★-Liftings for Differential Privacy and f-Divergences

Gilles Barthe, Thomas Espitau, Justin Hsu, Tetsuya Sato, Pierre-Yves Strub

Differential privacy: probabilistic program property

Differential privacy: probabilistic program property

Differential privacy: probabilistic program property

Output depends only a little on any single individual's data

More formally

Definition (Dwork, McSherry, Nissim, Smith) An algorithm is (ϵ, δ) -differentially private if, for every two adjacent inputs, the output distributions μ_1, μ_2 satisfy:

$$\Delta_\epsilon(\mu_1,\mu_2)\leq\delta riangleq$$
 for all sets S , $\mu_1(S)\leq e^\epsilon\cdot\mu_2(S)+\delta$

More formally

Definition (Dwork, McSherry, Nissim, Smith) An algorithm is (ϵ, δ) -differentially private if, for every two adjacent inputs, the output distributions μ_1, μ_2 satisfy:

$$\Delta_\epsilon(\mu_1,\mu_2)\leq\delta riangleq$$
 for all sets S , $\mu_1(S)\leq e^\epsilon\cdot\mu_2(S)+\delta$

Behaves well under composition: " ϵ and δ add up"

Sequentially composing an (ϵ, δ) -private program and an (ϵ', δ') -private program is $(\epsilon + \epsilon', \delta + \delta')$ -private.

How to verify this property?

Use ideas from probabilistic bisimulation

- $\Delta_{\epsilon}(\mu_1, \mu_2) \leq \delta$ means "approximately similar"
- \blacktriangleright Composition \iff approximate probabilistic bisimulation

How to verify this property?

Use ideas from probabilistic bisimulation

- $\Delta_{\epsilon}(\mu_1, \mu_2) \leq \delta$ means "approximately similar"
- Composition \iff approximate probabilistic bisimulation

Foundation for many styles of program verification

- Linear and dependent type systems
- Product program constructions
- ► Relational program logics

Review: Probabilistic Liftings and Approximate Liftings

Probabilistic liftings

Lift a binary relation R on pairs $S \times T$ to a relation $\langle R \rangle$ on distributions $\text{Distr}(S) \times \text{Distr}(T)$

Definition (Larsen and Skou)

Let $R \subseteq S \times T$ be a relation. Two distributions are related $\mu_1 \langle R \rangle \mu_2$ if there exists a witness $\eta \in \text{Distr}(S \times T)$ such that:

1. $\pi_1(\eta) = \mu_1 \text{ and } \pi_2(\eta) = \mu_2$,

2. $\eta(s,t) > 0$ only when $(s,t) \in R$.

Probabilistic liftings

Lift a binary relation R on pairs $S \times T$ to a relation $\langle R \rangle$ on distributions $\text{Distr}(S) \times \text{Distr}(T)$

Definition (Larsen and Skou)

Let $R \subseteq S \times T$ be a relation. Two distributions are related $\mu_1 \langle R \rangle \mu_2$ if there exists a witness $\eta \in \text{Distr}(S \times T)$ such that:

1.
$$\pi_1(\eta)=\mu_1$$
 and $\pi_2(\eta)=\mu_2$,

2. $\eta(s,t) > 0$ only when $(s,t) \in R$.

Example

$$\mu_1 \langle = \rangle \mu_2$$
 is equivalent to $\mu_1 = \mu_2$.

An equivalent definition via Strassen's theorem

Theorem (Strassen 1965) Let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R \rangle \mu_2$ if and only if:

for all subsets $A \subseteq S$, $\mu_1(A) \leq \mu_2(R(A))$

An equivalent definition via Strassen's theorem

Theorem (Strassen 1965) Let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R \rangle \mu_2$ if and only if:

for all subsets $A \subseteq S$, $\mu_1(A) \leq \mu_2(R(A))$

Approximate liftings

Intuition

- Approximately relate two distributions μ_1 and μ_2
- Add numeric indexes (ϵ, δ) to lifting

Want:

- ► Given $R \subseteq S \times T$, lift to $\langle R \rangle^{(\epsilon, \delta)} \subseteq \text{Distr}(S) \times \text{Distr}(T)$
- $\mu_1 \langle =
 angle^{(\epsilon, \delta)} \mu_2$ should be equivalent to $\Delta_{\epsilon}(\mu_1, \mu_2) \leq \delta$

Approximate liftings

Intuition

- Approximately relate two distributions μ_1 and μ_2
- Add numeric indexes (ϵ, δ) to lifting

Want:

- Given $R \subseteq S \times T$, lift to $\langle R \rangle^{(\epsilon, \delta)} \subseteq \mathsf{Distr}(S) \times \mathsf{Distr}(T)$
- $\mu_1 \langle =
 angle^{(\epsilon, \delta)} \mu_2$ should be equivalent to $\Delta_{\epsilon}(\mu_1, \mu_2) \leq \delta$

Approximate liftings

Intuition

- Approximately relate two distributions μ_1 and μ_2
- Add numeric indexes (ϵ, δ) to lifting

Want:

- ► Given $R \subseteq S \times T$, lift to $\langle R \rangle^{(\epsilon, \delta)} \subseteq \text{Distr}(S) \times \text{Distr}(T)$
- ▶ $\mu_1 \langle =
 angle^{(\epsilon, \delta)} \mu_2$ should be equivalent to $\Delta_{\epsilon}(\mu_1, \mu_2) \leq \delta$

Previous definitions: "Existential"

Let $R \subseteq S \times T$ be a binary relation. Two distributions are related by $\mu_1 \langle R \rangle^{(\epsilon,\delta)} \mu_2$ if:

Previous definitions: "Existential"

Let $R \subseteq S \times T$ be a binary relation. Two distributions are related by $\mu_1 \langle R \rangle^{(\epsilon,\delta)} \mu_2$ if:

One witness (Barthe, Köpf, Olmedo, Zanella-Béguelin) There exists $\eta \in \text{Distr}(S \times T)$ such that

- 1. $\pi_1(\eta)=\mu_1$ and $\pi_2(\eta)\leq \mu_2$,
- 2. $\eta(s,t) > 0$ only when $(s,t) \in R$,
- 3. $\Delta_{\epsilon}(\mu_1, \pi_1(\eta)) \leq \delta$.

Previous definitions: "Existential"

Let $R \subseteq S \times T$ be a binary relation. Two distributions are related by $\mu_1 \langle R \rangle^{(\epsilon,\delta)} \mu_2$ if:

One witness (Barthe, Köpf, Olmedo, Zanella-Béguelin) There exists $\eta \in \text{Distr}(S \times T)$ such that

- 1. $\pi_1(\eta)=\mu_1$ and $\pi_2(\eta)\leq \mu_2$,
- 2. $\eta(s,t) > 0$ only when $(s,t) \in R$,
- 3. $\Delta_{\epsilon}(\mu_1, \pi_1(\eta)) \leq \delta$.

Two witnesses (Barthe and Olmedo) There exists $\eta_L, \eta_R \in \text{Distr}(S \times T)$ such that

1.
$$\pi_1(\eta_L)=\mu_1$$
 and $\pi_2(\eta_R)=\mu_2$,

- 2. $\eta_L(s,t), \eta_R(s,t) > 0$ only when $(s,t) \in R$,
- 3. $\Delta_{\epsilon}(\eta_L, \eta_R) \leq \delta$.

Previous definitions: "Universal"

Let $R \subseteq S \times T$ be a binary relation. Two distributions are related by $\mu_1 \langle R \rangle^{(\epsilon,\delta)} \mu_2$ if:

Previous definitions: "Universal"

Let $R \subseteq S \times T$ be a binary relation. Two distributions are related by $\mu_1 \langle R \rangle^{(\epsilon,\delta)} \mu_2$ if:

No witnesses (Sato) For all subsets $A \subseteq S$, we have

$$\mu_1(A) \le e^{\epsilon} \cdot \mu_2(R(A)) + \delta$$

Which definition is the "right" one?

Definitions support different properties and constructions

	PW-Eq	Up-to-bad	Acc. Bd.	Subset	Mapping	Adv. Comp.
1-witness	?	?	Yes	?	?	?
2-witness	Yes	Almost*	No	Almost*	Almost*	Yes
Universal	Yes	Yes	Yes	Yes	Yes	?

Which definition is the "right" one?

Definitions support different properties and constructions

	PW-Eq	Up-to-bad	Acc. Bd.	Subset	Mapping	Adv. Comp.
1-witness	?	?	Yes	?	?	?
2-witness	Yes	Almost*	No	Almost*	Almost*	Yes
Universal	Yes	Yes	Yes	Yes	Yes	?

Broad tradeoff: How general?

- Less general: less compositional
- More general: harder to prove properties about

Our work: *-Liftings, Equivalences, and an approximate Strassen's theorem

New definition: *-liftings

Generalize 2-witness lifting by adding a new point

Let $R \subseteq S \times T$ be a binary relation, and let $A^* = A \cup \{\star\}$. Two distributions are related by $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if:

There exists $\eta_L, \eta_R \in \text{Distr}(S^{\star} \times T^{\star})$ such that

1.
$$\pi_1(\eta_L) = \mu_1$$
 and $\pi_2(\eta_R) = \mu_2$,

2. $\eta_L(s,t), \eta_R(s,t) > 0$ only when $(s,t) \in R$ or $s = \star$ or $t = \star$, 3. $\Delta_{\epsilon}(\eta_L, \eta_R) < \delta$.

New definition: *-liftings

Generalize 2-witness lifting by adding a new point

Let $R \subseteq S \times T$ be a binary relation, and let $A^* = A \cup \{\star\}$. Two distributions are related by $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if:

There exists $\eta_L, \eta_R \in \text{Distr}(S^\star \times T^\star)$ such that

1.
$$\pi_1(\eta_L) = \mu_1 ext{ and } \pi_2(\eta_R) = \mu_2$$
,

2. $\eta_L(s,t), \eta_R(s,t) > 0$ only when $(s,t) \in R$ or $s = \star$ or $t = \star$,

3. $\Delta_{\epsilon}(\eta_L, \eta_R) \leq \delta$.

Intuition

► ★ is a default point for tracking "unimportant" mass

Why is *-lifting a good definition?

Previously known

One-witness (??) Two-witness
$$\Rightarrow$$
 Universal

Why is *-lifting a good definition?

Previously known

One-witness (??) Two-witness \Rightarrow Universal

*-liftings unify known approximate liftings

One-witness \iff \star -lifting \iff Universal

Approximate version of Strassen's theorem

*-liftings are equivalent to "universal" approximate liftings

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets $A \subseteq S$, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

Approximate version of Strassen's theorem

*-liftings are equivalent to "universal" approximate liftings

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets
$$A \subseteq S$$
, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

Theorem (Strassen 1965)

Let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R \rangle \mu_2$ if and only if:

for all subsets $A \subseteq S$, $\mu_1(A) \leq \mu_2(R(A))$

Approximate version of Strassen's theorem

*-liftings are equivalent to "universal" approximate liftings

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets
$$A \subseteq S$$
, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

Theorem (Strassen 1965)

Let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R \rangle \mu_2$ if and only if:

for all subsets $A \subseteq S$, $\mu_1(A) \leq \mu_2(R(A))$

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets $A \subseteq S$, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets
$$A \subseteq S$$
, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

Define a flow network

► Nodes

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets
$$A \subseteq S$$
, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

- Nodes
 - Source/sink: \top , \bot

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets
$$A \subseteq S$$
, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

- Nodes
 - Source/sink: \top , \bot
 - Internal nodes: $S^{\star} \cup T^{\star}$

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets
$$A \subseteq S$$
, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

- ► Nodes
 - Source/sink: \top , \bot
 - Internal nodes: $S^{\star} \cup T^{\star}$
- Edges

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets
$$A \subseteq S$$
, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

- ► Nodes
 - Source/sink: \top , \bot
 - Internal nodes: $S^{\star} \cup T^{\star}$
- Edges
 - From source/to sink: $(\top, s), (t, \bot)$

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets
$$A \subseteq S$$
, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

- ► Nodes
 - Source/sink: \top , \bot
 - Internal nodes: $S^{\star} \cup T^{\star}$
- Edges
 - From source/to sink: $(\top, s), (t, \bot)$
 - Internal edges: $(s,t) \in R$, $(\star,t), (s,\star)$

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets
$$A \subseteq S$$
, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

- ► Nodes
 - Source/sink: \top , \bot
 - Internal nodes: $S^{\star} \cup T^{\star}$
- Edges
 - From source/to sink: $(\top, s), (t, \bot)$
 - Internal edges: $(s,t) \in R$, $(\star,t), (s,\star)$
- Capacities

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets
$$A \subseteq S$$
, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

- ► Nodes
 - Source/sink: \top , \bot
 - Internal nodes: $S^{\star} \cup T^{\star}$
- Edges
 - From source/to sink: $(\top, s), (t, \bot)$
 - Internal edges: $(s,t) \in R$, $(\star,t), (s,\star)$
- Capacities
 - Outbound c(op,s) given by $\exp(-\epsilon)\cdot\mu_1$

Theorem

Let S, T be discrete (countable) sets, and let $R \subseteq S \times T$ be a relation. Then $\mu_1 \langle R^* \rangle^{(\epsilon,\delta)} \mu_2$ if and only if:

for all sets
$$A \subseteq S$$
, $\mu_1(A) \leq e^{\epsilon} \cdot \mu_2(R(A)) + \delta$

- Nodes
 - Source/sink: \top , \bot
 - Internal nodes: $S^{\star} \cup T^{\star}$
- Edges
 - From source/to sink: $(\top, s), (t, \bot)$
 - Internal edges: $(s,t) \in R$, $(\star,t), (s,\star)$
- Capacities
 - Outbound c(op,s) given by $\exp(-\epsilon)\cdot\mu_1$
 - Incoming $c(t, \perp)$ given by μ_2

Universal lifting \implies minimum cut large

- Max-flow min-cut: there is a large flow f from op to op
- Use f(s,t) to recover \star -lifting witnesses (η_L, η_R) , conclude:

$$\mu_1 \langle R^\star \rangle^{(\epsilon,\delta)} \mu_2$$

Other Results and Future Directions

See the paper for ...

• Further properties of *****-liftings

 Symmetric *-liftings and advanced composition

*-liftings for *f*-divergences

Wrapping up: Future directions and other speculation

Open questions

- Generalize to continuous distributions?
- Similar equivalences for other approximate lifting?
- Which properties should approximate liftings satisfy?

Wrapping up: Future directions and other speculation

Open questions

- Generalize to continuous distributions?
- Similar equivalences for other approximate lifting?
- Which properties should approximate liftings satisfy?

Mild speculation

*-liftings are the "right" approximate version of probabilistic couplings

★-Liftings for Differential Privacy and f-Divergences

Gilles Barthe, Thomas Espitau, Justin Hsu, Tetsuya Sato, Pierre-Yves Strub