].

This is the standard definition of independence, plus a normalization
depending on Pr[>] since we are working with sub-distributions.

It is also possible to reason about independence between groups
of random variables, even if the variables inside each group may
not be independent. This is captured by the following binary
independence assertion for independent integer variables:

〈x1, . . . , xn〉 # 〈y1, . . . , ym〉 , ∀a1, . . . , an, b1, . . . , bm ∈ Z.
Pr[>] Pr[x1 = a1 ∧ . . . xn = an ∧ y1 = b1 ∧ · · · ∧ ym = bm]

= Pr[x1 = a1 ∧ · · · ∧ xn = an] Pr[y1 = b1 ∧ · · · ∧ ym = bm].

By changing the domain of the quantifiers, we can also define
independence for other types of variables, or even heterogeneous
collections of variables.

While independence can be proved by expanding the abbrevi-
ation and applying the core rules, it is more convenient to apply
specialized introduction rules. The first derived rule models the in-
tuition behind independence: if some variables x are independent,
then a new sample is mutually independent from x.

IND
x∗ /∈ x

{#〈x〉} x∗ $← D {#〈x, x∗〉} .

We also have a more general version of this rule when the distribu-
tion may depend on random parameters:

IND-GEN
x∗ /∈ x

{#〈x〉 ∧ 〈x〉 # 〈x′〉} x∗ $← D(x′) {#〈x, x∗〉} .

This states that if x are independent and independent of the parame-
ters x′, then a sample x∗ from D(x′) is independent from x.

Like the shape assertions, we can provide facts to manipulate
independence symbolically. For instance, we can permute and
project independence assertions:

〈x〉 # 〈y〉 ⇒ 〈y〉 # 〈x〉, x′ ⊂ x ∧ #〈x〉 ⇒ #〈x′〉.

These facts enable symbolic reasoning about independence without
descending to the level of probabilities.

Concentration bounds. A particularly common tool in analyzing
probabilistic algorithms is applying concentration bounds. Roughly,
these theorems state that the sum of independent random samples
should be close to the expectation; while some random samples may
be larger than the mean, other random samples should be smaller
than the mean. Thus, these errors should cancel out in some sense if
we take many samples.

There are many forms of concentration bounds, depending on
the distribution of the samples, the precise way the samples are
combined, and other factors. Here, we state the Hoeffding bound, a
basic concentration bound that is already useful to prove non-trivial
facts about randomized algorithms. For constants q, β ∈ R,

#〈x〉 ∧ ∀i∈[1,N]. �(0 ≤ xi ≤ 1) ∧ E[xi] ≤ q
⇒ Pr

[∣∣∑n
i=1 xi − n · q

∣∣ > T (β)
]
< β,

for T (β) = 1/2 ·
√
n log(2/β).

To read this fact, we first require three things: (i) the random
samples x should be independent, (ii) each random sample is

8 2015/8/17

bounded within [0, 1], and (iii) the expected value of each random
variable is bounded by q. Then, the conclusion states that with
high probability (at least 1 − β), the deviation from the mean
from summing n random samples is on the order of

√
n. This is

significantly smaller than the worst case, when the deviation may
be on the order of n.

7. Implementation
We have built a prototype implementation called Ellora on top
of EasyCrypt [4, 6], a tool-assisted framework for cryptographic
proofs. We outline some of the key innovations of Ellora, and briefly
discuss its relation to EasyCrypt.

First-order treatment of memories. EasyCrypt refers to program
states as memories, and uses a special type Mem to denote mem-
ories. While the notion of memory is central to EasyCrypt, the
type Mem does not have a first-class status: any definition or con-
struct that involves the type Mem must be added by extending the
EasyCrypt kernel. This expands the trusted computing base of Easy-
Crypt, and makes the system harder to understand and to extend.
Ellora allows the definition of operators and predicates that depend
on memories, making the type of memories no more special than
the type of booleans. This transversal change enables formaliza-
tion of distributions, probabilistic states, assertions, etc, from first
principles within the ambient logic of Ellora.

New libraries. In order to support all assertions of the pro-
gram logic, Ellora provides new libraries for big operators, sub-
distributions, etc. An important aspect of our libraries is that they
are in a foundational style, i.e. they construct realizations of the
objects of study instead of giving axiomatizations. A large part of
our libraries are proved formally from first principles. However,
some results, such as concentration bounds, are currently declared
as axioms.

Our formalization of probabilistic independence deserves special
mention. We formalized two different (but logically equivalent)
notions of independence. The first is in terms of products of
probabilities, generalizing the definition from § 6 to work with
heterogenous lists of variables. Since Ellora (like EasyCrypt) has no
support for heterogeneous lists, we use a smart encoding based on
second-order predicates. The second definition is more abstract, in
terms of product and marginal distributions. While the first definition
is easier to use when reasoning about randomized algorithms, the
second definition is more suited to proving mathematical facts like
permutation and projection. We prove the two definitions equivalent,
and formalize a collection of related theorems.

Integrating EasyCrypt and Ellora. Although EasyCrypt and
Ellora are closely related, they are not fully integrated at this time.
There are obvious benefits to their integration: many cryptographic
proofs have conditional equivalence (“up to bad”) steps, where we
want to bound the probability of events—this can be done with
Ellora. Conversely, many proofs of randomized algorithm do not
follow the original program code closely, and would be easier to
prove on a functionally equivalent program that more closely fol-
lows the line of reasoning—EasyCrypt was designed to prove such
equivalences. More generally, many examples may benefit from
combined relational and non-relational reasoning.

Perspective: towards a foundational system. More fundamen-
tally, the design and implementation of Ellora marks a milestone
towards building a foundational system for reasoning about proba-
bilistic programs. Our ultimate goal is to achieve a clear separation
between the underlying proof assistant and code for program logics.
To this end, we still need to enable a deep embedding of probabilistic
programs, by giving statements a first-class treatment and formal-
izing their semantics. In this way, it will be possible to prove the

rules of our program logic (and the relational program logic of Easy-
Crypt) from first principles. Besides reducing the trusted computing
base significantly, this redesign would allow users to add new rules
or to build certified program logics, perhaps for the pWhile language
(e.g., [5]), but also conceivably for other languages [7]. Combined
with fully foundational libraries, we envision an easily extensible
system where the trusted computing base consists exclusively of a
simple and readable checker for a lightweight higher-order logic.

8. Examples
In this section, we will demonstrate Ellora on a selection of exam-
ples. Some of the examples are drawn from algorithms textbooks,
while other come from the algorithms research literature. Together,
they exhibit a wide variety of different proof techniques and reason-
ing principles, while demonstrating various uses of randomization
in algorithmic design.

8.1 Randomization for approximation: vertex cover
We begin with a classical application of randomization: approxi-
mation algorithms for computationally hard problems. The idea is
that even if a particular problem takes a long time to solve in the
worst case, we can devise efficient algorithms that return a solution
that is almost as good as the true solution, for some definition of
“almost”. While there is certainly no requirement that approxima-
tion algorithms must be randomized, in practice the simplest and
best-performing approximation algorithms often use randomization.

Our first example illustrates a famous approximation algorithm
for the vertex cover problem. In this problem, the input is a graph
described by vertices V and edges E. The goal is to output a vertex
cover: a subset C ⊆ V such that each edge has at least one endpoint
in C, and such that C is as small as possible.

It is known that this problem is NP-complete, so it is unlikely that
there is an efficient algorithm for computing the optimal vertex cover.
However, there is simple randomized algorithm that returns a vertex
cover that is at most twice the size of the optimal vertex cover, on
average. The algorithm proceeds by considering each edge in order.
If neither endpoint is in the cover, the algorithm chooses one of the
two endpoints uniformly at random. In Ellora, this corresponds to
the following program:

param set<edge> E;
var set<node> C = ∅;
for (e1,e2) in E do
if (e1 /∈ C) ∧ (e2 /∈ C) then

b $← {0,1};
C ← (b ? e1 : e2) ∪ C;

fi
end

Here, we represent edges as a finite set of pairs of nodes. We loop
through the edges, adding one point of each uncovered edge to the
cover C uniformly at random. The operator b ? e1 : e2 returns e1 if
b is true, and e2 if not.

To prove the approximation guarantee, we first assume that we
have a set of nodes C∗. We only assume that C∗ is a valid vertex
cover; i.e., each edge has at least one endpoint in C∗. Then, we use
the following loop invariant:

E[size(C \ C∗)] ≤ E[size(C∩ C
∗)]. (1)

Given the loop invariant, we can prove the conclusion by letting C∗

be the cover OPT of minimal size, and reasoning about intersec-
tions and differences of sets.

To verify the invariant, clearly it is initially true. To see why the
invariant is preserved, let e be the current edge, with both endpoints
out of C. Since C∗ is a vertex cover, it has at least one endpoint of e.
Since our algorithm includes an endpoint of e uniformly at random,

9 2015/8/17

the probability we choose a vertex not in C∗ is at most 1/2, so the
expectation on the left in Equation (1) increases by at most 1/2. If
e is not covered in C but is covered by C∗, there is at least a 1/2
probability that we increase the intersection C∩ C∗, so the right side
in eq. (1) increases by at least 1/2. Thus, the invariant is preserved,
and we can prove

{isVC(C∗,E)} s {E[size(C \ C∗)] ≤ E[size(C∩ C
∗)]}

and by reasoning on intersection and difference of sets, we have

{isVC(C∗,E)} s {E[size(C)] ≤ 2 · E[size(C∗)]}.
In particular, if C∗ is the optimal vertex cover, this judgment shows
that our vertex cover is at most twice as large as optimal.

8.2 Random walks: termination and reachability
Next, we turn to a different application of randomization: describing
random processes, where a random quantity evolves over time. A
canonical example is a random walk; there are many variations, but
the basic scenario describes a numeric position changing over time,
where the position depends on the position at the previous timestep,
influenced by random noise drawn from some distribution.

To demonstrate how to verify interesting facts about random
processes, we will model a one-dimensional random walk on the
natural numbers. We start at position 0, and repeatedly update our
position according to the following rules. From 0, we always make
a step to 1. From non-zero positions, we flip a fair coin that is biased
to come up heads with probability p > 0. If heads, we increase our
position by 1; if tails, we decrease by 1.

We will prove two facts about this random walk. First, for
any natural number T , the probability of eventually reaching T
is 1. Second, when we reach T , we must first pass through all
intermediate points 1, . . . , T − 1. In Ellora, we can express the
random walk with the following code.

var bool visited[T];
var int pos = 0;
visited[0] ← true;
while pos 6= T do:

c $← Ber(p);
pos ← pos + ((pos = 0) ∨ c) ? 1 : -1;
visited[pos] ← true;

end

In order to verify this example, we will use the probabilistic while
rule [WHILE-PVB]. First we establish almost-sure termination by
finding an appropriate termination measure: the distance between
our current position, and T. Indeed, this measure is bounded by T,
and has a non-negative (at least 1/2) probability of decreasing each
iteration. Therefore, the loop terminates almost-surely, and thus our
random walk eventually reaches any point T with probability 1.

To prove our second assertion—that we visit every point from 0
to T—we use the following loop invariant for the while command:

�(∀i. 0 ≤ i ≤ pos⇒ visited[i] = true).

In other words, if we have reached position pos, then we must have
already reached every position in [0,pos]. Since this invariant is
t-closed, we may apply rule [WHILE-PVB] and the invariant holds
at the end of the loop. With the assertion pos = T at termination, we
have enough to prove that each position is visited:

{L} s {L ∧�(∀i ∈ [T]. visited[i] = true)}.
The losslessness post-condition indicates that the walk terminates
almost-surely.3

3 We remark that an unbounded version of the random walk, where the
walk may decrease from position 0, can be proved terminating by rule
[WHILE-PVU].

8.3 Amplification: Polynomial identity testing
A second use of randomness is in running independent trials of the
same algorithm. This technique, known as probability amplification,
runs a randomized algorithm several times in order to reduce the
error probability. Roughly speaking, a single trial may have high
error with some probability, but by repeating the trial it is unlikely
that all of the trials yield poor results. By combining the results
appropriately—e.g., with a majority vote for algorithms with binary
outputs, or by selecting the best answer when we can check the
quality of the solution—we can produce an output that is more
accurate than a single run of the original algorithm.

An example in this vein is probabilistic polynomial identity
testing. Given two multivariate polynomials P (x1, . . . , xn) and
Q(x1, . . . , xn) over the finite field Fq of q elements, we want to
check whether P = Q, or equivalently, whether the polynomial
P−Q is zero or not. We will take n uniformly random samples (vi)i
from Fq and check whether (P −Q)(v1, . . . , vn) = 0. We repeat
the trial q times, rejecting if we see a sample where the difference is
non-zero. In our system, this corresponds to the following program:

var bool res = true;
for i = 1 to q do:

v $← Unif(Fnq);
res ← res ∧ ((P - Q)(v) = 0);

end

The proof uses an instance of the Schwartz-Zippel lemma due to
Øystein Ore for finite fields, which upper bounds the probability of
randomly picking a root of a polynomial over a finite field.

Lemma 1. Let P a non-zero polynomial function over Fq . If we
sample the variables v1, . . . , vn uniformly at random from Fq , then

Pr[P (v1, . . . , vn) = 0] ≤ 1− 1/q.

We encode this lemma as an axiom in our system:

P 6= 0 ∧ v ∼ Unif(Fnq)⇒ Pr[P (v) = 0] ≤ 1− 1/q.

With this fact, we can prove the following loop invariant:

P 6= Q⇒ Pr[res = true] ≤ (1− 1/q)i,

finally proving that

{P 6= Q} s {Pr[res = true] ≤ (1− 1/q)q ≤ 1/e}.

We have also verified Freivald’s algorithm, an amplification-based
algorithm for checking matrix multiplication.

8.4 Modeling infinite processes: the coupon collector
Now, we will revisit the coupon collector algorithm from § 2:

var int cp[N], time[N];
var int X = 0;
for p = 1 to N do:
ct ← 0;

cur $← Unif[N];
while (cp[cur] = 1) do:
ct ← ct + 1;

cur $← Unif[N];
end
time[p] ← ct;
cp[cur] ← 1;
X ← X + time[p];

end

The code involves two nested loops, and so we have two loop
invariants. The loop invariant for the outer loop is relatively standard,

10 2015/8/17

since the loop has a fixed bound N on the number of iterations:

ηout ,

∀i ∈ [p− 1]. t[i] ∼ Geom(ρ(i))

∧ �
(
X =

∑
i∈[p−1] t[i]

)
∧ �

(∑
i∈[N] cp[i] = p− 1

)
∧ ∀i ∈ [N]. �(cp[i] ∈ {0, 1}),

where ρ(i) , (N−i+1)/N. We can apply the while rule [WHILE-C]
to verify the outer loop.

The first conjunction states that the previous waiting times are
distributed according to a geometric distribution with parameter that
depends on i. Intuitively, this is because as we collect more coupons,
we are less likely to see a new one. The second assertion asserts that
we are keeping track of the total waiting time so far. The final two
assertions state that there are at most p− 1 flags turned on in cp.

Handling the inner while loop is more complicated, since it has a
probabilistic guard. To select the appropriate while rule, we consider
the termination behavior of the inner loop. Every iteration, there is a
finite probability that the loop terminations (i.e., if we draw a new
coupon), but there is no finite bound on the number of iterations we
need to run. We will show that we can apply rule [WHILE-PVB].

For the termination analysis, we use an variant that is 1 if we
have not seen a new coupon, and 0 if we have seen a new coupon.
Note that each iteration, we have a strictly positive probability ρ(p)
of seeing a new coupon and decreasing the variant. Furthermore,
the variant is bounded by 1, and the loop exits when the invariant
reaches 0. So, the termination portion of [WHILE-PVB] is verified.

For the main loop invariant, we use the following formula:

ηin , ∀c ∈ N.

(�(cp[cur] = 1⇒ c ≤ ct)
∧ Pr[cp[cur] = 0 ∧ c = ct] = (1− ρ(p))cρ(p))
∨
(∃k ∈ [0, c). �(cp[cur] = 1⇒ k = ct)
∧ �(cp[cur] = 0⇒ k ≤ ct)
∧ Pr[cp[cur] = 1] = (1− ρ(p))k).

Note that this is a t-closed formula; there is an existential in the
second disjunction, but it has finite domain (for fixed c).

For intuition about this loop invariant, for every natural number
c there are two cases. Either we have already executed more than c
iterations, or not. In the first case, we have the first disjunction: loops
where the guard is true all have ct ≥ c, and the total probability
of stopping at exactly c iterations is (1 − ρ(p))cρ(p)—we see c
old coupons, then we see a new one. In the second case, we have
the second disjunction. There exists an integer k that represents
the current iteration; if the loop is continuing then k = ct, and the
loop stops in the future (k ≤ ct). Furthermore, the probability of
continuing at iteration k is (1−ρ(p))k—we have see k old coupons.

To conclude, we know that at the end of the loop �cp[cur] = 0.
So, by the first conjunct and some manipulations,

∀c ∈ N. Pr[c = ct] = (1− ρ(p))cρ(p)

holds when the inner loop exits, precisely describing the distribution
of iterations ct as Geom(ρ(p)) by definition.

The outer loop is easier to handle, since the loop has a fixed
bound N on the number of iterations so we can use rule [WHILE-C].
For the loop invariant, we take:

ηout ,

∀i ∈ [p− 1]. t[i] ∼ Geom(ρ(i))

∧ �
(
X =

∑
i∈[p−1] t[i]

)
∧ �

(∑
i∈[N] cp[i] = p− 1

)
∧ ∀i ∈ [N]. �(cp[i] ∈ {0, 1}).

The first conjunction states that the previous waiting times
follow a geometric distribution with parameter ρ(i); this assertion
is verified by the previous reasoning on the inner loop. The second

assertion asserts that we are keeping track of the total waiting time
so far. The final two assertions state that there are at most p−1 flags
set in cp. Putting it all together, we have

{L} s
{
∀i ∈ [N]. t[i] ∼ Geom(ρ(i))
∧ �X =

∑
i∈[N] t[i]

}
.

at the end of the outer loop. By applying a fact about linearity of
expectations and the expectation of the geometric distribution, we
can bound the expected running time:

{L} s
{
E[X] =

∑
i∈[N]

(
N

N−i+1

)}
.

8.5 Concentration bounds: private running sums
Now, we turn to examples involving independence of random
variables. Our first example is drawn from the differential privacy
literature. Given a list of N integers, we add noise from a two-sided
geometric distribution to each entry in order to protect privacy, and
we calculate the partial sums of the noisy values: x1, x1 + x2, x1 +
x2 + x3, and so on. We wish to measure how far the noisy sums
deviate from the true sums.

In Ellora, we can express this algorithm as follows:

var int X[N], noise[N], out[N];
var int acc = 0;
for i = 1 to N do

noise[i] $← twogeom(ε);
out[i] ← acc + X[i] + noise[i];
acc ← out[i];

end

The parameter ε to the noise distribution twogeom is a numeric
parameter controlling the strength of the privacy guarantee, by
changing the magnitude of the noise.

Our loop invariant tracks three pieces of information: (i)
noise[i] is distributed according to twogeom(ε); (ii) the array noise
remains independent; and (iii) out[i] stores the noisy running sum:

∀q ∈ [i]. out[q]−
∑
p∈[q]

X[p] =
∑
p∈[q]

noise[p].

To bound the error introduced by the noise, we need to bound∣∣∣∑p∈[q] noise[p]
∣∣∣. Since we know that the elements in noise are

all independent, we can apply a concentration bound to bound the
probability of a large error in the p-th running sum, concluding:

{L} s
{
∀p ∈ [N]. Pr

[∣∣∣∑i∈[p] Xi

∣∣∣ ≥ T] ≤ Q(ε, T)/
√
N
}

for a particular function Q derived from the Berry-Esseen theorem.

8.6 Conserving randomness: pairwise-independent bits
As we have seen in the previous examples, independent random bits
are a powerful tool in randomized algorithms. However, they are also
scarce resource—fresh randomness for each bit is needed to ensure
independence. For many applications, e.g. hashing, we can get by
with a weaker notion of independence: pairwise independence.

If we have a collection of random variables Xi, we can express
pairwise independence with the following assertion:

∀i, j ∈ N. i 6= j ⇒ Xi # Xj .

Informally, pairwise independence says that if we see the result
of Xi, we do not gain information about all other variables Xk.
However, if we see the result of two variables Xi, Xj , we may gain
information about Xk.

There are many constructions in the algorithms literature that
magnify a small number of mutually independent bits into many of
pairwise-independent bits. Here, we consider one procedure:

11 2015/8/17

var bool X[2N], B[N];
for i = 1 to N do:

B[i] $← Ber(1/2);
end

for j = 1 to 2N do:
X[j] ← 0;
for k = 1 to N do:
if k ∈ bits(j) then X[j] ←X[j] ⊕ B[k] fi

end
end

Here, ⊕ represents the boolean XOR operation. The operation
bits(j) returns the set of bit positions that are set in the binary
expansion of j.

Guaranteeing pairwise-independence requires delicate reasoning
about the independence of random variables. Roughly, we rely
on a key fact about independence (which we fully verify): for a
uniformly distributed random boolean random variable Y , and a
random variable Z (of any type),

Y # Z ⇒ Y ⊕ f(Z) # g(Z) (2)

for any two boolean-valued functions f, g. To complete the verifica-
tion, note that

X[i] =
⊕

{j∈bits(i)}

B[j]

where the big XOR operator ranges over the indices j where the
bit representation of i has bit j set. For any two i, k ∈ [1, . . . , 2N]
distinct, there is a bit position in [1, . . . ,N] where i and k do not
agree. Without loss of generality, call this position r and suppose it
is set in i but not in k. By rewriting,

X[i] = B[r]⊕
⊕

{j∈bits(i)\r}

B[j] and X[k] =
⊕

{j∈bits(k)\r}

B[j].

Since B[j] are all independent, X[i] # X[k] follows from eq. (2)
taking Z to be the distribution on tuples 〈B[1], . . . ,B[N]〉 excluding
B[r]. This verifies the claimed specification:

{L} s {L ∧ ∀i, k ∈ [2N]. i 6= k ⇒ X[i] # X[k]}.

9. Related work
Verification of probabilistic programs. There is a long tradition
of research in the formal verification of probabilistic programs. Early
works by Feldman and Harel [14], Kozen [27], Ramshaw [36], Reif
[38], Sharir et al. [41] propose formalisms for proving properties of
probabilistic programs, and use them for verifying several examples
of interest. For instance, Feldman and Harel [14] prove the correct-
ness of a program computing the geometric distribution, whereas
Kozen [27], Sharir et al. [41] prove termination properties of the
one-dimensional random walk. In a series of works initiated by Mor-
gan et al. [34] and described in their textbook [31], McIver, Morgan,
and their collaborators develop deductive verification methods for
programs written in pGCL, an imperative language with probabilis-
tic choice and (demonic) non-determinism. In their work, assertions
are measures over distributions, and the semantics of programs are
based on weakest preconditions. Hurd et al. [23] formalize pGCL in
the HOL4 theorem prover, and verify key parts of Rabin’s mutual ex-
clusion algorithm. Katoen et al. [26] develop an automated method
to infer linear probabilistic invariants for pGCL programs; later,
Gretz et al. [18] improve and implement their method. Recently,
Gretz et al. [19] extend pGCL to account for conditioning.

In his thesis, den Hartog [13] develops an alternative approach
based on Hoare-style rules rather than weakest preconditions. Sound-
ness for the rule for while loops is achieved through a semantic
closure condition. The use of semantic conditions is undesirable for
verification, because it requires reasoning about the semantics of

programs. More recent works develop program logics for restricted
settings. Chadha et al. [8] give a decidable Hoare logic for a proba-
bilistic language without while loops; decidability imposes strong
restrictions on program values and limits the applicability of the
logic. Rand and Zdancewic [37] formalize a Hoare logic for prob-
abilistic programs; their setting is more restrictive than ours, both
for the assertion language and for the class of programs considered.
In particular, they impose some strong restrictions on while loops.
Similarly, EasyCrypt implements an (unpublished) logic to reason
about probability of events, but it restricts the class of properties and
relies on a sequence rule that is difficult to use.

There has been significant work to develop and apply static or dy-
namic techniques for inferring properties of probabilistic programs.
In a series of works initiated by Monniaux [33], Monniaux devel-
ops an abstract interpretation framework for probabilistic programs.
Recent work by Cousot and Monerau [12] proposes a more general
framework. An elegant method based on martingales is used by
Chakarov and Sankaranarayanan [9, 10] for inferring expectation in-
variants and other properties. Using their method, they estimate the
expected time of the coupon collector process for N = 5—fixing
N lets them focus on a program where the outer while loop is fully
unrolled. Martingales are also used by Fioriti and Hermanns [15] for
analyzing probablistic termination. Sampson et al. [40] use a mix
of static and dynamic analysis to check properties of probabilistic
algorithms from the approximate computing and privacy literature.

Other relevant work include the development of Markovian
logics [29], coinductive reasoning principles for stochastic pro-
cesses [28], Hoare logics for quantum programs [42], relational
Hoare logics for probabilistic programs [3, 5, 7], etc. Furthermore,
there is significant work in model-checking (see e.g., Katoen [25]).

Machine-checked proofs of probability theory. Formalizations of
measure and integration theory were proposed by Coble [11], Hölzl
and Heller [20], Hurd [22], Mhamdi et al. [32], Richter [39].
These works do not formalize concentration bounds. However,
Avigad et al. [2] recently completed a proof of the Central Limit
Theorem, which is the principle underlying concentration bounds.
Audebaud and Paulin-Mohring [1] propose an alternative, more
axiomatic, approach for discrete distributions, and use it for building
a library for reasoning about functional probabilistic programs.
These formalizations have been used to verify several case studies;
for instance, Hurd [22] verifies the Miller-Rabin primality test, and
Hölzl and Nipkow [21] verify the Crowds protocol.

10. Conclusion
We have developed and implemented a general verification platform
for randomized programs, and shown the feasibility of proving non-
trivial examples. On the one hand, we view our work as merely a first
step, with many directions for extending the power of our platform;
for example, it may be possible to incorporate tools from martingale
theory to provide a finer analysis of almost-surely terminating loops.

On the other hand, we believe our system is already powerful
enough to contemplate formalization in many areas of theoretical
computer science. Prime targets include proving accuracy and
differential privacy of algorithms; reductions from complexity
theory and lower bounds; and distributed algorithms. Our techniques
could also be applied to more mathematical areas, like combinatorics
proofs based on the probabilistic method.

Finally, further integration with relational systems like Easy-
Crypt could bring many benefits, notably the possibility to combine
relational and non-relational reasoning. This could be useful for
verifying proofs of randomized algorithms that rely on techniques
like probabilistic coupling. More broadly, our implementation gives
hope for building a truly foundational interactive theorem prover for
randomized programs.

12 2015/8/17

References
[1] P. Audebaud and C. Paulin-Mohring. Proofs of randomized algorithms

in Coq. Sci. Comput. Program., 74(8):568–589, 2009.
[2] J. Avigad, J. Hölzl, and L. Serafin. A formally verified proof of the

central limit theorem. CoRR, abs/1405.7012, 2014.
[3] G. Barthe, B. Grégoire, and S. Z. Béguelin. Formal certification

of code-based cryptographic proofs. In Z. Shao and B. C. Pierce,
editors, Proceedings of the 36th ACM Symposium on Principles of
Programming Languages, POPL 2009, pages 90–101. ACM, 2009.

[4] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-aided
security proofs for the working cryptographer. In P. Rogaway, editor,
Advances in Cryptology - CRYPTO 2011, volume 6841 of Lecture
Notes in Computer Science, pages 71–90. Springer, 2011.

[5] G. Barthe, B. Köpf, F. Olmedo, and S. Z. Béguelin. Probabilistic
relational reasoning for differential privacy. In J. Field and M. Hicks,
editors, Proceedings of the 39th ACM Symposium on Principles of
Programming Languages, POPL 2012, pages 97–110. ACM, 2012.

[6] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub.
Easycrypt: A tutorial. In A. Aldini, J. Lopez, and F. Martinelli, editors,
Foundations of Security Analysis and Design VII - FOSAD 2012/2013
Tutorial Lectures, volume 8604 of Lecture Notes in Computer Science,
pages 146–166. Springer, 2013.

[7] G. Barthe, C. Fournet, B. Grégoire, P. Strub, N. Swamy, and S. Z.
Béguelin. Probabilistic relational verification for cryptographic imple-
mentations. In S. Jagannathan and P. Sewell, editors, 41st ACM Sym-
posium on Principles of Programming Languages, POPL ’14, pages
193–206. ACM, 2014.

[8] R. Chadha, L. Cruz-Filipe, P. Mateus, and A. Sernadas. Reasoning
about probabilistic sequential programs. Theoretical Computer Science,
379(1-2):142–165, 2007.

[9] A. Chakarov and S. Sankaranarayanan. Probabilistic program analysis
with martingales. In N. Sharygina and H. Veith, editors, Computer
Aided Verification - 25th International Conference, CAV 2013, volume
8044 of Lecture Notes in Computer Science, pages 511–526. Springer,
2013.

[10] A. Chakarov and S. Sankaranarayanan. Expectation invariants as fixed
points of probabilistic programs. In Static Analysis Symposium (SAS),
volume 8723 of Lecture Notes in Computer Science, pages 85–100.
Springer-Verlag, 2014.

[11] A. R. Coble. Anonymity, information, and machine-assisted proof.
Technical Report UCAM-CL-TR-785, University of Cambridge, Com-
puter Laboratory, 2010.

[12] P. Cousot and M. Monerau. Probabilistic abstract interpretation. In
H. Seidl, editor, 21st European Symposium on Programming, ESOP
2012, volume 7211 of Lecture Notes in Computer Science, pages 169–
193. Springer, 2012.

[13] J. den Hartog. Probabilistic extensions of semantical models. PhD
thesis, Vrije Universiteit Amsterdam, 2002.

[14] Y. A. Feldman and D. Harel. A probabilistic dynamic logic. J. Comput.
Syst. Sci., 28(2):193–215, 1984.

[15] L. M. F. Fioriti and H. Hermanns. Probabilistic termination: Soundness,
completeness, and compositionality. In S. K. Rajamani and D. Walker,
editors, Proceedings of the 42nd ACM Symposium on Principles of
Programming Languages, POPL 2015, pages 489–501. ACM, 2015.

[16] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In C. Dwork, editor,
Proceedings of the 40th ACM Symposium on Theory of Computing,
2008, pages 197–206. ACM, 2008.

[17] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani.
Probabilistic programming. In International Conference on Software
Engineering, pages 167–181, 2014.

[18] F. Gretz, J. Katoen, and A. McIver. Prinsys - on a quest for proba-
bilistic loop invariants. In Quantitative Evaluation of Systems - 10th
International Conference, QEST 2013, pages 193–208, 2013.

[19] F. Gretz, N. Jansen, B. L. Kaminski, J. Katoen, A. McIver, and
F. Olmedo. Conditioning in probabilistic programming. In Mathe-
matical Foundations of Programming Semantics, 2015.

[20] J. Hölzl and A. Heller. Three chapters of measure theory in isabelle/hol.
In M. C. J. D. van Eekelen, H. Geuvers, J. Schmaltz, and F. Wiedijk,

editors, Interactive Theorem Proving, ITP 2011, volume 6898 of
Lecture Notes in Computer Science, pages 135–151. Springer, 2011.

[21] J. Hölzl and T. Nipkow. Interactive verification of markov chains: Two
distributed protocol case studies. In U. Fahrenberg, A. Legay, and C. R.
Thrane, editors, Quantities in Formal Methods, QFM 2012, volume
103 of EPTCS, pages 17–31, 2012.

[22] J. Hurd. Formal verification of probabilistic algorithms. Technical
Report UCAM-CL-TR-566, University of Cambridge, Computer Labo-
ratory, 2003.

[23] J. Hurd, A. McIver, and C. Morgan. Probabilistic guarded commands
mechanized in HOL. Theor. Comput. Sci., 346(1):96–112, 2005.

[24] A. Joux. A new index calculus algorithm with complexity l(1/4+o(1))
in small characteristic. In Selected Areas in Cryptography - SAC 2013,
pages 355–379, 2013.

[25] J. Katoen. Perspectives in probabilistic verification. In 2nd IEEE/IFIP
International Symposium on Theoretical Aspects of Software Engineer-
ing, TASE 2008, pages 3–10. IEEE Computer Society, 2008.

[26] J. Katoen, A. McIver, L. Meinicke, and C. C. Morgan. Linear-invariant
generation for probabilistic programs. In R. Cousot and M. Martel,
editors, Static Analysis - 17th International Symposium, SAS 2010,
volume 6337 of Lecture Notes in Computer Science, pages 390–406.
Springer, 2010.

[27] D. Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178,
1985.

[28] D. Kozen. Coinductive proof principles for stochastic processes.
Logical Methods in Computer Science, 3(4:8), 2007.

[29] D. Kozen, R. Mardare, and P. Panangaden. Strong completeness for
Markovian logics. In K. Chatterjee and J. Sgall, editors, Mathematical
Foundations of Computer Science (MFCS 2013), volume 8087 of Lect.
Notes in Computer Science, pages 655–666. Springer, 2013.

[30] D. A. Levin and Y. Peres. Pólya’s theorem on random walks via pólya’s
urn. The American Mathematical Monthly, 117(3):220–231, 2010.

[31] A. McIver and C. Morgan. Abstraction, Refinement, and Proof for
Probabilistic Systems. Monographs in Computer Science. Springer,
2005.

[32] T. Mhamdi, O. Hasan, and S. Tahar. On the formalization of the
Lebesgue integration theory in HOL. In 1st International Conference
on Interactive Theorem Proving, ITP 2010, volume 6172 of Lecture
Notes in Computer Science, pages 387–402. Springer, 2010.

[33] D. Monniaux. Abstract interpretation of probabilistic semantics. In
J. Palsberg, editor, Static Analysis, 7th International Symposium, SAS
2000, volume 1824 of Lecture Notes in Computer Science, pages 322–
339. Springer, 2000.

[34] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate trans-
formers. ACM Trans. Program. Lang. Syst., 18(3):325–353, 1996.

[35] J. R. Norris. Markov chains. Number 2008. Cambridge university
press, 1998.

[36] L. H. Ramshaw. Formalizing the Analysis of Algorithms. PhD thesis,
Computer Science, 1979.

[37] R. Rand and S. Zdancewic. VPHL: A Verified Partial-Correctness
Logic for Probabilistic Programs. In Mathematical Foundations of
Program Semantics (MFPS XXXI), 2015.

[38] J. H. Reif. Logics for probabilistic programming (extended abstract).
In 12th ACM Symposium on Theory of Computing, STOC 1980, pages
8–13. ACM, 1980.

[39] S. Richter. Formalizing integration theory with an application to prob-
abilistic algorithms. In K. Slind, A. Bunker, and G. Gopalakrishnan,
editors, Theorem Proving in Higher Order Logics, 17th International
Conference, TPHOLs 2004, volume 3223 of Lecture Notes in Computer
Science, pages 271–286. Springer, 2004.

[40] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Gross-
man, and L. Ceze. Expressing and verifying probabilistic assertions.
In M. F. P. O’Boyle and K. Pingali, editors, ACM Conference on Pro-
gramming Language Design and Implementation, PLDI ’14, page 14.
ACM, 2014.

[41] M. Sharir, A. Pnueli, and S. Hart. Verification of probabilistic programs.
SIAM J. Comput., 13(2):292–314, 1984.

[42] M. Ying. Floyd-hoare logic for quantum programs. ACM Trans.
Program. Lang. Syst., 33(6):19, 2011.

13 2015/8/17

http://arxiv.org/abs/1405.7012
http://arxiv.org/abs/1405.7012

A. Soundness
The proof of soundness of the presented proof system relies on the soundness of each rule. We detail here the proofs for each case.

A.1 Deterministic assignment
The soundness of the deterministic assignment rule follows from similar reasoning as in Hoare logic. Roughly speaking, when the formula φ
interpreted in a state after the assignment of a variable x is equivalent to the replacement of all the occurrences of x by its new value in φ. This
intuition is captured in the following Lemma:

Lemma 2 (Substitution lemma for state and distribution expressions). For a given state m ∈ State, a valuation of the logical variables ρ, a
variable of the language x, and a state expression ẽ we have, for all constants e:

[[ẽ[x := e]]]ρm = [[ẽ]]ρm[x:=[[e]]m],

and similarly, for all distribution expressions g, we have:

[[g[x := e]]]ρm = [[g]]ρm[x:=[[e]]m],

Proof. By mutual induction on the structure of the expression ẽ and g.

We can now lift this first lemma to the expressions interpreted in a probabilistic state.

Lemma 3 (Substitution lemma for integral expressions). For a given sub-distribution µ, a valuation ρ, a variable of the language x, and a
state expression ẽ and a program expression e, we have

[[

∮
Γ[x:=e]

ẽ[x := e]]]ρµ = [[

∮
Γ

ẽ]]ρ[[x:=e]]µ
.

Proof. We will prove the case for a single Γ = (t, g); the general case is essentially the same. By definition we have:

[[

∮
(t,g[x:=e])

ẽ[x := e]]]ρµ =
∑
m

∑
t

[[ẽ[x := e]]]ρµ [[g[x := e]]]ρµ(t)µ(m).

Lemma 2 ensures that we have:
[[ẽ[x := e]]]ρm = [[ẽ]]ρ

m[x:=[[e]]
ρ
m]

and
[[g[x := e]]]ρm = [[g]]ρ

m[x:=[[e]]
ρ
m]
,

so ∑
m

∑
t

[[ẽ[x := e]]]ρµ [[g[x := e]]]ρµ(t)µ(m) =
∑
m

∑
t

[[ẽ]]ρ
m[x:=[[e]]

ρ
m]

[[g]]ρ
m[x:=[[e]]

ρ
m]

(t)µ(m).

By the variable replacement b , m 7→ m[x := [[e]]m], we obtain∑
m

∑
t

[[ẽ]]ρ
m[x:=[[e]]

ρ
m]

[[g]]ρ
m[x:=[[e]]

ρ
m]

(t)µ(m) =
∑
m

∑
t

[[ẽ]]ρm [[g]]ρm(t)(µ ◦ b−1)(m).

Now for all A ⊂ State we have by definition of the inverse image

µ ◦ b−1(A) =
∑
m

1m[x:=[[e]]m]∈Aµ(m) = [[x := e]]µ(A),

so we have:

[[

∮
(t,g[x:=e])

ẽ[x := e]]]ρµ =
∑
m

∑
t

[[ẽ]]ρm [[g]]ρm(t)([[x := e]]µ)(m) = [[

∮
(t,g)

ẽ]]ρ[[x:=e]]µ
.

as desired.

Proposition 1 (Soundness of rule [ASSGN]). Given a formula η and a variable x from the programming language, then for every interpretation
ρ, and every sub-measure µ such that µ; ρ |= η[x := e] then

[[x := e]]µ; ρ |= η.

Proof. We prove something stronger: for every variable x, logical valuation ρ, sub-distribution µ, and probability expression p, we have

[[p[x := e]]]ρµ = [[p]]ρ[[x:=e]]µ
,

and for every probability assertion η, we have
[[η[x := e]]]ρµ = [[η]]ρ[[x:=e]]µ

.

Done by induction first over the structure of p using Lemma 3 for integral expressions, and then over η.

We now treat the case of the probabilistic assignment. From now on, we consider a probability distribution D(e) that depends on an
expression e.

14 2015/8/17

A.2 Probabilistic assignment
Lemma 4 (Substitution for probabilistic assignment). For any sub-distribution µ, valuation ρ, and state expression ẽ, we have

[[

∮
Γ

ẽ]]ρ
[[x $←D(e)]]µ

= [[

∮
(v,D(e))::Γ[x:=v]

ẽ[x := v]]]ρµ

if both sides exist.

Proof. For simplicity of notation we prove just the case when there is a single integral variable t and distribution expression g. By unfolding
the semantics, we have

[[x $← D(e)]]µ(m) =
∑
m′

∑
v

1m′[x:=v]=m[[D(e)]]ρm′(v)µ(m′).

Also, we have

[[

∮
Γ

ẽ]]ρ
[[x $←D(e)]]µ

=
∑
m

∑
t

∑
m′

∑
v

[[ẽ]]ρm1m′[x:=v]=m[[g]]ρm(t)[[D(e)]]ρm′(v)µ(m′)

=
∑
m′

∑
t

∑
v

[[ẽ]]ρm′[x:=v][[D(e)]]ρm′(v)[[g]]ρm′[x:=v](t)µ(m′).

By Lemma 2, the right hand side is equal to∑
m′

∑
t

∑
v

[[ẽ[x := v]]]ρm′ [[g[x := v]]]ρm′(t)[[D(e)]]m′(v)µ(m′) = [[

∮
(v,D(e))::g[x:=v]

ẽ[x := v]]]ρµ

as desired.

Proposition 2 (Soundness of rule [SAMPLE]). Given a probability formula η, and a variable x from the programming language, then for
every interpretation ρ, and every sub-measure µ such that µ; ρ |= Pxη (D(e)) then

[[x $← D(e)]]µ; ρ |= η.

Proof. We prove something stronger: for every variable x, logical valuation ρ, sub-distribution µ, and probability expression p, we have

[[Pxp (D(e))]]ρµ = [[p]]ρ
[[x $←D(e)]]µ

,

and for every probability assertion η, we have

[[Pxη (D(e))]]ρµ = [[η]]ρ
[[x $←D(e)]]µ

.

Done by simple induction over the structure of p, using the Lemma 4 for integral expressions, and then by induction on the structure of η.

A.3 Conditional Branching
Proposition 3 (Soundness of rule [IF]). Given an expression e and two commands s1, s2, such that the triples {η1} s1 {η′1} and {η2} s2 {η′2}
are valid, and µ a sub-distribution, ρ a valuation such that

µ; ρ |= (η1 ∧�e)⊕ (η2 ∧�¬e),
we have

[[if e then s1 else s2]]µ; ρ |= η′1 ⊕ η′2.

Proof. By hypothesis and definition of ⊕, we have µ1 and µ2 such that µ = µ1 + µ2 with

µ1; ρ |= η1 ∧�e and µ2; ρ |= η2 ∧�¬e.
Therefore for i = 1, 2, if we let µ′i = [[si]]µi , by definition of the semantics we have

[[if e then s1 else s2]]µ = [[if e then s1 else s2]](µ1+µ2) = µ′1 + µ′2.

Moreover, by hypothesis we have [[η′i]]
ρ

µ′
i

so, by definition of the interpretation of the ⊕ operator, we have:

µ′1 + µ′2; ρ |= η′1 ⊕ η2,

so

[[if e then s1 else s2]]µ; ρ |= η′1 ⊕ η′2,
as desired.

15 2015/8/17

A.4 Certain termination
Proposition 4 (Soundness of rule [WHILE-C]). For any sub-distributions, valuations µ, ρ, such that CC is valid. Then,

[[while b do s]]µ; ρ |= η ∧�¬b.

Proof. Let µ be a sub-distribution satisfying the precondition η under logical valuation ρ. By assumption η also satisfies ∃ẏ. �ẽ ≤ ẏ. Let
Staten the support4 of the distribution µn = [[(if b then s)n]]µ for n ∈ N.

We first prove that there exists a decreasing function f : N→ N such that:

∀n ∈ N, µn; ρ |= �(ẽ ≤ f(n) ∨ ¬b).
By the precondition, there exists a value k such that µ0; ρ |= �(ẽ ≤ k). Define:

f(n) =

{
k − n if n ≤ k
0 otherwise.

We now prove the desired assertion by induction over n. The base case n = 0 is clear. For the inductive step, suppose we know the result for n.
By definition of �:

�(ẽ ≤ f(n+ 1) ∨ ¬b) ≡
∮
1ẽ≤f(n+1)∨¬b =

∮
1

≡
∮

(1ẽ≤f(n+1) + 1¬b − 1ẽ≤f(n+1)1¬b) =

∮
1

≡
∮
1ẽ≤f(n+1)(1− 1¬b) =

∮
1−

∮
1¬b

≡
∮
1ẽ≤f(n+1)1b =

∮
1b.

Since by definition of the semantics we have
µn+1 = [[s]](µn|b) + µn|¬b

we have by linearity and property of conditioning:

�(ẽ ≤ f(n+ 1) ∨ ¬b) ≡
∮
1ẽ≤f(n+1)1b =

∮
1b

≡
∑
m

1[[ẽ]]
ρ
m≤f(n+1)1[[b]]

ρ
m

([[s]]µn |b)(m) +
∑
m

1[[ẽ]]
ρ
m≤f(n+1)1[[b]]

ρ
m

(µn|¬b)(m)

=
∑
m

1[[b]]
ρ
m

([[s]]µn|b)(m) +
∑
m

1[[b]]
ρ
m

(µn|¬b)(m)

≡
∑
m

1[[ẽ]]
ρ
m≤f(n+1)1[[b]]

ρ
m

([[s]]µn|b)(m) =
∑
m

1[[b]]
ρ
m

([[s]]µn|b)(m).

We now use the equivalence between the � modality and the entailment over each state. Since for every state m in the support of µn|b we
have m; ρ |= b , we deduce from the induction hypothesis that m; ρ |= ẽ ≤ f(n). Thus for every state m in the support of [[s]]µn|b we have
m; ρ |= ẽ < f(n) i.e. m; ρ |= ẽ ≤ f(n)− 1 = f(n+ 1) which implies the equality of the functions 1ẽ≤f(n+1)1b and 1b over the support
of the considered sub-distribution, and then implies the equality when summing.

Then for all n ≥ f(0) we deduce that we have µn; ρ |= �(ẽ = 0 ∨ ¬b) and then [[�¬b]]ρµn from the premises. We proved therefore that
the loop exited after at most f(0) steps, i.e. [[(if b then s)f(0)]] = [[(if b then s)f(0);assert¬b]] = [[while b do c]]. We can then conclude
on the entailment of formula η by a finite induction over {1, . . . , f(0)}.

A.5 Almost sure termination
We will prove soundness for the rules [WHILE-PVB] and [WHILE-PVU] by first proving soundness for a more general while rule:

WHILE-G
{η} if b then s {η} The loop is a.s. terminating η tclosed

{η} while b do s {η ∧�¬b}
By the form of the side-conditions, soundness of [WHILE-PVB] and [WHILE-PVU] will follow from proving almost-sure termination. The
soundness [WHILE-G] is done in the two following lemmas.

Proposition 5. For any sub-distributions, valuations µ, ρ, such that {η} if b then s;assert¬b {η} is verified, and η is t-closed, then

[[while b do c]]µ; ρ |= η.

Proof. The limit of [[(if b then c else skip)n;assert¬b]]µ when n→∞ exists and is [[while b do s]]µ by definition. A simple induction
on the variable n implies that:

∀n ∈ N. [[(if b then c else skip)n;assert¬b]]µ; ρ |= η

4 Set of states of non-zero measure

16 2015/8/17

and thus that for all natural integers n the probabilistic state [[(if b then c else skip)n;assert¬b]]µ is included in the set (ηρ(−))
−1(>). By

topological closeness of this set, the limit of this sequence remains an element of it, i.e.,

[[while b do s]]µ; ρ |= η

as desired.

Proposition 6 (Soundness of rule [WHILE-G]). For any sub-distributions, valuations µ, ρ, such that {η} if b then s {η} is valid, η is
t-closed, and that the loop while b do s terminates with probability 1, then

[[while b do s]]µ; ρ |= η ∧�¬b.

Proof. We take a sub-distribution and valuation ρ, µ such that [[η]]ρµ and b, c programs fulfilling the premises. The termination hypothesis
implies that the non-truncated and truncated iterates have the same limit:

∆([[(if b then c else skip)n]]µ, [[(if b then c else skip)n;assert¬b]]µ)
n→∞−−−−→ 0

where ∆ is the total variation distance defined by

∆(µ, µ′) ,
∑
m

|µ(m)− µ′(m)|.

Since the limit of [[(if b then c else skip)n;assert¬b]]µ is [[while b do s]]µ, one can deduce that [[(if b then c else skip)n]]µ is also a
convergent sequence and has the same limit. We then conclude as in the proof of Proposition 5, using the t-closed property.

We are now ready to prove soundness for the almost-sure termination rules. As noted before, the main challenge is proving termination;
from there, we can conclude by rule [While−G]. Our arguments use basic notations and theorems from the theory of Markov processes; a
full introduction to Markov theory is not feasible in this space. We collect some of the concepts we need here: - Positive recurrent; - Null
recurrent; - Transient; - Stationary distribution; - Coupling; - Stochastic dominance; - Lifted Markov chain; - Absorbing state. These concepts
all belong to the basic theory of Markov processes; the interested reader can consult a textbook [35] for a detailed introduction.

Proposition 7 (Soundness of rule [WHILE-PVB]). Let η be a t-closed assertion. For any sub-distributions, valuations µ, ρ, such that CPVB
is valid. Then

[[while b do s]]µ; ρ |= η.

Proof. By Proposition 6 and the premises, it suffices to prove almost-sure termination.
We consider the integer-valued variant ẽ as a random variable over the space of states. To this variant, we consider the family (Vi)i of

random variables, where Vi represents the value taken by ẽ after the i-th iteration of the loop. The premises and the conditions

{L ∧�(ẽ = k ∧ 0 < k ≤ K)} s {L ∧�(0 ≤ ẽ ≤ K) ∧ Pr[ẽ < k] ≥ ε}
ensure the following facts on the sequence Vi:

• The sequence is uniformly bounded by K.
• The probability of decreasing bounded below by ε:

∀i ∈ N. Pr[Vi > Vi+1 | Vi, . . . , V0] = εi ≥ ε > 0.

The sketch of the proof is the following: we first introduce a Markov chain (Xi)i that reaches a particular state (the state zero) with
probability 1. Then, we couple this chain with (Vi)i to show that (Ui)i stochastically dominates (Vi)i. In particular, this shows that the
probability of Vi (i.e., the variant) eventually reaching 0 is 1. The condition CPVB guarantees that the loop guard is false when the variant hits
0, so almost-sure termination follows.

First, we can assume that K > 0 since if K = 0, the loop terminates immediately. Consider the following finite Markov chain (Xi)i, over
the state space S = {0, . . . ,K} with probability of transitioning from state a ∈ S to b ∈ S given by

Pa,b ,

ε if b = a− 1
1− ε if b = K
1 if a = b = 0
0 otherwise.

ε

1

ε ε ε
...

ε

1-ε

17 2015/8/17

This chain models the following behavior: with probability ε the value decrease by one, while with probability 1− ε it jumps to K. Since
zero is the only terminating state, and that states from 1 to K is the only other strongly connected component of the underlying graph, the
probability of terminating in the state zero is 1 by a standard result on Markov chains.

Let us now consider the coupling (X̃i, Ṽi)i of the previous chain with the random walk (Vi)i given by randomness sharing. We take an
i.i.d. family of uniform variables (Ui)i over [0, 1] and we consider the following behavior:

• Initially, X0 = V0.
• If X̃i = 0 then X̃i+1 = 0 and if Ṽi = 0 then Ṽi+1 = 0.
• Otherwise,

1. If Ui ≤ ε then X̃i = X̃i−1 − 1 and Ṽi is sampled like Vi, conditioned by the values already drawn — i.e. the events of Vj = Ṽj for
j = 1, . . . , i− 1, and conditioning on the events where Ṽi is lesser than the value taken by Vi−1.

2. If p < Ui ≤ εi then X̃i = K and Ṽi is sampled as previously.
3. If εi < Ui ≤ 1 then X̃i = K and Ṽi is sampled as previously, but in this case, conditioned to the increasing events.

The following figure depicts the three cases depending on Ui.

Pi,j =

8
>><
>>:

q, j = i - 1
1 - q, j = K

1, i = j = 0
0, otherwise

This chain modelizes the following behavior: with probability q the value decrease
by one, with probability 1 - q jump to K

Since zero is the only terminating state, and that states from 1 to K is the only other
strongly connected component of the underlying graph, the probability of terminating
in the state zero is 1.

Let us now consider the coupling (X̃i, Ṽi) of the previous chain with the random
walk (V)i given by randomness sharing. We took an i.i.d. family of uniform variables
(Ui)i) over [0; 1] and we consider the following behavior:

0 1p 1-q 1-ωiƐi

V

X

(1) (2) (3) (4) (5)

0 1q Ɛi

V

X

(1) (2) (3)

• if X̃i = 0 then X̃i+1 = 0 and if Ṽi = 0 then Ṽi+1 = 0.

• 1. if Ui 6 q then X̃i = X̃i-1 - 1 and Ṽi is sampled like Vi, conditionned by the
values of Ṽi for i = 1 . . . i - 1, restricted to the the decreasing possibilities.

2. if p < Ui 6 ✏i then X̃i = K and Ṽi is sampled as previously.
3. if ✏i < Ui 6 1 then X̃i = K and Ṽi is sampled as previously, but in this case,

restricted to the increasing possibilities.

The marginales law are clearly the one of the relying walks, making the construc-
tion an actual coupling. If we impose that X0 = V0 (initial position) a simple induction
over i ensure that we have: Pr(X̃i > Ṽi) = 1 for all i. Therefore Vi is stochastically
dominated by Xi, and thus we obtain that: Pr(Vi > 0) 6 Pr(Xi > 0). Which implies
that limi Pr(Vi = 0) > 1- limi Pr(Xi > 0) = 1 since the result announced on the chain.

The condition {⌫ = 0} � {⇤¬b} ensure that the semantics of the considered
while b do c end is the same as: while (b ^ µ > 0) do c end. Therefore since what
precedes, the condition (b^µ > 0) is almost-surely falsified, which ensure the almost
surely termination of the loop and the soundness of the rule with the preliminary
remark.

While loops terminating with unbounded varient

Let us consider the following rule:

7

It is easy to check that the first and second marginals of (Xi, Vi)i are given by (Xi)i and (Vi)i respectively, so we have constructed a
coupling. Since we impose that X0 = V0 (initial position), a simple induction over i ensure that we have: Pr[X̃i ≤ Ṽi] = 1 for all i. Therefore
Vi is stochastically dominated by Xi, and thus we obtain that Pr[Vi > 0] ≤ Pr[Xi > 0], so limi→∞ Pr[Vi = 0] ≥ 1− limi→∞ Pr[Xi >
0] = 1 as desired.

Proposition 8 (Soundness of the rule [WHILE-PVU]).

Proof. By Proposition 6 and the premises, it suffices to prove almost-sure termination.
We consider the integer-valued variant ẽ as a random variable over the space of states.5 We model the evolution of this variant with a family

(Vi)i of random variables, where Vi represents the value taken by ẽ after the i-th iteration of the loop. The premises and the conditions
The proof proceeds exactly like before: we introduce the sequence of (Vi)i to keep track of the values taken by the variant, then we

introduce a Markov chain to reason stochastically and bound the behavior of the Vi and ultimately conclude by a coupling argument.
Like in the previous case, we introduce couple the sequence (Vi)i to a Markov chain in order to show almost-sure termination. We have

by the premises that the probability of decreasing for the variant is greater than the probability of increasing. We can then lower bound the
probability of strictly decreasing by a certain q and upper bound the probability increasing by p such that q > p > 0 (it is always possible
thanks to side condition on the variant).

In this case, we define the Markov chain (Xi)i with state space S = N, with probability of transitioning from a ∈ S to b ∈ S given by

P̃a,b ,

1 if a = b = 0
q if b = a− 1
p if b = a+ 1 and a > 0
s if a = b 6= 0
0 otherwise.

This chain realizes a markovian approximation of the behavior of the variant. To facilitate the analysis of the previous chain we introduce
the lifted chain P :

Pa,b ,

1− p if a = b = 0
q if b = a− 1
p if b = a+ 1
s if a = b 6= 0
0 otherwise.

5 This is possible thanks to the lossless requirements: the total weight remains invariant through the computation. We treat the particular case where the initial
weight is 1, the general proof is done exactly in the same way by scaling.

18 2015/8/17

1-p

...

p p p

q q q
s ss

The chain models the following behavior: at a given state, with probability p one increase by one, decrease by one with probability q and
stay put with probability s = 1− p− q. At the state 0, we have probability p of increasing by 1, and probability 1− p of staying put.

This chain is irreducible. The analysis of chain (Xi)i is a bit more complicated than in the bounded case. We start by studying the existence
of a stationery distribution π, that is, a distribution on S that satisfies

p · πi−1 + q · πi+1 + s · πi = πi

for i > 0, and
p · π1 + (1− p) · π0π0.

By rearranging, we need

p · πi−1 + q · πi+1 = (p+ q)πi for all i > 0

q · π1 = p · π0.

The general solution is given by

πi =

{
a+ b(p

q
)i, if p 6= q

a′ + b′i, otherwise.
Therefore, since

∑
i πi is convergent, the only admissible solutions have the form:

πi =

{
b(p
q
)i if p 6= q

a′ otherwise.

But since the π is a probability distribution over the states, the condition
∑∞
i=0 πi = 1 must hold. Trivially, the cases where p ≥ q are

excluded. If p < q, we have:

1 =

∞∑
i=0

b

(
p

q

)i
=

bq

q − p
thus b = q−p

p
and the stationary distribution is given by: πi = q−p

p
(p/q)i.

By a standard result from the analysis of Markov chains, a chain with a stationary distribution is positive recurrent, so q > p leads to a
positive recurrent chain.

Let us study what happens otherwise. The general theory of countable states Markov chains gives the following condition:

Lemma 5. An irreducible chain Xn of state space S is transient if and only if there exists a state i and a unique solution: α : S → [0, 1]
such that:

αi = 1, and inf
S
{αj} = 0, and αj =

∑
k∈S

Pj,kαk for all j 6= i.

With this lemma, we consider when the chain (Xi)i. If the function α exists, it must satisfy

αj = q · αj−1 + p · αj+1 + s · αj
for all j > 0. Reasoning like previously we obtain the solutions:

αi =

{
(1− b) + b(q

p
)i if p 6= q

1 + bi otherwise.

The condition implies that taking b = 0 is not admissible. Furthermore, if p = q no bounded possible solutions exists (since we have
b 6= 0) and thus there is no solution. We thus assume from now on that p 6= q, that is to say: p > q. Taking b = 1 leads gives αj = (q/p)i

which is a valid solution. Therefore we obtain the following classification:

• If p > q the chain is transient.
• If p = q the chain is null recurrent.
• If p < q the chain is positive recurrent.

Thus we deduce that since p ≤ q the probability to reach the state zero is equal to 1. Trivially the result extends the chain P̃ : two chains
have the same behavior, except when reaching zero, when P̃ stops. We then conclude with a similar argument by coupling the variant (Vi)i to
P̃ . Thus, the variant reaches zero almost-surely, since in our particular case p ≤ q. By the condition CPVU, the loop terminates when the
variant reaches 0, so the loop terminates almost surely. This proves the termination of the loop thus the soundness of the rule.

19 2015/8/17

pm(skip, p•) := p•

pm(s1; s2, p
•) := pm(s1,pm(s2, p

•))
pm(x := e, p•) := p•[e/x]

pm(x
$←− D(e), p•) := PD(e)

x (p•)
pm(if e then s1 else s2, p

•) := pm(s1, p
•)|e + pm(s2, p

•)|¬e
pm(abort, p•) := 0

pm(s, o(p)) := o(pm(s, p))
pm(s, c) := c

pc(s, q(p)) := q(pm(s, p))
pc(s, η1 S η2) := pc(s, η1) S pc(s, η2)
pc(s, ∀ẏ∈Z. η) := ∀ẏ∈Z. pc(s, η)
pc(s, ∃ẏ∈Z. η) := ∃ẏ∈Z. pc(s, η)

For p• an integral, c constant, o ∈ Ops, q ∈ Pred, S ∈ {∧,∨,⇒}.

Figure 6. Calculus of the preconditions

B. Precondition calculus
In all program logics, a procedure to compute preconditions is a powerful tool that can make the logic easier to use. Given an assertion η
and a statement s, we wish to find an assertion η∗ that is the precondition of s that implies η as a postcondition. Our plan for computing
preconditions will be to look at each atomic expression p inside η—the integral expressions. We will replace each p by an expression p∗ that
has the same denotation before running the s as p after running s. This yields an assertion η∗ that, interpreted before running s, is logically
equivalent to η interpreted after running s.

Let the preterm of a probability expression η with regards to a program s be a probability expression pm(s, η) that, evaluated at an initial
state, has the same denotation as η after executing s on the initial state. Formally, we require

[[pm(s, η)]]ρµ = [[η]]ρ[[s]]µ

for all probabilistic states µ and substitutions ρ.
Once we have defined the preterms, we can lift them to define the precondition pc s, η of a probability assertion η with regards to a program

s, by applying the operator pm to each generalized expression appearing in η. The preterms and preconditions are constructed by induction,
according to Figure 6. (Note that the precondition is not defined for looping commands, similar to the situation for deterministic languages.)

While preconditions in typical Hoare logics are defined by induction on the statement, our preconditions are defined by induction on the
formula. The essential reason for this choice is the rule for conditional statements. Recall that the rule [IF] does not allow postconditions of
arbitrary shape: the postcondition must have the form η1 ⊕ η2. If we are to find the precondition of a general assertion η, we first need to guess
formulas η1, η2 such that η1 ⊕ η2 =⇒ η. This problem is also present if we want to apply rule [IF] directly.

In contrast, by defining precondition in terms of preterms, we avoid this problem since we do not need to split the assertion to compute the
preterm. Formally, the definition for the preterm of a conditional statement is:

pm(if e then s1 else s2, p
•) , pm(s1, p

•)|e + pm(s2, p
•)|¬e,

where p• =
∮

Γ
ẽ is an atomic probability expression, and the conditioning operation p|e is defined by substitution, with base cases∮

Γ

ẽ
|e
,
∮

Γ

1e=> × ẽ and c|e , c.

To understand the preterm definition, note that pm(s1, p
•) and pm(s2, p

•) represent the probability expression p• before executing s1 and s2

in isolation, respectively. Since the final expression p• includes contributions from both branches, we scale each preterm by the probability
that we enter the respective branch—this is the effect of the conditioning operator.

C. Derived rules
In this section, we prove soundness for the derived rules.

C.1 Deterministic rules
We will use a derived rule for the null sub-distribution:

NULL {�⊥} s {�⊥} .
Proposition 9 (Soundness of rule [NULL]). Rule [NULL] is a derived rule, and therefore sound.

Proof. Induction on the structure of s.

Now, we can prove that the deterministic branching rule is sound.

Proposition 10 (Soundness of rule [IF-D]). The rule [IF-D] is a derived rule, and therefore sound.

20 2015/8/17

Proof. Recall the rule:

IF-D
{η ∧�e} s1 {η′} {η ∧�¬e} s2 {η′}
{η ∧�e} if e then s1 else s2 {η′}

Let µ be a probabilistic state, and let ρ be a logical valuation satisfying the precondition of the conclusion. Now, either µ; ρ |= �e or
µ; ρ |= �¬e. Without loss of generality, suppose we are in the first case.

We apply the general rule [IF]:

IF
{η1} s1 {η′1} {η2} s2 {η′2}

{(η1 ∧�e)⊕ (η2 ∧�¬e)} if e then s1 else s2 {η′1 ⊕ η′2}

with preconditions η1 , η ∧�e and η2 , �⊥, and post-conditions η′1 , η′ and η′2 , �⊥.
By assumption we have the first premise. By rule [NULL] we have the second premise. Thus, we have

[[if e then s1 else s2]]µ; ρ |= η′ ⊕�⊥.
But η′ ⊕�⊥ implies η′, and so we are done.

The case with µ; ρ |= �¬e proceeds essentially the same.

We can also prove soundness of the deterministic looping rule.

Proposition 11 (Soundness of rule [WHILE-D]). Rule [WHILE-D] is sound.

Proof. Recall the rule:

WHILE-D
{η ∧�b} s {η ∧�b}

{η ∧�b} while b do s {η ∧�¬b}
Note that [WHILE-D] is a trivially derivable from [WHILE-C] if there is a program expression that can serve as a decreasing variant. If not, the
proof proceeds as in Proposition 4.

C.2 Independence rules
Lemma 6 (Soundness of rule [SAMPLE-IND]). For any state µ, interpretation ρ, disjoint variables x, x1, . . . , xn such that µ; ρ |= #〈x1, . . . , xn〉
then

[[x $← g]]µ; ρ |= #〈x, x1, . . . , xn〉
where g is a primitive distribution (has no variables).

Proof. The case where µ has weight 0 (the null sub-distribution) is trivial, so we will assume that [[
∮
>]]ρµ > 0 in the remainder. Let t be a

particular memory, and let µ′ be the sub-distribution [[x $← D]]ρm. We have:

µ′(t) =
∑
m

∑
v

1m[x:=v]=tµ(m)[[D]]m(v)

= [[g]](t(x))
∑

m:m=xt

µ(m)

where =x refers to the equality on all memory cells except on x. Note that the denotation of g is independent of the memory, since it is a
closed expression. Thus when computing the measure of the set of memories

E , {m : (m(x) = α ∧m(x1) = α1 ∧ . . . ∧m(xn) = αn)}
we have in µ′:

µ′(E) = [[g]](α)
∑
m

1m(x1)=α1,...,m(xn)=αnµ(m)

= [[g]](α)µ(E′)

=
[[Pr[x = a]]]ρµ′

[[Pr[>]]]ρµ
· µ(E′)

=
[[Pr[x = a]]]ρµ′

[[Pr[>]]]ρµ′
· µ(E′)

where
E′ , {m : (m(x1) = α1 ∧ . . . ∧m(xn) = αn)}

and the last step used the fact that the sampling operation is lossless, i.e., the denotation of g is a proper sub-distribution. Since x is disjoint
from x1, . . . , xn, we can conclude by the independence of the xi (again using losslessness of sampling).

This proof generalized naturally in the case where the sampling distributions are functions of a set of variables y1, . . . yn independent of
the x1, . . . , xn.

21 2015/8/17

	Introduction
	A motivating example
	Programs
	Syntax
	Semantics
	Termination and preservation of weight

	Assertions
	State layer
	Probabilistic layer
	Semantics of assertions
	Probability, expectation and necessity

	Proof system
	Judgments and structural rules
	Non-looping constructs
	Loops
	Soundness
	Specialized rules

	Distribution laws and independence
	Distribution assertions.
	Independence.

	Implementation
	Examples
	Randomization for approximation: vertex cover
	Random walks: termination and reachability
	Amplification: Polynomial identity testing
	Modeling infinite processes: the coupon collector
	Concentration bounds: private running sums
	Conserving randomness: pairwise-independent bits

	Related work
	Conclusion
	Soundness
	Deterministic assignment
	Probabilistic assignment
	Conditional Branching
	Certain termination
	Almost sure termination

	Precondition calculus
	Derived rules
	Deterministic rules
	Independence rules

