
Relational Expectation Properties by Probabilistic Coupling

Abstract
Relational properties describe how two program executions
are related, while expectation properties describe average-
case behavior of probabilistic programs. We investigate for-
mal verification techniques for relational expectation prop-
erties. This class includes key technical properties modeling
stability in machine learning, and properties associated with
fast mixing of Markov chains.

Technically, we design a relational program logic EPRHL
that is inspired by the logic PRHL, a powerful tool for prov-
ing relational properties by reasoning about probabilistic cou-
plings. We enhance PRHL with an orthogonal, compositional
reasoning principle based on premetrics; roughly, the ex-
pected distance between the outputs should be bounded as a
function of the distance between the inputs.

We demonstrate our logic on three classes of examples:
uniform stability of variants of the Stochastic Gradient
Method used in machine learning, fast mixing for a Markov
chain modeling population dynamics, and fast mixing for a
Markov chain from statistical physics, using the path coupling
method.

1. Introduction
Probabilistic programs are a classical and powerful tool in
computer science. By taking random samples, such programs
can model complex distributions and use computational re-
sources more efficiently. By now probabilistic programs have
found applications in numerous fields, including machine
learning, statistical physics and even quantitative biology.

Given the broad range of applications, researchers have
proposed a multitude of probabilistic properties reflecting
interesting features of probabilistic programs. For instance,
a program may have a high probability of producing an ac-
curate answer, or a program may satisfy a statistical notion
of privacy. An important subclass of probabilistic properties
involve expected values, used to describe average-case be-
havior. These expectation properties have long been studied
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from a formal verification perspective; seminal works, includ-
ing PPDL [26] and PGCL [29], sparked continuing lines of
research (see, e.g., [19, 24]).

However, existing systems consider properties that de-
scribe a probabilistic execution on a single input, so-called
non-relational properties. In contrast, there has been com-
paratively little work on relational expectation properties,
which relate the average-case behavior of two probabilistic
programs on two related inputs. As a simple example, con-
sider a probabilistic version of a sensitivity condition: if two
numeric inputs differ by 1, then the average numerical outputs
should differ by at most k. This notion of expected sensitiv-
ity generalizes the usual notion used to model robustness of
computations (e.g., Chaudhuri et al. [15]).

Probabilistic relational properties—and not just expecta-
tion properties—pose broad challenges for formal verifica-
tion. In a nutshell, the central issue is reasoning about two
distinct sources of randomness. Since relational properties
describe separate executions, the random choices in one run
are unrelated to random choices in the other run. Even if the
programs share the same code, the two executions might have
completely different control flow.

To address this issue, attention has turned to probabilistic
couplings as a powerful tool for verifying relational proper-
ties. Couplings are a clean abstraction for reasoning about
pairs of probabilistic processes, with a solid history in math-
ematics and probability theory. The key idea is that even
though the two executions are unrelated, for many common
relational properties it suffices to prove that the outputs are
related assuming that the random samples are correlated in a
particular way. Probabilistic couplings, then, describe how to
correlate random samples. Often, the correlation deterministi-
cally maps one sampled value to another, e.g. by forcing two
coin tosses to take opposite values. In these cases, couplings
also abstract away all reasoning about probabilities—the key
data is the relation between the two samples, rather than the
probability of the particular draws.

Crucially for formal verification, couplings can be cleanly
composed to reason about the necessary correlations. Recent
work interprets the program logic PRHL [1] as a logic for
constructing couplings, and verifies challenging properties
like convergence of probabilistic properties [4, 11]; using
an approximate variant of PRHL, the coupling idea can be
extended to verify differential privacy [7, 9]. While these
systems represent significant progress in verifying relational
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properties, they are currently limited to binary, more qual-
itative guarantees. There are many interesting probabilistic
properties of this style: stating that two probabilities are equal,
or one probability is larger than another, etc. On the other
hand, expectation properties often have a more quantitative
aspect, for instance bounding the difference between two ex-
pected values. These expectation properties lie beyond the
reach of existing techniques.

EPRHL: relational expectation properties by coupling.
To address this shortcoming we propose a quantitative
reasoning principle for proving expectation properties—
complementary to couplings—and realize it in a new program
logic EPRHL for proving relational expectation properties.
There are three key ideas. First, we augment the standard,
boolean assertions of the program logic PRHL with premet-
rics, i.e. mappings from pairs of memories to non-negative
extended reals. We use premetrics to model expected Lips-
chitz properties, a probabilistic analogue of sensitivity (also
known as Lipschitz) properties—the distance between outputs
should not be much larger than the distance between inputs.
Concretely, if the premetrics in the pre- and post-conditions
are d and d′, judgments state that the expected value of d′

over the coupling of the output distributions is at most f ◦d on
the input memories, where we call the function f : R→ R a
d-transformer.

Our second technical ingredient handles composition. As
we saw, one of the most useful features of couplings is that
they can be easily composed. We observe that one can define
a sequential composition theorem for premetrics (similar, for
instance to the sequential composition theorem of differential
privacy) if the distance transformer is an affine function, i.e.
f(x) = ax+bwith a, b ≥ 0; this relies on a basic property of
expected values called linearity of expectation. As a result, we
can reason about the sequential composition of two programs
by combining the d-transformers via function composition,
giving clean proof rules for sequential composition and loops.
Overall, premetrics give an orthogonal, quantitative method
of reasoning about couplings, while composing harmoniously
alongside couplings.

Finally, we develop different reasoning principles which
capture different ways in which couplings and premetrics
interact. These principles are particularly useful to capture
existing methods for proving rapid mixing of Markov chains.

Applications. We demonstrate our techniques on three chal-
lenging case studies of relational expectation properties. The
first two examples were only recently considered within their
respective communities.

Stability of stochastic gradient method. Stability [12, 18] is
used in machine learning for measuring how changes in the
training set influence the quality of an algorithm’s prediction
after the training phase. In particular, stability yields good
generalization bounds for a large class of algorithms based
on empirical risk minimization (ERM). Recently, Hardt et al.

[20] show stability of the Stochastic Gradient Method (SGM),
a widely used algorithm in machine learning. We verify
stability claim using our logic.

Population dynamics. Evolutionary algorithms [22] are a
useful modeling tool for biological or social phenomena.
They can be used to analyze population dynamics, both in the
infinite population setting, where evolution is deterministic,
and in the finite population setting, where evolution can be
stochastic. We formally analyze a variant of the so-called
RSM (replication-selection-mutate) model, which captures
the evolution of an unstructured, asexual haploid population
(see, e.g., [21]). Recently, a series of papers prove rapid
mixing of the RSM model under some mild conditions
[16, 30, 34]. We formally verify rapid mixing in a simplified
setting, where the evolution function is strictly contractive.

Path coupling. Path coupling [13] is an elaboration of the
coupling method (see, e.g., [27, 28, 32, 33]) that provides sim-
ple proofs of convergence for a class of Markov chains. Path
coupling can be seen as an engineering tool for couplings:
if we can give a coupling for one step of the Markov chain
started in neighboring states, then path coupling combines the
pieces to give a coupling started from any two (possibly dis-
tant) states. Technically, if the underlying space is equipped
with a path metric, i.e., where the measure between two el-
ements is the length of the shortest Φ-path between them,
and for every two states related by Φ the expected distance
between the two distributions obtained by applying a single
iteration is upper bounded by β, then taking T steps of the
Markov chain from two initial states at distance k yields two
distributions that have expected distance at most βT · k. Path
coupling has numerous applications in statistical mechanics,
molecular evolution, security. A canonical example of path
coupling is graph coloring, to show the convergence of the
Glauber dynamics for drawing approximately uniform sam-
plings from the set of colorings of a graph [13]. We prove
rapid mixing of the Glauber dynamics using our logic.

Outline. After giving a motivating example (§ 2) and re-
viewing some mathematical preliminaries (§ 3), we present
the following contributions.

• A core probabilistic relational program logic EPRHL
based on probabilistic couplings, with premetrics to reason
about relational expectation properties, and a proof of
soundness for the logic (§ 4).

• A formal proof of uniform stability for two versions of
SGM [20], relying on proof rules to perform probabilistic
case analysis (§ 5).

• A formal proof of rapid mixing for Markov chain model-
ing dynamics of a general model of population evolution,
relying on a proof rule representing the optimal coupling
of two distributions (§ 6).

• A formal proof of rapid mixing for the Glauber dynamics
from statistical physics, relying on a proof rule internaliz-
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ing the path coupling principle [13], a method for combin-
ing couplings where the expected distance for each piece
can be bounded (§ 7).

We conclude by surveying related work (§ 8) and presenting
some future directions (§ 9).

2. Stability of Stochastic Gradient Method
To give a taste of our approach, let’s consider a motivating
example from machine learning. In a typical learning setting,
there is a set of possible training examples Z, a parameter
space Rd, and a loss function ` : Z → Rd → [0, 1]. An
algorithm A takes a finite set S ∈ Zn of training examples—
assumed to be drawn independently from some unknown
distribution D—and produces a parameter w ∈ Rd such that
the expected loss of `(−, w) on a fresh sample fromD should
be as small as possible. When the algorithm is randomized,
we think of A as a function Zn → D(Rd).

In order to minimize the loss, a natural idea is to find some
parameter w that minimizes the average error on the training
set and hope that this output also has low error on the true
distribution; such parameters are said to generalize. When
the loss function ` is well-behaved this optimization problem,
known as empirical risk minimization in the literature, can
be solved efficiently. However, even if w has low loss on
the training set, it may have high loss on fresh samples from
the true distribution. Intuitively, the algorithm may select
parameters that are too specific to the training sample. This
problem—also known as overfitting—is a serious problem in
machine learning.

To avoid overfitting, Bousquet and Elisseeff [12] consid-
ered algorithmic notions of stability. Roughly, the algorithm
should produce similar outputs when executed on two train-
ing sets that differ in a single example, so that the output does
not depend too much on any single training example. More
formally:

Definition (Bousquet and Elisseeff [12], Hardt et al. [20]).
Let A : Zn → D(Rd) be an algorithm for some loss function
` : Z → Rd → [0, 1]. The algorithm A is said to be ε-
uniformly stable if for all input sets S, S′ ∈ Zn that differ in
a single element,1 we have

Ew∼A(S)[`(z, w)]− Ew∼A(S′)[`(z, w)] ≤ ε

for all z ∈ Z, where Ex∼µ[f(x)] denotes the expected value
of f(x) when x is drawn from distribution µ.

From our point of view, ε-stability is a relational expecta-
tion property. By the following observation, we can reduce
the two sources of randomness into one source by finding a
single distribution that models both runs.

Fact. For every pair of training sets S, S′ ∈ Zn that differ in
a single element, suppose that we can find a joint distribution

1 In other words, S and S′ have the same cardinality and their symmetric
difference contains exactly two elements.

µ(S, S′) ∈ D(Rd × Rd) such that π1(µ) = A(S) and
π2(µ) = A(S′). If

E(w,w′)∼µ(S,S′)[`(z, w)− `(z, w′)] ≤ ε

for every z ∈ Z, then A is ε-uniformly stable.

The joint distribution µ(S, S′) is known as a coupling. Us-
ing our logic EPRHL, we can construct couplings and reason
about the expected distance on the coupled distributions. To
demonstrate our approach, we verify ε-stability of several
versions of the Stochastic Gradient Method (SGM), a simple
and classical algorithm for machine learning. For the most
basic version, the parameter space is Rd (i.e., that the algo-
rithm is trying to learn d real parameters). SGM maintains a
parameter w and iteratively updates this parameter to reduce
the loss. Each iteration, SGM selects a uniformly random
example z from the input training set S and computes the
gradient2 g of the function `(z,−) : Rd → [0, 1] evaluated
at the current parameter w—this indicates the direction to
move w in order to reduce `(z, w). Then, SGM updates w to
step along g. After running T iterations, the algorithm returns
w as the final parameter choice. We can implement SGM in
an imperative language with the following code.

w ← w0;
t← 0;
while t < T do
i $← [n];
g ← ∇`(S[i],−)(w);
w ← w − αt · g;
t← t+ 1;

return w

To introduce some notation, the first step in the loop samples a
uniformly random element index i from [n] = {0, 1, . . . , n−
1}, while the second step computes the gradient g. We will
model the gradient operator∇ as a higher-order function with
type (Rd → [0, 1]) → (Rd → Rd).3 The third step in the
loop updates w; the step size αt is a real number that depends
on the iteration t.

Our goal is to verify that this program is ε-uniformly
stable, assuming natural conditions on the loss function `.
At a high level, suppose we have two training sets SC , SB

differing in a single example. Viewing the sets as lists,
this means that the two lists have the same length, and
S[i]C = S[i]B for all indices i except for a particular index
i = j. Then, we construct a coupling between the two
distributions on outputs and bound the expected distance
between the outputs wC and wB . If `(z,−) is a Lipschitz
function, i.e. |`(z, w) − `(z, w′)| ≤ L‖w − w′‖ for all

2 Roughly speaking, the gradient acts a multidimensional analogue of the
usual derivative.
3 This operation is only well-defined if the input function is differentiable;
this holds for most of the loss functions considered in the machine learning
literature.
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w,w′ ∈ Rd, bounding the expected distance between the
parameters also bounds the expected losses, implying uniform
stability.

We can carry out the verification in EPRHL, a relational
program logic with judgments of the form

` {Φ; d} s1 ∼f s2 {Ψ; d′}.

Here, s1, s2 are two imperative programs, the formulas Φ
and Ψ are assertions over pairs of memoriesM×M, the
premetrics d, d′ are mapsM×M→ R+, and f : R+ → R+

is a positive affine function (i.e., of the form x 7→ ax+ b for
a, b ∈ R+). The rough idea is that for two initial memories
(m1,m2) satisfying the precondition Φ, there is a coupling of
the output distributions such that the expected value of d′ on
the coupling is at most f(d(m1,m2)) and all pairs of output
memories with positive probability satisfy Ψ.

To sketch the verification, let us focus on the loop. Let sa
be the sampling command, and let sb be the remainder of the
loop body. First, we have

` {Φ; ‖wC−wB‖} sa ∼id sa {iC = iB ; ‖wC−wB‖}. (1)

We abbreviate trivial invariants like tC = tB andAdj(SC , SB)
as Φ. The postcondition iC = iB indicates that the coupling
assumes both executions sample the same index i.

Now, we know that the training sets SC and SB differ in a
single example, say at index j. There are two cases: either we
have sampled iC = iB = j, or we have sampled iC = iB 6= j.
In the first case, we can apply properties of the loss function
` and gradient operator∇ to prove:

` {S[i]C 6= S[i]B ; ‖wC−wB‖} sb ∼+γ sb {Φ′; ‖wC−wB‖}
(2)

where +γ is the d-transformer x 7→ x + γ for a constant γ.
In the second case we know that the example S[i] is the same
in both executions, so we can prove:

` {S[i]C = S[i]B ; ‖wC−wB‖} sb ∼id sb {Φ′; ‖wC−wB‖}
(3)

That is, the expected distance does not increase. To combine
these two cases, note that the first case happens with proba-
bility 1/n—this is the probability of sampling the differing
index j—while the second case happens with probability
1− 1/n. We can scale the bounds accordingly, yielding

` {Φ; ‖wC−wB‖} sa; sb ∼f sa; sb {Φ; ‖wC−wB‖}, (4)

where f(x) = (1/n) · (x+ γ) + (1− 1/n) · x = x+ γ/n.
Now that we have a bound on how the distance grows in

the body, we can apply the loop rule. This rule simply takes
the T -fold composition of the bounding function f :

` {Φ; ‖wC − wB‖} sgm ∼fT sgm {Φ; ‖wC − wB‖}. (5)

Here, fT is the d-transformer +Tγ/n. Assuming that the
loss function `(−, z) is Lipschitz, we know that |`(w, z) −

`(w′, z)| ≤ L · ‖w − w′‖ for some constant L and so

` {Φ; ‖wC−wB‖} sgm ∼L·fT sgm {Φ; |`(wC , z)−`(wB , z)|}
(6)

for every example z ∈ Z, where (L · fT )(x) = L · fT (x).
Since wC and wB are both initially w0, we have constructed
a coupling µ of the output distributions such that

Eµ[|`(wC , z)− `(wB , z)|] ≤ ‖w0−w0‖+LTγ/n = LTγ/n.

Since the left side is larger than Eµ[`(wC , z)− `(wB , z)], we
conclude that SGM is LTγ/n-uniform stable.

3. Preliminaries
Before we can present our logic, we first review basic defini-
tions and notations from probability theory, especially those
related to expected values and probabilistic couplings.

3.1 Probability theory and notations
We let B be the set of booleans, R be the set of real numbers
and R = R∪{−∞,+∞} be the set of extended real numbers.
Moreover, we let R+ and R

+
denote the set of positive real

numbers and positive extended real numbers respectively.
Throughout the paper, we adopt the following convention: if
a > 0 and b ≥ 0 then a×+∞+ b = +∞.

To define d-transformers, we let F be the set of positive
affine functions, mapping x 7→ ax + b where a, b ∈ R+;
L ⊆ F be the set of positive linear functions, mapping
x 7→ ax; and C ⊆ F be the set of positive constant functions,
mapping x 7→ b. We will use the metavariables f for F
and bolded letters (e.g., γ) for C. Functions can be added:
(f + f ′)(x) = f(x) + f(x′); scaled by constant functions:
(γ ·f)(x) = γ ·f(x); and iterated k times: fk(x) = f ◦· · ·◦f .
Finally, we will use some shorthand for common functions.
For scaling, we write ×γ(x) = γx. For translation, we write
+γ(x) = x + γ. The identity function will be simply id
(equivalently, ×1 or +0).

Our programs in our language are interpreted in terms of
sub-distributions, whose definition we recall here.

Definition 3.1. A (discrete) sub-distribution over a set A is
a mapping µ : A→ R+ such that its support

supp(µ) , {a ∈ A | µ(a) 6= 0}

is discrete and |µ| ,
∑
a∈supp(µ) µ(a) is well-defined and

satisfies |µ| ≤ 1.
We let D(A) denote the set of discrete sub-distributions

over A. Note that D(A) is partially ordered using the point-
wise inequality inherited from reals. Similarly, equality of
distributions is defined extensionally: two distributions are
equal if they assign the same value (i.e., probability) to each
element in their domain.

Events are mappings E : A → B. The probability of
an event E w.r.t. a sub-distribution µ, written as Prµ[E],
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is defined as
∑
x|E(x) µ(x). Likewise, the expectation of a

function f : A → R+ w.r.t. a sub-distribution µ ∈ D(A),
written Ex∼µ[f(x)] or Eµ[f ], is defined as

∑
x µ(x)f(x)

when this sum exists, and +∞ otherwise.
A key feature of our logic is that it supports two kinds of

reasoning: assertions can model qualitative properties, while
premetrics can reason about quantitative aspects.

Definition 3.2. A premetric is a mapping d : A× A→ R
+

such that d(x, x) = 0 for every x ∈ A. Premetrics are
partially ordered using the pointwise order inherited from the
extended reals. A hemimetric is a premetric d′ that satisfies
the triangular inequality:

∀x, y, z. d′(x, z) ≤ d′(x, y) + d′(y, z)

We write d′ ∈ HemiMet when d′ is a hemimetric.

Every binary relation Φ induces a premetric pdΦ, called
the path distance:

pdΦ(a, a′) =

{
minn{(a, a′) ∈ Φn} if (a, a′) ∈ Φ∗

+∞ otherwise.

Here, Φ∗ denote the reflexive transitive closure of Φ and
Φn denotes its n-fold composition for every n ∈ N. This
mapping is order-preserving.

3.2 Expectation couplings
A probabilistic coupling is a distribution over the product
space of two distributions, such that its first and second
marginals coincide with the first and second distributions.
Formally, two sub-distributions µa ∈ D(A) and µb ∈ D(B)
are coupled by µ ∈ D(A × B), written µ J 〈µa & µb〉, iff
π1(µ) = µa and π2(µ) = µb.

Expectation couplings are a quantitative extension of
probabilistic couplings. Informally, a δ-expectation coupling
w.r.t. a premetric d′ is a coupling µ such that the expected
value of d′ under µ is upper bounded by δ.

Definition 3.3 (Expectation liftings). Let d′ : A×B → R
+

and δ ∈ R
+

. Moreover, let µa ∈ D(A), µb ∈ D(B)
and µ ∈ D(A × B). Then µ is an δ-expectation coupling
for µa and µb w.r.t. d′, written µ Jd′,δ 〈µa & µb〉, if
µ J 〈µa & µb〉 and Eµ[d′] ≤ δ.

We also recall the notion of probabilistic couplings w.r.t. a
relation Ψ : A×B → B, which is used in relational program
logics such as PRHL for interpreting judgments. We say that
µ is a coupling for µa and µb w.r.t. Ψ, written µ JΨ 〈µa &
µb〉 if µ J 〈µa & µb〉 and supp(µ) ⊆ Ψ; this definition
strengthens the definition of coupling by requiring that the
coupling µ verifies supp(µ) ⊆ Ψ. Our logic will combine the
two notions of couplings in order to support both qualitative
and quantitative reasoning. Specifically, we say that µ is a
δ-coupling w.r.t. Ψ and d′, written µ JΨ

d′,δ 〈µa & µb〉, if
both µ Jd′,δ 〈µa & µb〉 and µ JΨ 〈µa & µb〉.

Couplings enjoy several closure properties. In particular,
they are closed under sequential composition.

Proposition 3.4. Let Φ : A × B → B, d : A × B → R
+

,
Ψ : A × B → B, d′ : A × B → R

+
, δ ∈ R

+
, and f ∈ F .

Let µa ∈ D(A), Ma : A → D(A′), and set µ′a = Eµa
[Ma].

Let µb ∈ D(b), Mb : B → D(B′), and set µ′b = Eµb
[Mb].

Let µ ∈ D(A × B), M : (A × B) → D(A′ × B′), and set
µ′ = Eµ[M ]. Assume:

• µ JΦ
d,δ 〈µa & µb〉;

• M(a, b) JΨ
d′,f(d(a,b)) 〈Ma(a) & Mb(b)〉 for every a, b

such that Φ a b.

Then µ′ JΨ
d′,f(δ) 〈µ

′
a & µ′b〉, where µ′ = Eµ[M ].

4. Program logic
With the preliminaries out of the way, we are ready to present
our program logic.

4.1 Programming language
We base our development on PWHILE, a core language
with deterministic assignments, probabilistic assignments,
conditionals, and loops. We implicitly assume that programs
are well-typed w.r.t. a standard typing discipline. The syntax
of statements is defined by the grammar:

s ::= x← e | x $← g | s; s | skip
| if e then s else s | while e do s

where x, e, and g range over variables in V , expressions
in E and distribution expressions in D respectively. E is
defined inductively from V and operators, while D consists
of parameterized distributions—for instance, the uniform
distribution [n] over the set {0, . . . , n− 1} or the Bernoulli
distribution Bern(e) with parameter e.

Following the seminal work of Kozen [25], the denota-
tional semantics of programs is given as sub-distribution
transformers. One difference is that we only consider dis-
crete sub-distributions and as a consequence avoid issues of
measurability.

We first define memories as type-preserving mappings
from variables to values—formally, we define an interpre-
tation for each type and require that a variable of type T is
mapped to an element of the interpretation of T . We letM
denote the set of memories. Then, the semantics JeKm of a
(well-typed) expression e is defined in the usual way as an el-
ement of the interpretation of the type of e, and parameterized
by a memory m. The interpretation of distribution expres-
sions is defined and denoted likewise. Finally, we define the
semantics of statements.

Definition 4.1 (Semantics of statements).

• The semantics JsKm of a statement s w.r.t. to some initial
memory m is a sub-distribution over states, and is defined
by the clauses of Fig. 1.

• The (lifted) semantics JsKµ of a statement s w.r.t. to
some initial sub-distribution µ over memories is a

5 2016/11/18



sub-distribution over states, and is defined as JsKµ ,
Em∼µ[JsKm].

The semantics of programs given in Figure 1 is standard.
The most interesting case is for loops, where the interpretation
of a while loop is the limit of the interpretations of its finite
unrollings. Formally, the nth truncated iterate of the loop
while b do s is defined as

n times︷ ︸︸ ︷
if b then s; . . . ; if b then s; if b then abort

which we represent using the shorthand (if b then s)n|¬b.
For any initial sub-distribution µ, applying the truncated
iterates yields an increasing and bounded sequence of sub-
distributions. We take the limit of this sequence to give a
semantics to the while loop.

4.2 Proof system
EPRHL judgments are of the form

{Φ; d} s1 ∼f s2 {Ψ; d′}

for programs s1, s2, assertions Φ,Ψ : M × M → B,
premetrics d, d′ : M×M → R

+
, and a function f ∈ F .

We will refer to f as a distance transformer.

Definition 4.2. A judgment {Φ; d} s1 ∼f s2 {Ψ; d′} is valid
iff for every memories m1, m2 s.t. (m1,m2) |= Φ, there
exists µ such that

µ JΨ
d′,f(d(m1,m2)) 〈Js1Km1

& Js2Km2
〉

Figure 2 summarizes the main rules of the logic. We
comment on some key rules below, but first introduce some
notation and terminology used in the rules. First, note that
each boolean expression e naturally yields two assertions eC
and eB , resp. called its left and right injections:

m1 |= e ⇐⇒ m1,m2 |= eC

m2 |= e ⇐⇒ m1,m2 |= eB

The notation naturally extends to mappings from memories
to booleans. Second, several rules use substitutions. Given a
memory m, variable x and expression e such that the types of
x and e agree, we letm[x← e] denote the unique memorym′

such that m(y) = m′(y) if y 6= x and m′(x) = JeKm. Then,
given a variable x (resp. x′), an expression e (resp. e′), and
an assertion Φ, we define the assertion Φ[xC , x

′
B
← eC , e

′
B

]
by the clause:

Φ[xC , x
′
B
← eC , e

′
B

](m1,m2) , Φ(m1[x← e],m′2[x′ ← e′])

Substitution of premetrics is defined similarly. One can also
define one-sided substitutions, for instance Φ[xC ← eC ].

We now turn to the rules of the proof system. We only
consider structural rules, i.e. rules that do not look at the
structure of the program, and two-sided rules, i.e. rules in

which the left and right programs have the same structure.
Later we prove that many one-sided rules are derivable.

The [CONSEQ] rule captures the fact that validity is
preserved by weakening the post-conditions, strengthening
the pre-conditions, and increasing the distance transformer.

The [STRUCT] rule captures the fact that validity is pre-
served by replacing programs by equivalent ones. The rules
for proving program equivalence are given in Fig. 4, and
manipulate judgments of the form Φ ` s ≡ s′, where Φ
is a relational assertion. We keep the notion of structural
equivalence as simple as possible.

The [ASSG] rule is similar to the usual rule for assign-
ments, and substitutes into the pre-condition and premetric
the expressions used in the assignments.

The [RAND] rule is similar to the PRHL rule for random
assignments assignments; again, one substitutes into the
pre-condition and premetric. Informally the rule requires
to exhibit the existence of a coupling, given as a bijection
between their support, between the two distributions used for
sampling in the left and right program.

The [SEQCASE] rule combines sequential composition
with a case analysis on properties satisfied by intermediate
memories, i.e. after executing the programs s1 and s2. Infor-
mally, the rule considers events e1 . . . en such that Ψ entails∨
i eiC . Provided one can relate for every i the programs s′1

and s′2 with distance transformer fi, pre-condition Ψ∧eiC ; d′

and postcondition Ψ′; d′′, one can conclude that s1; s′1 and
s2; s′2 are related under distance transformer f , where f up-
per bounds the functions fi weighted by the probability of
each case.

The [WHILE] rule for while loops considers two loops that
execute synchronously, and whose loop bodies satisfy the
invariant Ψ; d′. The rule additionally requires that both loops
perform exactly n steps, and that there exists a variant i ini-
tially set to n and decreasing by 1 at each iteration. Assuming
that fk denotes the distance transformer corresponding to the
(n − k)th iteration, i.e. the iteration where the variant i is
equal to k, the distance transformer for the while loops is the
function f , defined as f1 ◦ · · · ◦ fn.

The [TRANS] rule is a structural rule that internalizes the
main theorem of path coupling when the post-premetric is
a hemimetric the pre-premetric is a path-distance for some
assertion Ψ′. There are three main premises, corresponding
to the case where the initial memories are at distance 0, 1,
or +∞. Two additional conditions are required: the post-
condition must be transitive (which we enforce by requiring
it to be of the form Ψ∗), and for every Φ-path of minimal
length between two memories m and m′ related by Φ, there
exists a (possibly different) Φ ∧ Φ′-path of the same length
between m and m′. These technical conditions are required
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JskipKm = δm Jx $← gKm = Ev∼JgKm [δm[x:=v]]

Jx← eKm = δm[x←JeKm] Jif e then s1 else s2Km = if JeKm then Js1Km else Js2Km
Js1; s2Km = Eξ∼Js1Km [Js2Kξ] Jwhile b do sKm = lim

n→∞
J(if b then s)n|¬bKm

Figure 1. Denotational semantics of programs

for soundness. Finally, the rule requires that the distance
transformer f ∈ L is a linear function.4

The [FRAME-D] rule is a structural rule, analogous to a
typical frame rule, that allows to modify the premetric in a
judgment. Assuming that the premetric d′′ is not modified by
the statements of the judgments and f is a linear function such
that x ≤ f(x) for all x, validity is preserved when adding d′′

to the pre-premetric and post-premetric of the judgment.

Proposition 4.3 (Soundness). For every derivable judgment
` {Φ; d} s1 ∼f s2 {Ψ; d′} and initial memories m1 and m2

such that (m1,m2) |= Φ, there exists µ such that

µ JΨ
d′,f(d(m1,m2)) 〈Js1Km1

& Js2Km2
〉.

Proof. By induction on the derivation. We defer the details to
the appendix.

4.3 Derived rules and weakest precondition
Fig. 3 presents some derived rules of our logic. This includes
rules for constructs such as sequential composition and
conditionals and one-sided rules, i.e. rules that only operate
on a single statement (left or right). As in [11], there are many
other one-sided rules that can be derived similarly from the
core rules.

The [SEQ] rule for sequential composition simply com-
poses the two product programs in sequence. This rule reflects
the compositional property of couplings. It can be derived
from the rule [SEQCASE] by taking e1 to be true.

The [COND] rule for conditional statements requires that
the two guards of the left and right programs are equivalent
under the precondition, and then that each branch is related.

The [CASE] rule allows proving a judgment by case
analysis; specifically, the validity of a judgment can be
established from the validity of two judgments, one where
the boolean-valued pre-condition is strengthened with e and
the other where the pre-condition is strengthened with ¬e.

The [ASSG-L] is the left one-sided rule for assignment.
It can be derived from the assignment rule using structural
equivalence. There exists similar one-sided rules for other
constructs, notably random assignments and conditionals.
Using one sided-rules, one can define a relational weakest
precondition calculus wp, taking as inputs two loop-free and

4 This assumption can be weakened to an affine function, at the cost of
requiring that d is bounded by some finite constant, and adjusting the distance
transformer in the conclusion of the rule.

deterministic programs, a post-condition, and a premetric,
and returning a pre-condition and a premetric.

Proposition 4.4. Let (Φ′, d′) = wp(s1, s2,Ψ, d
′). Assume

Φ =⇒ Φ′ and d(m1,m2) ≤ d′(m1,m2) for every
(m1,m2) |= Φ. Then ` {Φ; d} s1 ∼id s2 {Ψ; d′}.

4.4 Embedding PRHL
EPRHL is an extension of PRHL in the following sense.

Proposition 4.5. If `PRHL {Φ} s1 ∼ s2 {Ψ} then for every
real-valued assertion d′ and distance transformer f ∈ F ,
` {Φ;λ_.+∞} s1 ∼f s2 {Ψ; d′}

5. Revisiting uniform stability
Now that we have described the logic, let’s return to the
Stochastic Gradient Method we first saw in § 2. Recall that
the loss function has type ` : Z → Rd → [0, 1]. We consider
two versions: one where the loss function `(z,−) is convex,
and one where `(z,−) may be non-convex. The algorithm
is the same in both cases, but the stability properties require
different proofs. For convenience, we reproduce the code.

w ← w0;
t← 0;
while t < T do
i $← [n];
g ← ∇`(S[i],−)(w);
w ← w − αt · g;
t← t+ 1;

return w

We will assume that `(z,−) is L-Lipschitz for all z: for all
w,w′ ∈ Rd, we can bound |`(z, w)−`(z, w′)| ≤ L‖w−w′‖
where ‖ · ‖ is the usual Euclidean norm on Rd. Furthermore,
we will assume that the loss function is β-smooth: the gradient
∇`(z,−) : Rd → Rd must be β-Lipschitz.

5.1 SGM with convex loss
Suppose that the function `(z,−) is a convex function
every z, i.e., the following dot product is non-negative:
〈(∇`(z,−))(w) − (∇`(z,−))(w′), w − w′〉 ≥ 0. We can
prove uniform stability of SGM in this case by following the
sketch in § 2. We refer back to the judgments there, briefly
describing how to apply the rules (for lack of space, we defer
details to the appendix). Let sa be the sampling command,
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[CONSEQ]

` {Φ; d} s1 ∼f s2 {Ψ; d′} Φ′ =⇒ Φ Ψ =⇒ Ψ′

∀m1,m2 |= Φ′. f(d(m1,m2)) ≤ f ′(d′′(m1,m2)) ∀m1,m2 |= Ψ. d′′′(m1,m2) ≤ d′(m1,m2)

` {Φ′; d′′} s1 ∼f ′ s2 {Ψ′; d′′′}

[STRUCT]
` {Φ; d} s1 ∼f s2 {Ψ; d′} Φ1 ` s1 ≡ s′1 Φ2 ` s2 ≡ s′2 ∀(m1,m2) |= Φ.Φ1(m1) ∧ Φ2(m2)

` {Φ; d} s′1 ∼f s′2 {Ψ; d′}

[ASSG]
` {Ψ[x1C

← e1, x2B
← e2]; d[x1C

← e1, x2B
← e2]} x1 ← e1 ∼id x2 ← e2 {Ψ; d′}

[RAND]
h : supp(g1) 1-1−→ supp(g2) ∀v ∈ supp(g1). g1(v) = g2(h(v))

` {∀v ∈ supp(g1).Ψ[x1C
← v, x2B

← h(v)];Ev∼g1 [d′[x1C
← v, x2B

← h(v)]]} x1
$← g1 ∼id x2

$← g2 {Ψ; d′}

[SEQCASE]

` {Φ; d} s1 ∼f0 s2 {Ψ; d′} ∀i ∈ I. ` {Ψ ∧ eiC ; d′} s′1 ∼fi s′2 {Ψ′; d′′}
∀m1,m2 |= Φ. (

∑
i∈I PrJs1Km1

[ei] · fi) ◦ f0 ≤ f Ψ =⇒
∨
i∈IeiC

` {Φ; d} s1; s′1 ∼f s2; s′2 {Ψ′; d′′}

[WHILE]

∀0 < k ≤ n. ` {Ψ ∧ e1C
∧ iC = k; dk} s1 ∼fk s2 {Ψ ∧ iC = k − 1; dk−1}

Ψ =⇒ eC = eB ∧ (iC ≤ 0 ⇐⇒ ¬eC)

` {Ψ ∧ iC = n; dn} while e1 do s1 ∼f1◦···◦fn while e2 do s2 {Ψ ∧ iC = 0; d0}

[TRANS]

f ∈ L d′ ∈ HemiMet Φ =⇒ dΦ∧Φ′ = dΦ′

` {Φ ∧=;−} s ∼0 s {Ψ∗; d′} ` {Φ ∧ Φ′; dΦ∧Φ′} s ∼f s {Ψ∗; d′} ` {Φ ∧ ¬(Φ′∗);−} s ∼f s {Ψ; d′}
` {Φ; dΦ′} s ∼f s {Ψ∗; d′}

[FRAME-D]

f ∈ L d′′# MV(s1, s2) ∀m1,m2 |= Φ. d′′(m1,m2) ≤ f(d′′(m1,m2))
` {Φ; d} s1 ∼f s2 {Ψ; d′}

` {Φ; d + d′′} s1 ∼f s2 {Ψ; d′ + d′′}

Figure 2. Selected proof rules

[SEQ]
` {Φ; d} s1 ∼f s2 {Ξ; d′} ` {Ξ; d′} s′1 ∼f ′ s′2 {Ψ; d′′}

` {Φ; d} s1; s′1 ∼f ′◦f s2; s′2 {Ψ; d′′}

[CASE]
` {Φ ∧ eC ; d} s1 ∼f s2 {Ψ; d′} ` {Φ ∧ ¬eC ; d} s1 ∼f s2 {Ψ; d′}

` {Φ; d} s1 ∼f s2 {Ψ; d′}

[COND]
Φ =⇒ e1C

= e2B
` {Φ ∧ e1C

; d} s1 ∼f s2 {Ψ; d′} ` {Φ ∧ ¬e1C
; d} s′1 ∼f s′2 {Ψ; d′}

` {Φ; d} if e1 then s1 else s′1 ∼f if e2 then s2 else s′2 {Ψ; d′}

[ASSG-L]
` {Ψ[x1C

← e1]; d[x1C
← e1]} x1 ← e1 ∼id skip {Ψ; d′}

Figure 3. Selected derived rules
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Φ ` s ≡ s
Φ ` s1 ≡ s2

Φ ` s2 ≡ s1 Φ ` x $← δx ≡ skip

Φ =⇒ x = e

Φ ` x← e ≡ skip Φ ` s; skip ≡ s Φ ` skip; s ≡ s

Φ ` s1 ≡ s′1
Φ ` s1; s2 ≡ s′1; s2

> ` s2 ≡ s′2
Φ ` s1; s2 ≡ s1; s′2

Φ =⇒ e

Φ ` if e then s else s′ ≡ s
Φ =⇒ ¬e

Φ ` if e then s else s′ ≡ s′

Φ ∧ e ` s1 ≡ s2 Φ ∧ ¬e ` s′1 ≡ s′2
Φ ` if e then s1 else s′1 ≡ if e then s2 else s′2

Figure 4. Equivalence rules

and sb be the rest of the loop body. If the step sizes satisfy
αt ≤ 2/β, we will prove the following judgment:

` {Φ; ‖wC−wB‖} sgm ∼+γ sgm {Φ; |`(wC , z)−`(wB , z)|},

where Φ , Adj(SC , SB) ∧ (w0)C = (w0)B ∧ tC = tB and

γ ,
2L2

n

T−1∑
t=0

αt.

By soundness, this implies that SGM is γ-uniformly stable.
As before, we will first prove a simpler judgment:

` {Φ; ‖wC − wB‖} sgm ∼+γ/L sgm {Φ; ‖wC − wB‖}.

Let j be the differing index in the list of examples S (i.e.,
S[j]C 6= S[j]B ). First, we couple the samplings in sa with the
identity coupling, using rule [RAND] with h = id (Eq. (1)).
Next, we perform a case analysis on whether we sample the
differing vertex or not. We can define guards e= , i = j
and e 6= , i 6= j, and then apply the probabilistic case rule
[SEQCASE]. In the case e=, we can use the Lipschitz property
of `(z,−) and some properties of the norm ‖ · ‖ to prove

` {Φ ∧ e=; ‖wC − wB‖} sb ∼+2αtL sb {Φ; ‖wC − wB‖};

this corresponds to Eq. (2). In the case e 6=, we know that the
examples are the same in both runs. So, can use the Lipschitz,
smoothness, and convexity of `(z,−) to prove:

` {Φ ∧ e 6=; ‖wC − wB‖} sb ∼id sb {Φ; ‖wC − wB‖};

this corresponds to Eq. (3). Applying [SEQCASE], noting
that the probability of e 6= is 1 − 1/n and the probability of
e= is 1/n, we can bound the expected distance for the loop
body (Eq. (4)). Applying the rule [WHILE], we can bound
the distance for the whole loop (Eq. (5)). Finally, we can use
the Lipschitz property of `(z,−) and the rule [CONSEQ] to
prove the desired judgment.

5.2 SGM with non-convex loss
When the loss function is non-convex, the previous proof no
longer goes through. However, we can still verify the uni-
form stability bound by Hardt et al. [20]. Roughly, their proof
proceeds by showing that with sufficiently high probability,
SGM does not select the differing example until many iter-
ations have already passed. If the step size αt is taken to be
rapidly decreasing, SGM will be contracting when it visits
the differing example.

Technically, Hardt et al. [20] prove uniform stability by
dividing the proof into two pieces. First they show that with
sufficiently high probability, the algorithm does not select the
differing example before a fixed cutoff time t0. In particular,
with high probability the parameters wC and wB are equal up
to iteration t0. Then, they prove a uniform stability bound for
SGM started at iteration t0, assuming wC = wB .

This proof can also be carried out in EPRHL, with some
extensions. First, we split the SGM program into two loops:
iterations before t0, and iterations after t0. The probability of
wC 6= wB is is precisely the expected value of the indicator
function 1{wC 6=wB}, which is 1 if the parameters are not
equal and 0 otherwise. Thus, we can bound the probability
for the first loop by bounding this expected value in EPRHL.
For the second loop, we can proceed much like we did for
standard SGM: assume that the parameters are initially equal,
and then bound the expected distance on parameters.

The most difficult part is gluing these two pieces together.
Roughly, we want to perform case analysis on wC = wB but
this event depends on both sides—the existing probabilistic
case rule [SEQCASE] does not apply. However, we can give
an advanced probabilistic case rule, [SEQCASE-A], that does
the trick. We defer the details to the appendix.

6. Population dynamics
Our second example comes from the field of evolutionary
biology. Consider an infinite population separated intom ∈ N

classes of organisms. The population at time t is described by
a probability vector ~xt = (x1, . . . , xm), where xi represents
the fraction of the population belonging to the class i. In
the RSM model, the evolution is described by a function
f—called the step function—which updates the probability
vectors. More precisely, the population at time t + 1 is
given as the average of N ∈ N samples according to the
distribution f(~xt). A central question is whether this process
mixes rapidly: starting from two possibly different population
distributions, how fast do the populations converge?

We will verify a probabilistic property that is the main
result needed to show rapid mixing: there is a coupling of
the population distributions such that the expected distance
between the two populations decreases exponentially quickly.
Concretely, let m ∈ N be the number of different classes. We
will work with real vectors ~x = (x1, . . . , xn) ∈ Rm, along
with the associated norm: ‖~x‖1 =

∑m
i=1 |xi|. Let the simplex
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∆m be the set of non-negative vectors with norm 1:

∆m = {~x ∈ Rm | xi ≥ 0, ‖~x‖1 = 1}

Elements of ∆m can be viewed as probability distributions
over the classes {1, . . . ,m}; this is how we will encode the
distribution of species in the population.

In the RSM model, we maintain two vectors: the true
class frequencies, and the current empirical frequencies. For
each of T timesteps, we first apply a function step : ∆m →
∆m to the empirical frequencies, yielding the updated true
frequencies. We will assume that this function is L-Lipschitz:

‖step(~x)− step(~y)‖1 ≤ L · ‖~x− ~y‖1

for L < 1.
Then, we draw N samples from the distribution given by

the true frequency, to give the updated empirical frequencies.
We can model this evolutionary process as a simple proba-
bilistic program popdyn(T ) which repeats T iterations of the
evolutionary step.

~x← x0; t← 0;
while t < T do
~p← step(~x);

~x← ~0; j ← 0;
while j < N do
~z $←Mult(~p);
~x← ~x+ (1/N) · ~z;
j ← j + 1;

t← t+ 1

Here, Mult(~p) is the multinomial distribution with parame-
ters ~p. We model this distribution as producing vectors in ∆m:
with probability pi, we produce the vector with all entries 0
except the ith entry, which is set to 1.

We run this process starting from two arbitrary initial dis-
tribution (x0)C and (x0)B . To show rapid mixing, the crux of
the proof is to construct a coupling where the expected dis-
tance between the true distributions xC and xB is decreasing
exponentially fast as the number of steps T increases. This
follows from the following judgement:

` {>; d} popdyn(T ) ∼×LT popdyn(T ) {Ψ; d},

where Ψ , ‖~xC − ~xB‖1 < 1/N → ~xC = ~xB .
For some notion, let sout and sin be the outer and inner

loops, and let wout and win be the respective loop bodies. We
can break the verification task into two steps. First, we focus
on the inner loop. We want to prove:

` {~xC = ~xB ; ‖~pC − ~pB‖1} sin ∼id sin {Ψ; ‖~xC − ~xB‖1}

hiding trivial invariants asserting j, t are equal in both runs.
By the loop rule [WHILE], it suffices to prove:

` {Ψ ∧ eC = k; dk} win ∼id win {Ψ ∧ eC = k − 1; dk−1}

for each 0 < k ≤ N , where dk = ‖xC − xB‖1 + (k/N) ·
‖pC − pB‖1 and the decreasing variant is e , N − j.

Let the sampling command be w′in, and the remainder of
the loop body be w′′in. To prove the desired judgment, we first
couple the multinomial samples with the rule [MULT-OPT]
in Fig. 5. In the appendix, we show that this rule is sound
by considering the optimal coupling—a standard coupling
construction that minimizes the probability of returning
different samples—of two multinomial distributions. Using
the rule of consequence to scale the premetrics by 1/N , we
have:

` {>; (1/N)‖~pC−~pB‖1}w′in ∼id w
′
in {>; (1/N)‖~xC−~xB‖1}

Noting that the sampling command does not modify the
vectors ~x, ~p, we can add the premetric

d′ = ‖~xC − ~xB‖1 + (k − 1)/N · ‖~pC − ~pB‖1

to the premetric in the precondition and the postcondition by
the frame rule [FRAME-D].

For the deterministic commands w′′in, the assignment rule
[ASSG] gives:

` {>; d′′[~x← (~x+ (1/N)~z)]} w′′in ∼id w
′′
in {>; d′′}

where the substitution is made on the respective sides, and

d′′ = ‖xC − xB‖1 + (k − 1)/N · ‖pC − pB‖1.

Applying the rule of consequence with triangle inequality
on the precondition, we can combine this judgment with the
judgment for w′in to verify the inner loop.

Turning to the outer loop, it suffices to prove

` {Ψ; ‖~xC − ~xB‖1} wout ∼×L wout {Ψ; ‖~xC − ~xB‖1}.

This follows from the assignment rule and the judgment for
the inner loop, so we can apply the loop rule [WHILE] to
conclude.

7. Graph coloring
For our final example, we will consider a randomized algo-
rithm for approximately sampling uniformly from the valid
colorings of a finite graph. This algorithm, known as the
Glauber dynamics, is a prime example of algorithm whose
rapid mixing can be established using path coupling [13].

First, we recall some basic definitions and notations.
Consider a graph G with a finite set of vertices V and a
symmetric relation E ⊆ V × V representing the edges, and
let C be a finite set of colors. A coloring of G is a map
w : V → C; a coloring is valid if neighboring vertices
receive different colors: if (a, b) ∈ E, then w(a) 6= w(b). We
will write w(V ′) for the set of colors at vertices V ′.

For a graph G and a fixed set of colors C, there may
be multiple (or perhaps zero) valid colorings. Jerrum [23]
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[MULT-OPT]
` {>; ‖~pC − ~pB‖1} ~xC

$←Mult(~pC) ∼id ~xB
$←Mult(~pB) {~xC , ~xB ∈ {0, 1}m; ‖~xC − ~xB‖1}

Figure 5. Optimal coupling rule for multinomial

proposed a simple Markov chain for sampling colorings,
called the Glauber dynamics. The process is quite simple.
Beginning at any valid coloring w, we draw a uniform vertex
v and a uniform color c, and then change the color of v to
c in w if this gives a valid coloring. The Glauber dynamics
repeats this process for some finite number of steps T and
returns the final coloring. We can model this process with the
following program glauber(T ):

i← 0;
while i < T do
v $← V ;
c $← C;
if VG(w, (v, c)) then w ← w[v 7→ c];
i← i+ 1;

return w

The guard VG(w, (v, c)) is true when the vertex v in coloring
w can be colored c. Jerrum [23] proved that the distribution
on outputs for this process converges rapidly (as we take more
and more steps) to the uniform distribution on valid colorings
of G. While the original proof was quite technical, Bubley
and Dyer [13] gave a much simpler proof of the convergence
by applying their path coupling technique. Roughly, the path
coupling technique allows to study the distance between the
distributions obtained by executing the transition function of
the Markov process (i.e. the loop body of the program above)
on two colorings that differ on exactly one vertex and find
a coupling where the expected distance (measuring in how
many vertices the colorings differ) is at most β < 1. The path
coupling machinery then gives a coupling of the processes
started at two colorings at any distance, after executing
for T iterations, and allows to conclude that after T steps
the expected distance between two executions started with
colorings at distance k is upper bounded by βT · k.

In EPRHL, this property corresponds to the following
judgment:

` {Φ; pdAdj} glauber(T ) ∼×(|V |·βT ) glauber(T ) {>; pdAdj}

In the judgment above, Adj is an assertion that holds between
two states iff the colorings (held in the variablew) differ in the
color of a single vertex, and d′ , pdAdj and hence d′ counts
the number of vertices with wC(v) 6= wB(v). In addition, Φ
captures some properties of the graph; in particular, Φ states
that ∆ is the maximal degree of vertices inG, i.e., each vertex
in G as at most ∆ neighbors. Finally, β is a constant, strictly
less than 1 under suitable conditions on ∆, |V |, and |C|.

Proceeding from the conclusion, the outline of the proof
is as follows. One first applies the [WHILE] rule, then the
[TRANS] rule on the loop bodies. We apply the rule with

Φ,Ψ , iC = iB and Φ′ , Adj, and f(x) = β · x. To
check the side premises, first note that f is a linear function.
Since Φ and Φ′ refer to disjoint variables, we also have
Φ =⇒ dΦ∧Φ′ = dΦ and Ψ ⇐⇒ Ψ∗. Moreover, since
the distance between two colorings is bounded by the number
of vertices, we only have to consider the case where the two
colorings are at distance 0 and 1. We consider the latter case,
so we must prove

` {Φ ∧Adj; dAdj} s ∼f s {Φ; dAdj},

where s denotes the loop body. In this case, we apply the
[SEQCASE] rule, in such a way that the first judgment
considers ssamp, consisting of the two random samplings
in the loop body, and the second judgment considers the
deterministic statement srest, consisting of the conditional
statement and the updates. In the application of the rule, we
consider three mutually exclusive cases; the intermediate
assertion used for the rule is derived from the choice of the
couplings made for the random samplings—we will return to
the case analysis for [SEQCASE] below.

Let vδ be the vertex that is colored differently (a and b
respectively) in the two input states. We will first couple the
vertex samplings with the identity coupling so that vC = vB ,
using the rule [RAND] with h = id. This gives:

` {Φ∧Adj; dAdj} v $← V ∼id v $← V {Φ∧vC = vB ; dAdj}.

Next, we can perform a case analysis on vC using the rule
[CASE]. If vC is not a neighbor of vδ, then we couple
samplings so that cC = cB with [RAND] with h = id.
Otherwise, we couple cC = πab(cB), where πab swaps a
and b and leaves all other colors unchanged. Combined:

` {Φ ∧Adj; dAdj} ssamp ∼id ssamp {Θ; dAdj},

where ssamp are the two sampling commands, and

Θ , Φ ∧ vC = vB

∧ vC = vδ → cC = πab(cB)

∧ vC 6= vδ → cC = cB .

Now, we combine the sampling commands ssamp with the
remaining commands srest using the rule [SEQCASE]. We
distinguish three mutually-exclusive cases, depending on how
the distance changes under the coupling. Let qb, qg, qn be the
probability of the three cases.

• In the bad case, the distance grows to 2. We use the guard
eb , v ∈ NG(vδ) ∧ c = b ∧ b /∈ w(NG(vδ)), and the
assignment and consequence rules gives:

` {Θ ∧ ebC ; dAdj} srest ∼×2 srest {iC = iB ; dAdj}.
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Note that qb ≤ ∆/|V ||C| since for eb to hold, we must
select a neighbor of vδ and the color b in the first side.

• In the good case, the distance shrinks to zero. We use the
guard eg , v = vδ ∧ c /∈ w(NG(v)). By applying the
assignment and consequence rules, we can prove:

` {Θ ∧ eg
C

; dAdj} srest ∼×0 srest {iC = iB ; dAdj}.

It will be useful to note a lower bound on the probability
of this case: since we must choose the differing vertex and
a color different from its neighbors, and there are at most
∆ neighbors, qg ≥ (|C| −∆)/|C||V |.

• In the neutral case, the distance stays unchanged. We use
the guard en , v ∈ NG(vδ)∪vδ → c ∈ w(NG(v)), and
the assignment rule gives:

` {Θ ∧ enC
; dAdj} srest ∼id srest {iC = iB ; dAdj}.

To put everything together, we need to bound the average
change in distance. Since the cases are mutually exclusive
and at least one case holds, we know qn = 1 − qb − qn.
Combining the three cases, we need to bound the function
x 7→ (qn + 2 · qb) ·x = (1− qg + qb) ·x. By the upper bound
on qb and the lower bound on qg , we can conclude

` {Φ ∧Adj; dAdj} ssamp; srest ∼f ssamp; srest {Φ; dAdj}

for f(x) = β · x, with

β , 1− 1

|V |
+

2∆

|C||V |
.

When the number of colors |C| is strictly larger than 2∆, this
constant β is strictly less than 1 and the Glauber dynamics is
rapidly mixing.

8. Related work
While there are many natural examples of relational expec-
tation properties, to date these properties have received little
attention from the formal verification community. However,
some existing systems that can prove specific examples of
relational expectation properties. For instance, the standard
target property in masking implementations in cryptography
is a variant of probabilistic non-interference, known as prob-
ing security. Recent work introduces quantitative masking
strength or QMS [17], a quantitative generalization that mea-
sures average leakage of the programs. Similarly, the bounded
moment model [6] is a qualitative, expectation-based non-
interference property for capturing security of parallel imple-
mentations against differential power analyses. Current verifi-
cation technology for the bounded moment model is based on
a meta-theorem which reduces security in the bounded mo-
ment model to probing security, and a custom program logic
inspired from PRHL for proving probing security. It would
be interesting to develop a custom program logic based on
EPRHL to verify a broader class of parallel implementations.

For another example, there are formal verification tech-
niques for verifying incentive properties in mechanism de-
sign. These properties are relational, and when the underlying
mechanism is randomized (or when the inputs are random-
ized), incentive properties describe the expected payoff of
an agent in two executions. Barthe et al. [5, 8] show how to
use a relational type system to verify these properties. While
their approach is also based on couplings, they reason about
expectations only at the top level, as a consequence of a par-
ticular coupling. In particular, it is not possible to compose
reasoning about expected values.

Also related to our work, there have been prior efforts
to verify rapid mixing for Markov chains via the path cou-
pling method. In particular, Barthe et al. [11] use ×PRHL,
a proof-relevant variant of PRHL, to extract a product pro-
gram that can then be verified (using an external system)
in order to prove rapid mixing. This approach can be used
for proving formally rapid convergence of Markov chains,
and in particular it has been applied to prove convergence of
the Glauber dynamics. Our system improves upon this work
in two respects. First, we can internalize the path coupling
principle as a rule in our logic. Second, the amount of proba-
bilistic reasoning is lower in our system, and confined to the
[SEQCASE] rule.

A bit further afield, there are many formal verification
efforts in verifying probabilistic relational properties. One
line is the growing body of work on verifying differential
privacy, a notion of database privacy that can be seen as prob-
abilistic notion of sensitivity (see, e.g., [10] for a survey of
language-based techniques). Probabilistic relational proper-
ties are also central to verifying cryptographic protocols (e.g.,
[2, 3]). Finally, researchers have considered probabilistic rela-
tional properties in approximate computing, where a program
may be subject to random faults or instruction skips in order
to order to improve power usage (e.g., [14]); typically, key
properties relate the approximate version of a program with
its exact counterpart.

9. Conclusion
We have developed a program logic to reason about relational
expectation properties, and demonstrated the applicability of
the logic on challenging examples from machine learning,
evolutionary biology, and statistical physics. Next, we intend
to formally verify the soundness of the logic in a proof assis-
tant and to mechanize the proofs of the examples considered
in this paper and of other examples from the literature. One
appealing direction for future work is to develop a verified
library of machine learning algorithms; for instance, it would
be extremely interesting to formally verify a recent result by
[31], which establishes convergence of a practical variant of
Stochastic Gradient. Another potential direction is to verify
more general results about population dynamics, including
the general case from [30].
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