
1

Proving expected sensitivity of probabilistic programs

GILLES BARTHE, Imdea Software
THOMAS ESPITAU, Sorbonne Universités, UPMC Paris 6
BENJAMIN GRÉGOIRE, Inria
JUSTIN HSU, University of Pennsylvania
PIERRE-YVES STRUB, École Polytechnique

Program sensitivity, also known as Lipschitz continuity, describes how small changes in a program’s input
lead to bounded changes in the output. We propose an average notion of program sensitivity for probabilistic
programs—expected sensitivity—that averages a distance function over a probabilistic coupling of two output
distributions from two nearby inputs. By varying the distance, expected sensitivity captures useful notions
of probabilistic function sensitivity, including algorithmic stability of machine learning algorithms and
convergence of Markov chains.

Furthermore, expected sensitivity satisfies clean compositional properties and is amenable to formal
verification. We develop a relational program logic called ExSeL for proving expected sensitivity properties.
Our logic features two key ideas. First, relational pre-conditions and post-conditions are expressed using
distances, which can be seen as a real-valued generalization of typical boolean-valued (relational) assertions.
Second, judgments are interpreted in terms of expectation coupling, a novel, quantitative generalization of
probabilistic couplings which supports compositional reasoning.

We demonstrate our logic on two classes of examples: formalizing uniform stability for the stochastic
gradient algorithm from machine learning, and rapid mixing for a model of asexual population dynamics.
We also extend our logic with a transitivity principle for expectation couplings to capture the path coupling

proof technique by Bubley and Dyer [13], and we demonstrate our extension by proving rapid mixing of the
Glauber dynamics from statistical physics.

ACM Reference format:

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2017. Proving expected
sensitivity of probabilistic programs. 1, 1, Article 1 (July 2017), 37 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Sensitivity, also known as Lipschitz continuity, is a fundamental property in mathematics and
computer science. Sensitivity describes how small changes in inputs can affect outputs. Formally,
sensitivity of a function д : A → B is defined relative to two metrics dA and dB on A and B
respectively. We say that f is α-sensitive, where α ∈ R+, iff for every two inputs x1 and x2,
dB (д(x1),д(x2)) ≤ α · dA(x1,x2). Bounded sensitivity is a fundamental property in the semantics
of programming languages and also plays a central role in many other fields, including hybrid
and dynamical systems, and in differential privacy. These and other applications have motivated a
broad range verification methods for bounding sensitivity for programs.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
XXXX-XXXX/2017/7-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

We consider expected (or average) sensitivity, a natural generalization of sensitivity for the
probabilistic setting, and develop a program logic for proving expected sensitivity of probabilistic
programs. We work with a mild generalization of sensitivity. First, we consider arbitrary non-
negative real-valued functions instead of metrics; for convenience, we call such functions distances.
Second, we consider f -sensitivity rather thanα-sensitivity, where f is a non-negative affine function
the form z 7→ α · z + β , with α , β ∈ R+. Formally, let d : A×A→ R+ and d′ : B ×B → R+ and let f
be a non-negative affine function. We say that д : A→ B is f -sensitive iff for for every two inputs
x1 and x2, dB (д(x1),д(x2)) ≤ f (dA(x1,x2)). This notion of f -sensitivity can model multiplicative
and additive bounds between the outputs from two inputs. Furthermore, using affine functions f
enables sensitivity to compose cleanly in the probabilistic case.

1.1 Expected sensitivity

Let us now consider the case where д is a probabilistic function, i.e. д : A → D(B). The first
obstacle to defining sensitivity is that д produces distributions over B, rather than elements of B.
One possibility is to define distances directly on the space of distributions; however, such distances
can be complex and difficult to reason about. We consider an alternative approach: lift a distance dB
on elements to a distance on distributions, by averaging dB over some distribution µ on pairs B × B.
To derive information about the two output distributions µ1 and µ2, we require that µ models µ1
and µ2 in a probabilistic sense; namely, its first and second marginals must be equal to µ1 and µ2,
respectively. Such a distribution µ is known as a probabilistic coupling of µ1 and µ2 (we refer the
reader to Lindvall [28], Thorisson [34] for an overview of the rich theory of probabilistic couplings).
Formally, we say that a probabilistic function д : A→ D(B) is expected f -sensitive iff for every

two inputs x1 and x2, there exists a coupling µ of д(x1) and д(x2), such that:

E(y1,y2)∼µ [dB (y1,y2)] ≤ f (dA(x1,x2)). (1)

This notion is inspired by the Wasserstein metric, a well-studied distance on distributions [36].
Our notion of expected sensitivity has several appealing features. First, it is quite general—we can
capture many probabilistic notions of sensitivity by varying the distance.

Example 1.1 (Average sensitivity). If the outputs (y1,y2) are numbers, then a natural notion of
sensitivity bounds the difference in average outputs in terms of the distance between inputs (x1,x2).
By setting the distance dB (y1,y2) ≜ |y1 − y2 |, a direct consequence of expected f -sensitivity is the
bound ��Ey1∼µ1 [y1] − Ey2∼µ2 [y2]�� ≤ f (dA(x1,x2)).

This inequality shows that two distributions µ1 and µ2 have similar average values when the inputs
(x1,x2) are close. This type of bound can imply algorithmic stability, a useful property for machine
learning algorithms [12].

Example 1.2 (Probabilistic sensitivity). Suppose that the output distance dB is bounded away from
zero: dB (y1,y2) < 1 implies y1 = y2; for instance, dB could be an integer-valued metric. Then, a
consequence of expected f -sensitivity is the bound���� Pry1∼µ1

[y1 ∈ E] − Pr
y2∼µ2
[y2 ∈ E]

���� ≤ f (dA(x1,x2))

for every set of outputs E. This inequality shows that the distributions µ1 and µ2 are close in a
pointwise sense, and can imply that two sequences of distributions converge to one another.

Another appealing feature of expected sensitivity is that it is compositional: The sequential
composition of an f -sensitive function with an f ′-sensitive function yields an f ′ ◦ f -sensitive

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:3

function, as long as f and f ′ are non-negative affine functions. As we will see, this property makes
expected sensitivity a good target for formal verification.

1.2 Expected sensitivity from expectation couplings

The definition of expected sensitivity averages the distance over any probabilistic coupling of µ1
and µ2. In general, there are multiple probabilistic couplings between any two distributions, leading
to different expected distances.
To better reason about these couplings and their expected distances, we develop a quantitative

generalization of probabilistic coupling that captures the inequality from Eq. (1); namely, if a
distribution µ on pairs satisfies the bound for expected sensitivity, we call µ an expectation coupling

of µ1 and µ2 with respect to dB and δ , where δ = f (dA(x1,x2)). We show that expectation couplings
satisfy several natural properties, including a sequential composition theorem.

1.3 ExSeL: A program logic for proving expected sensitivity bounds

By leveraging their composition principles, we can bound expected sensitivity by building an
expectation coupling for the output distributions from every pair of nearby inputs. To make this
idea concrete, we develop a relational program logic ExSeL to build expectation couplings for pairs
of programs. ExSeL judgments have the form

{Φ; d} s1 ∼f s2 {Ψ; d′},

where s1 and s2 are probabilistic imperative programs—often, the same program—the pre- and post-
conditionsΦ,Ψ :M×M → B are relational assertions over pairs of memories, d, d′ :M×M → R+

are non-negative distances on memories, and f (z) = α · z + β is a non-negative affine function with
α , β ≥ 0. ExSeL judgments state that for any pair of related input memories (m1,m2) satisfying the
pre-condition Φ, there exists an expectation coupling µ of the output distributions µ1, µ2 such that
all pairs of output memories (m′1,m′2) with positive probability satisfy the post-condition Ψ, and
the expected distance is bounded:

E(m′1,m
′
2)∼µ [d

′(m′1,m
′
2)] ≤ f (d(m1,m2)) = α · d(m1,m2) + β .

We call the function f a distance transformer, as it bounds the (average) post-distance d′ in terms of
the pre-distance d. As a consequence, each ExSeL proof verifies a bound on expected sensitivity for
s1 and s2.

We give a rich Hoare-style proof system for ExSeL, internalizing various compositional properties
of expectation couplings. For the case of sequential composition of programs, given two judgments

{Φ; d} s1 ∼f s2 {Ξ; d′} and {Ξ; d′} s ′1 ∼f ′ s ′2 {Ψ; d′′},

we can compose to give the judgment

{Φ; d} s1; s ′1 ∼f ′◦f s2; s ′2 {Ψ; d′′}

Note that the pre- and post-conditions and the distances compose cleanly, while the distance
transformers combine by function composition. As a result, we can reason about the sequential
composition of two sub-programs by building expectation couplings for each sub-program.

1.4 Applications

We illustrate the expressiveness of the proof system with two classes of examples from the recent
randomized algorithms literature.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:4 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

Stability of stochastic gradient method. In machine learning, stability [12, 19] measures how
changes in the training set influence the quality of an algorithm’s prediction. A stable algorithm
does not depend too much on the particular training set, and its performance generalizes from
the training set to unseen examples. Recently, Hardt, Recht, and Singer [20] show stability of the
Stochastic Gradient Method (SGM), an widely used optimization algorithm for training in machine
learning. We verify the quantitative stability claim for several variants of SGM within our logic.

Rapid mixing for population dynamics. Randomized algorithms are a useful modeling tool for
biological or social phenomena (see, e.g., Jansen [22]). They can be used to analyze population
dynamics, both in the infinite population setting where evolution is deterministic, and in the finite
population setting where evolution can be stochastic. We formally analyze a variant of the so-
called RSM (Replication-Selection-Mutate) model, which captures the evolution of an unstructured,
asexual haploid population (see, e.g., Hartl and Clark [21]). Recently, a series of papers prove rapid
mixing of the RSM model under some mild conditions [17, 31, 37]. We formally verify rapid mixing
in a simplified setting, where the evolution function is strictly contractive. This example relies on
an advanced proof rule internalizing the maximal coupling of two multinomial distributions; in
some sense, the coupling that minimizes the expected distance between samples.

1.5 Extension: path coupling

Once we have set the core logic, we extend the rules to capture more advanced reasoning about
expectation couplings.We consider the path couplingmethod due Bubley andDyer [13], a theoretical
tool for building couplings; the resulting couplings can be used to show fast convergence of two
Markov chains in numerous domains, including statistical mechanics, molecular evolution, and
security. More concretely, let Φ a binary relation and suppose that the state space of the Markov
chain is equipped with a path metric dΦ, i.e., where the distance between two elements is the length
of the shortest Φ-path between them. We say that two states are adjacent if their distance is 1. The
main idea of path coupling is that if we can give a coupling for the distributions after one step
of the random process started in neighboring states, then we can combine these pieces to give a
coupling for the distributions started from any two states. Moreover, if for every two initial states
at distance 1 under dΦ there is an expectation coupling of the output distributions with expected
distance at most γ , then for every two initial states at distance k under dΦ, path couplings gives an
expectation coupling with expected distance at most k · γ .

From a logical point of view, path coupling is a transitivity principle for expectation couplings: we
take a coupling for inputs related by Φ, and construct a coupling for inputs related by Φk . In ExSeL,
we internalize this composition principle by a structural transitivity rule, allowing a family of
relational judgments to be chained together. We formally prove rapid mixing for a classical example
called the Glauber dynamics, a Markov chain for drawing approximately uniform samplings from
the set of proper colorings of a graph [13].

1.6 Outline and core contributions

After illustrating our approach on a simple example (§ 2) and reviewing relevant mathematical
preliminaries, we present the following contributions.
• A novel abstraction called expectation couplings for reasoning about probabilistic sensitivity,
supporting natural composition properties (§ 3).
• A probabilistic relational program logic ExSeL for constructing expectation couplings, along
with a proof of soundness (§ 4).
• A formal proof of uniform stability for two versions of the Stochastic Gradient Method,
relying on proof rules to perform probabilistic case analysis (§ 5).

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:5

• A formal proof of rapid mixing for a Markov chain simulating a finite model of population
evolution, relying on a proof rule internalizing the maximal coupling of two multinomial
distributions (§ 6).
• A formal proof of rapid mixing for the Glauber dynamics from statistical physics relying on
an advanced proof rule internalizing the path coupling principle (§ 7).

We implemented our logic in the EasyCrypt [5], a general-purpose proof assistant for reasoning
about probabilistic programs, and machine-checked our main examples (§ 8). We conclude by
surveying related work (§ 9) and presenting promising future directions (§ 10).

2 STABILITY OF STOCHASTIC GRADIENT METHOD

To give a taste of our approach, let’s consider a property from machine learning. In a typical
learning setting, we have a space of possible examples Z , a parameter space Rd , and a loss function
ℓ : Z → Rd → [0, 1]. An algorithm A takes a finite set S ∈ Zn of training examples—assumed to be
drawn independently from some unknown distributionD—and produces a parameterw ∈ Rd such
that the expected loss of ℓ(−,w) on a fresh sample from D should be as small as possible. When
the algorithm is randomized, we think of A : Zn → D(Rd) as mapping the training examples to a
distribution over parameters.
In order to minimize the loss, a natural idea is to find some parameter w that minimizes the

average error on the training set. When the loss function ℓ is well-behaved this optimization
problem, known as empirical risk minimization in the literature, can be solved efficiently. However
there is no guarantee that these parameters generalize to the true distribution—even ifw has low
loss on the training set, it may have high loss on fresh samples from the true distribution. Roughly
speaking, the algorithm may select parameters that are too specific to the training sample.
This issue—also known as overfitting—is a serious problem in machine learning. To avoid over-

fitting, Bousquet and Elisseeff [12] proposed a technical property of the learning algorithm: the
algorithm should produce similar outputs when executed on two training sets that differ in a single
example, so that the output does not depend too much on any single training example.

Definition (Bousquet and Elisseeff [12]). Let A : Zn → D(Rd) be an algorithm for some loss
function ℓ : Z → Rd → [0, 1]. The algorithm A is said to be ϵ-uniformly stable if for all input sets
S, S ′ ∈ Zn that differ in a single element,1 we have

Ew∼A(S)[ℓ(z,w)] − Ew∼A(S ′)[ℓ(z,w)] ≤ ϵ

for all z ∈ Z , where Ex∼µ [f (x)] denotes the expected value of f (x) when x is sampled from µ.

By the following observation, ϵ-uniform stability follows if A satisfies an expected sensitivity
condition, if we take the distance on the input space Zn to be the number of differing elements in
(S, S ′), and the distance on output parameters to be a function of the loss ℓ.

Fact. For every pair of training sets S, S ′ ∈ Zn that differ in a single element, suppose that we
can find a joint distribution µ(S, S ′) ∈ D(Rd ×Rd) such that π1(µ) = A(S) and π2(µ) = A(S ′), where
π1,π2 : D(Rd ×Rd) → D(Rd) give the first and second marginals. If

E(w,w ′)∼µ(S,S ′)[|ℓ(z,w) − ℓ(z,w
′)|] ≤ ϵ

for every z ∈ Z , then A is ϵ-uniformly stable.

In a bit more detail, the joint distribution µ(S, S ′) is an example of a expectation coupling of A(S)
and A(S ′), where |ℓ(z,w) − ℓ(z,w ′)| is viewed as a distance on pairs of samples (w,w ′). Then, if we
view the distance on training sets Zn to be the symmetric distance (number of differing elements
1In other words, S and S ′ have the same cardinality and their symmetric difference contains exactly two elements.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:6 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

between training sets), ϵ-uniform stability follows from expected sensitivity of the function A. To
prove stability, then, we will prove expected sensitivity by (i) finding an expectation coupling and
(ii) reasoning about the expected value of the distance function. Our logic ExSeL includes elements
to handle both tasks.

To demonstrate our logic, we will show ϵ-stability of several versions of the Stochastic Gradient
Method (SGM), following recent work by Hardt et al. [20]. SGM is a simple and classical optimization
algorithm commonly used in machine learning. Typically, the parameter space is Rd (i.e., that the
algorithm is trying to learnd real parameters). SGMmaintains a parameterw and iteratively updates
this parameter to reduce the loss. Each iteration, SGM selects a uniformly random example z from
the input training set S and computes the gradient vector д of the function ℓ(z,−) : Rd → [0, 1]
evaluated at the current parameterw—this vector indicates the direction to movew to decrease the
loss. Then, SGM updatesw to step along д. After running T iterations, the algorithm returnsw as
the final parameter choice. We can implement SGM in an imperative language as follows.

w ← w0;
t ← 0;
while t < T do
i $← [n];
д← ∇ℓ(S[i],−)(w);
w ← w − αt · д;
t ← t + 1;

returnw

The program firsts initialize the parameters w to some default value w0 and initialize the loop
counter t to 0. Then, it runs T iterations of the main loop. The first step in the loop samples a
uniformly random element index i from [n] = {0, 1, . . . ,n − 1}, while the second step computes the
gradient д. We will model the gradient operator ∇ as a higher-order function with type (Rd →

[0, 1]) → (Rd → Rd).2 The third step in the loop updatesw to try to decrease the loss. The step size
αt determines how far the algorithm moves; it is a real number that may depend on the iteration t .

Our goal is to verify that this program is ϵ-uniformly stable. At a high level, suppose we have
two training sets S◁ and S▷ differing in a single example. Viewing the sets as lists, we suppose
that the two lists have the same length and S[i]◁ = S[i]▷ for all indices i except for a particular
index j ∈ [n]. Then, we construct a expectation coupling between the two distributions on output
parameters, bounding the expected distance between the outputsw◁ andw▷ . Assuming that ℓ(z,−)
is a Lipschitz function, i.e. |ℓ(z,w) − ℓ(z,w ′)| ≤ L∥w −w ′∥ for all w,w ′ ∈ Rd where ∥ · ∥ is the
usual Euclidean distance, bounding the expected distance between the parameters also bounds the
expected losses, implying uniform stability.

Now, let’s see how to carry out this verification in our logic. ExSeL is a relational program logic
with judgments of the form

⊢ {Φ; d} s1 ∼f s2 {Ψ; d′}.

Here, s1, s2 are two imperative programs, the formulas Φ and Ψ are assertions over pairs of memories
(m1,m2) ∈ M×M, the distances d, d′ are mapsM×M → R+, and f : R+ → R+ is a non-negative
affine function (i.e., of the form x 7→ ax + b for a,b ∈ R+). The judgment above states that for any
two initial memories (m1,m2) satisfying the pre-condition Φ, there is an expectation coupling of the
output distributions from executing s1, s2 onm1,m2 respectively such that the expected value of d′

2Strictly speaking, this operation is only well-defined if the input function is differentiable; this holds for most of the loss
functions considered in the machine learning literature.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:7

on the coupling is at most f (d(m1,m2)) and all pairs of output memories with positive probability
satisfy Ψ.
To sketch the verification, we focus on the loop. Let sa be the sampling command and let sb be

the remainder of the loop body. First, we can show

⊢ {Φ; ∥w◁ −w▷ ∥} sa ∼id sa {i◁ = i▷ ; ∥w◁ −w▷ ∥}. (2)

We consider each part in turn. In the pre-condition, we abbreviate trivial invariants like t◁ = t▷ and
Adj(S◁ , S▷) as Φ. The post-condition i◁ = i▷ indicates that the coupling assumes both executions
sample the same index i . Finally, the distances ∥w◁ −w▷ ∥ in the pre- and post-conditions indicate
that the expected value of the distance does not grow—this is clear because sa does not modifyw .
Now, we know that the training sets S◁ and S▷ differ in a single example, say at index j. There

are two cases: either we have sampled i◁ = i▷ = j, or we have sampled i◁ = i▷ , j. In the first case,
we can apply properties of the loss function ℓ and gradient operator ∇ to prove:

⊢ {S[i]◁ , S[i]▷ ; ∥w◁ −w▷ ∥} sb ∼+γ sb {Φ; ∥w◁ −w▷ ∥} (3)

where +γ is the function x 7→ x + γ for a constant γ—since we are considering different examples
in the two executions, the resulting parameters may grow a bit farther apart. In the second case we
know that the example S[i] is the same in both executions, so we can prove:

⊢ {S[i]◁ = S[i]▷ ; ∥w◁ −w▷ ∥} sb ∼id sb {Φ; ∥w◁ −w▷ ∥} (4)

That is, the expected distance does not increase. To combine these two cases, we note that the first
case happens with probability 1/n—this is the probability of sampling index j—while the second
case happens with probability 1 − 1/n. Our logic allows us to scale the bounds accordingly when
composing sa and sb , yielding

⊢ {Φ; ∥w◁ −w▷ ∥} sa ; sb ∼+γ /n sa ; sb {Φ; ∥w◁ −w▷ ∥}, (5)

since x 7→ (1/n) · (x + γ) + (1 − 1/n) · x = x + γ/n.
Now that we have a bound on how the distance grows in the body, we can apply the loop rule.

Roughly speaking, for a loop runningT iterations, this rule simply takes theT -fold composition f T

of the bounding function f ; since f is the linear function +γ/n, f T is the linear function +Tγ/n,
and we have:

⊢ {Φ; ∥w◁ −w▷ ∥} sgm ∼+Tγ /n sgm {Φ; ∥w◁ −w▷ ∥}. (6)
Assuming that the loss function ℓ(−, z) is Lipschitz, we know that |ℓ(w, z) − ℓ(w ′, z)| ≤ L∥w −w ′∥
for some constant L and so

⊢ {Φ; ∥w◁ −w▷ ∥} sgm ∼+LTγ /n sgm {Φ; |ℓ(w◁ , z) − ℓ(w▷ , z)|} (7)

for every example z ∈ Z . Sincew◁ andw▷ are initialized to the same valuew0, this judgment gives
a µ of the output distributions such that

Eµ [|ℓ(w◁ , z) − ℓ(w▷ , z)|] ≤ ∥w0 −w0∥ + LTγ/n = LTγ/n.

Since the left side is larger than Eµ [ℓ(w◁ , z) − ℓ(w▷ , z)], SGM is LTγ/n-uniform stable.

3 EXPECTED SENSITIVITY

Before we can present our logic, we first review basic definitions and notations from probability
theory related to expected values and probabilistic couplings. Then, we introduce our notions of
expected sensitivity and expectation coupling.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:8 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

3.1 Mathematical preliminaries

Linear and affine functions. We let A be the set of non-negative affine functions, mapping
z 7→ α · z + β where α , β ∈ R+; L ⊆ A be the set of non-negative linear functions, mapping
z 7→ α · z; and C ⊆ A be the set of non-negative constant functions, mapping z 7→ β . We will use
the metavariables f for A and bolded letters (e.g., β) for C.

Non-negative affine functions can be combined in several ways. Let f , f ′ ∈ A map z to α · z + β
and α ′ · z + β ′ respectively, and let γ ∈ R+.
• sequential composition: the function f ′ ◦ f maps z to (αα ′) · z + α ′β + β ′;
• addition: the function f + f ′ maps z to f (z) + f ′(z);
• scaling: the function (γ · f) maps z to γ · f (z)
• translation: the function f + γ maps z to f (z) + γ .

We will use shorthand for particularly common functions. For scaling, we write •γ for the function
mapping z to γ · z. For translation, we write +γ for the function mapping z to z + γ . The identity
function will be simply id (equivalently, •1 or +0).

Distances. A distance function d is a map A ×A→ R+, where R+ denote the set of non-negative
real numbers. Note that we use the term “distance” rather loosely—the core logic does not require
distances to satisfy any axioms, like reflexivity, symmetry, triangle inequality, etc. Distances are
partially ordered using the pointwise order inherited from the extended reals: we write d ≤ d′ if
d(a1,a2) ≤ d

′(a1,a2) for all (a1,a2) ∈ A ×A.

Distributions. Programs in our language are interpreted in terms of sub-distributions. A (discrete)
sub-distribution over a set A is a map µ : A→ R+ such that its support

supp(µ) ≜ {a ∈ A | µ(a) , 0}

is discrete and its weight |µ | ≜
∑

a∈supp(µ) µ(a) is well-defined and satisfies |µ | ≤ 1. We let D(A)
denote the set of discrete sub-distributions over A. Note that D(A) is partially ordered using the
pointwise inequality inherited from reals. Similarly, equality of distributions is defined extensionally:
two distributions are equal if they assign the same value (i.e., probability) to each element in their
domain. Events are map E : A → B, where B denotes the set of booleans. The probability of an
event E w.r.t. a sub-distribution µ, written as Prµ [E], is defined as

∑
x |E(x) µ(x).

The expectation of a function f : A→ R+ w.r.t. a sub-distribution µ ∈ D(A), written Ex∼µ [f (x)]
or Eµ [f] for short, is defined as

∑
x µ(x) · f (x)when this sum exists, and +∞ otherwise. Expectation

satisfies the usual linearity properties: Eµ [f + д] = Eµ [f]+Eµ [д] and Eµ [k · f] = k · Eµ [f], where
addition and scaling of functions is defined in the usual way.

Discrete sub-distributions support several useful constructions. First, they can be given a monadic
structure. Let x ∈ A, µ ∈ D(A) andM : A→ D(B). Then:

unit x ≜ a 7→ 1[x = a]
bind µ M ≜ b 7→

∑
a∈A µ(a) ·M(a)(b).

Intuitively, bind µ M is the distribution from first sampling from from µ and applying M to the
sample; in particular, it is a distribution over B. We will write δx for the Dirac distribution unit x ,
and abusing notation, we write Ex∼µ [M] and Eµ [M] for bind µ M .

Given a distribution µ over pairs inA×B, we can define the usual projections π1 : D(A×B) → D(A)
and π2 : D(A × B) → D(B) as:

π1(µ)(a) ≜
∑
b ∈B

µ(a,b) and π2(µ)(b) ≜
∑
a∈A

µ(a,b).

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:9

A probabilistic coupling is a distribution over the product space of two distributions, such that
its first and second marginals coincide with the first and second distributions. Formally, two sub-
distributions µa ∈ D(A) and µb ∈ D(B) are coupled by µ ∈ D(A×B), written µa ⟨µ⟩ µb , iff π1(µ) = µa
and π2(µ) = µb .

3.2 Expected f -sensitivity

Our system is structured around a probabilistic version of sensitivity. Let f ∈ A, and let dA and dB
be distances on A and B respectively.

Definition 3.1. We say that a probabilistic function д : A→ D(B) is expected f -sensitive (with
respect to dA and dB) iff for every x1,x2 ∈ A, we have the bound

E(y1,y2)∼µ [dB (y1,y2)] ≤ f (dA(x1,x2))

for some µ ∈ D(B × B) with marginals π1(µ) = д(x1) and π2(µ) = д(x2). When f maps z to α · z + β ,
we sometimes say that д is expected (α , β)-sensitive.

By carefully selecting the distances dA and dB on the input and output spaces, we can recover
different notions of probabilistic sensitivity as a consequence of expected f -sensitivity. We derive
two particularly useful results here, which we first saw in the introduction.

Proposition 3.2 (Average sensitivity). Suppose that д : A→ D(R) is expected f -sensitive with
respect to distances dA and | · |. Then for any two inputs a1,a2 ∈ A, we have��Ey1∼д(a1)[y1] − Ey2∼д(a2)[y2]�� ≤ f (dA(a1,a2)).

Proof. Let a1,a2 ∈ A be two inputs. Since д is expected f -sensitive, there exists a coupling
д(a1) ⟨µ⟩ д(a2) such that the expected distance over µ is at most f (dA(a1,a2)). We can bound:��Ey1∼д(a1)[y1] − Ey2∼д(a2)[y2]�� = ��E(y1,y2)∼µ [y1] − E(y1,y2)∼µ [y2]�� (Coupling)

=
��E(y1,y2)∼µ [y1 − y2]�� (Linearity)
≤ E(y1,y2)∼µ [|y1 − y2 |] (Triangle ineq.)
≤ f (dA(a1,a2)) (Ex. coupling)

□

Proposition 3.3 (Probabilistic sensitivity). Suppose that д : A→ D(B) is expected f -sensitive
with respect to distances dA and dB , where dB (b1,b2) < β if and only if b1 = b2. Then for any two

inputs a1,a2 ∈ A, we have
TV(д(a1),д(a2)) ≤ f (dA(a1,a2))/β,

where the total variation distance is defined as

TV(д(a1),д(a2)) ≜ max
E⊆B

���� Pr
b1∼д(a1)

[b1 ∈ E] − Pr
b2∼д(a2)

[b2 ∈ E]

���� .
Proof. Let a1,a2 ∈ A be two inputs. Since д is expected f -sensitive, there exists a coupling

д(a1) ⟨µ⟩ д(a2) such that the expected distance dB over µ is at most f (dA(a1,a2)). We can bound:
Pr

(b1,b2)∼µ
[b1 , b2] = E(b1,b2)∼µ [1[b1 , b2]]

≤ E(b1,b2)∼µ [dB (b1,b2)/β] (b1 , b2 → dB ≥ β)
≤ f (dA(a1,a2))/β . (Linearity, ex. coupling)

By a classical theorem about couplings (see, e.g., Lindvall [28]), the TV distance is at most the
probability on the first line. □

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:10 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

Next, we show that expected f -sensitive functions are closed under sequential composition.

Proposition 3.4. Let f , f ′ ∈ A be non-negative affine functions, and let dA, dB and dC be distances

on A, B and C respectively. Assume that д : A→ D(B) is expected f -sensitive and h : B → D(C) is
expected f ′-sensitive. Then the (monadic) composition a 7→ Eb∼д(a)[h(b)] : A→ D(C) of д and h is

expected f ′ ◦ f -sensitive.

Proof. By unfolding definitions and applying linearity of expectation. In more detail, let a1,a2 ∈
A be any pair of inputs. Since д is expected f -sensitive, there is some distribution µ ∈ D(A × A)
such that

Eµ [dB] ≤ f (dA(a1,a2)) (8)
with marginals π1(µ) = д(a1), π2(µ) = д(a2). Similarly, for everyb1,b2 ∈ B, there is some distribution
M(b1,b2) ∈ D(C ×C) such that

EM (b1,b2)[dC] ≤ f ′(dB (b1,b2)) (9)

with marginals π1(M(b1,b2)) = h(b1) and π2(M(b1,b2)) = h(b2), since h is f ′-sensitive.
Define the distribution µ ′ ≜ Eµ [M]. It is straightforward to check the marginals π1(µ ′)(a1) =

Eд(a1)[h] and π2(µ
′)(a2) = Eд(a2)[h]. To check the distance condition, we can bound the expected

distance as desired:

Eµ′[dC] =
∑
c1,c2

dC (c1, c2) ·
∑
b1,b2

µ(b1,b2) ·M(b1,b2)(c1, c2)

=
∑
b1,b2

µ(b1,b2)
∑
c1,c2

dC (c1, c2) ·M(b1,b2)(c1, c2)

≤
∑
b1,b2

µ(b1,b2)f
′(db (b1,b2)) (Eq. (9))

≤ f ′

(∑
b1,b2

µ(b1,b2) · db (b1,b2))

)
(Linearity, f ′ affine)

≤ f ′ (f (dA(a1,a2))) (Eq. (8), f ′ non-decreasing)
= f ′ ◦ f (dA(a1,a2)).

□

Taking the pre- and post-distances to be the same yields a useful consequence.

Proposition 3.5. Let d be a distance over A and let f ∈ F . Let д : A → D(A) be an expected

f -sensitive function. Then for every T ∈ N, the T -fold (monadic) composition дT of д is expected

f T -sensitive, i.e. for every x1,x2 ∈ A, there exists a coupling µ of дT (x1) and д
T (x2) such that

Eµ [d] ≤ f T (d(x1,x2))

An important consequence of this proposition is a variant of Banach’s fixed point theorem.
Informally, the theorem states that, under some reasonable conditions on d, contractive probabilistic
maps д : A→ D(A) have a unique stationary distribution, where a probabilistic map is contractive
iff it is expected f -sensitive for a map f of the form z 7→ α · z, with α < 1.

3.3 Continuity from expectation couplings

Expectation couplings are a quantitative extension of probabilistic couplings, where the expected
distance over µ is bounded.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:11

Definition 3.6 (Expectation couplings). Let d : A × B → R+ be a distance and let δ ∈ R+ be a
constant. Moreover, let µa ∈ D(A), µb ∈ D(B) and µ ∈ D(A × B). Then µ is an (d,δ)-expectation
coupling (or simply, an expectation coupling) for µa and µb if µa ⟨µ⟩ µb and Eµ [d] ≤ δ .
We write µa ⟨µ⟩Φd≤δ µb when µ is an expectation coupling with support supp(µ) contained in a

binary relation Φ ⊆ A × B. We omit Φ when it is the trivial (always true) relation.

Expectation couplings are closely linked to expected f -sensitivity.

Proposition 3.7. A probabilistic function д : A→ D(B) is expected f -sensitive (with respect to dA
and dB) iff for every x1,x2 ∈ A, there exists µ such that д(x1) ⟨µ⟩d≤δ д(x2), where δ = f (dA(x1,x2)).

Expectation couplings are closed under sequential composition: given an expectation coupling
between two distributions µa and µb , two functions Ma : A→ D(A′) and Mb : B → D(B′) and a
function M mapping pairs of samples in (a,b) ∈ A × B to an expectation coupling of Ma(a) and
Mb (b), we have an expectation coupling of the two distributions from sampling µa and µb and
runningMa andMb , respectively.

Proposition 3.8 (Composition of expectation couplings). Let Φ ⊆ A × B, d : A × B → R+,

Ψ ⊆ A × B, d′ : A × B → R+, δ ∈ R+, and f ∈ A. Let µa ∈ D(A), Ma : A → D(A′), and let

µ ′a = Eµa [Ma]. Let µb ∈ D(B), Mb : B → D(B′), and set µ ′b = Eµb [Mb]. Suppose we have functions

µ ∈ D(A × B) andM : (A × B) → D(A′ × B′) such that:

(1) µa ⟨µ⟩
Φ
d≤δ µb and

(2) Ma(a) ⟨M(a,b)⟩
Ψ
d′≤f (d(a,b)) Mb (b) for every (a,b) ∈ Φ.

Then µ ′a ⟨µ
′⟩Ψ
d′≤f (δ) µ

′
b , where µ

′
is the monadic composition E(a,b)∼µ [M(a,b)].

Proof sketch. By unfolding definitions and checking the support, marginal, and expected
distance properties. The support and marginal conditions follow by the support and marginal
conditions for the premises, while the expected distance condition follows by an argument similar
to Proposition 3.4 using that f is affine and non-decreasing.We defer full details to the appendix. □

4 PROGRAM LOGIC

As we have seen, expectation couplings can be composed together and the existence of an expec-
tation coupling implies expected sensitivity. Accordingly, we can give a program logic to reason
about expectation couplings in a structured way.

4.1 Programming language

We base our development on pWhile, a core language with deterministic assignments, probabilistic
assignments, conditionals, and loops. The syntax of statements is defined by the grammar:

s ::= x ← e | x $← д | s; s | skip | if e then s else s | while e do s
where x , e , and д range over variables inV , expressions in E and distribution expressions in D
respectively. E is defined inductively from V and operators, while D consists of parametrized
distributions—for instance, the uniform distribution [n] over the set {0, . . . ,n − 1} or the Bernoulli
distribution Bern(p), where the numeric parameter p ∈ [0, 1] is the probability of returning true.
We will write if e then s as shorthand for if e then s else skip. We implicitly assume that programs
are well-typed w.r.t. a standard typing discipline; for instance, the guard expressions of conditionals
and loops are booleans, operations on expressions are applied to arguments of the correct type, etc.
Following the seminal work of Kozen [25], the denotational semantics of programs is given

as sub-distribution transformers over memories. To keep measure-theoretic technicalities to a
minimum, we limit our focus to discrete sub-distributions. Memories are type-preserving mappings

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:12 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

JskipKm = δm Jx $← дKm = Ev∼JдKm [δm[xBv]]

Jx ← eKm = δm[xBJeKm]
Jif e then s1 else s2Km = if JeKm then Js1Km else Js2Km

Js1; s2Km = Eξ∼Js1Km [Js2Kξ] Jwhile b do sKm = lim
n→∞

J(if b then s)n
|¬bKm

Fig. 1. Denotational semantics of programs

from variables to values—formally, we define an interpretation for each type and require that a
variable of type T is mapped to an element of the interpretation of T . We letM denote the set of
memories. Then, the semantics JeKm of a (well-typed) expression e is defined in the usual way as an
element of the interpretation of the type of e , and parametrized by a memorym. The interpretation
of distribution expressions is defined and denoted likewise. Now, we can define the semantics of
statements.

Definition 4.1 (Semantics of statements).

• The semantics JsKm of a statement s w.r.t. to some initial memorym is a sub-distribution over
states, and is defined by the clauses of Fig. 1.
• The (lifted) semantics JsKµ of a statement s w.r.t. to some initial sub-distribution µ over
memories is a sub-distribution over states, and is defined as JsKµ ≜ Em∼µ [JsKm].

The semantics of programs given in Figure 1 is standard. The most interesting case is for loops,
where the interpretation of a while loop is the limit of the interpretations of its finite unrollings.
Formally, the nth truncated iterate of the loop while b do s is defined as

n times︷ ︸︸ ︷
if b then s; . . . ; if b then s; if b then abort

which we represent using the shorthand (if b then s)n
|¬b . For any initial sub-distribution µ, applying

the truncated iterates yields an increasing and bounded sequence of sub-distributions. The limit of
this sequence is well-defined, and gives the semantics of the while loop.

4.2 Proof system

ExSeL is a Hoare-style logic augmented to consider two programs instead of one (a so-called
relational logic). ExSeL judgments are of the form

{Φ; d} s1 ∼f s2 {Ψ; d′}

for programs s1, s2, assertions Φ,Ψ : M × M → B, distances d, d′ : M × M → R+, and a
non-negative affine function f ∈ A. We will refer to f as a distance transformer.

Definition 4.2. A judgment {Φ; d} s1 ∼f s2 {Ψ; d′} is valid iff for every memories m1, m2 s.t.
(m1,m2) |= Φ, there exists µ such that

Js1Km1
⟨µ⟩Ψ
d′≤f (d(m1,m2))

Js2Km2

The notion of validity is closely tied to expected f -sensitivity. For instance, if the judgment

{⊤; d} s ∼f s {⊤; d′}

is valid, then the program s interpreted as a function JsK :M → D(M) is expected f -sensitive with
respect to distances d and d′. In fact, the pre- and post-conditions Φ and Ψ can also be interpreted as

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:13

distances. If we map Φ to the pre-distance dΦ(m1,m2) ≜ 1[(m1,m2) < Φ], and Ψ to the post-distance
dΨ(m1,m2) ≜ 1[(m1,m2) < Ψ], then the judgment

{⊤; dΦ} s1 ∼id s2 {⊤; dΨ}

is equivalent to
{Φ;−} s1 ∼− s2 {Ψ;−}

where dashes stand for arbitrary distances and distance transformers.
Now, we introduce some notation and then present the rules of the logic. First, note that each

boolean expression e naturally yields two assertions e◁ and e▷ , resp. called its left and right injections:
m1 |= e ⇐⇒ m1,m2 |= e◁

m2 |= e ⇐⇒ m1,m2 |= e▷

The notation naturally extends to mappings from memories to booleans. Second, several rules use
substitutions. Given a memorym, variable x and expression e such that the types of x and e agree,
we letm[x B e] denote the unique memorym′ such thatm(y) =m′(y) if y , x andm′(x) = JeKm .
Then, given a variable x (resp. x ′), an expression e (resp. e ′), and an assertion Φ, we define the
assertion Φ[x◁ ,x

′
▷
B e◁ , e

′
▷
] by the clause:

Φ[x◁ ,x
′
▷
B e◁ , e

′
▷
](m1,m2) ≜ Φ(m1[x B e],m2[x

′ B e ′])

Substitution of distances is defined similarly. One can also define one-sided substitutions, for
instance Φ[x◁ B e◁].
We now turn to the rules of the proof system in Fig. 2. The rules can be divided into two

groups: two-sided rules relate programs with the same structure, while structural rules apply to two
programs of any shape. The full logic ExSeL also features one-sided rules for relating a program
with a fixed shape to a program of unknown shape; later we will show that many of these rules are
derivable. We briefly comment on each of the rules, starting with the two-sided rules.

The [Assg] rule is similar to the usual rule for assignments, and substitutes the assigned expres-
sions into the pre-condition and pre-distance.

The [Rand] rule is similar to the pRHL rule for random assignments; again, one substitutes into
the pre-condition and distance. Informally the rule requires to exhibit the existence of a coupling,
given as a bijection between their support, between the two distributions used for sampling in the
left and right program.

The [SeqCase] rule combines sequential composition with a case analysis on properties satisfied
by intermediate memories, i.e. after executing the programs s1 and s2. Informally, the rule considers
events e1 . . . en such that Ψ entails

∨
i ei◁ . Provided one can relate for every i the programs s ′1 and s ′2

with distance transformer fi , pre-condition Ψ ∧ ei◁ ; d′ and post-condition Ψ′; d′′, one can conclude
that s1; s ′1 and s2; s ′2 are related under distance transformer f , where f upper bounds the functions
fi weighted by the probability of each case.
The [While] rule for while loops considers two loops that execute synchronously, and whose

loop bodies satisfy the invariant Ψ; d′. The rule additionally requires that both loops perform exactly
n steps, and that there exists a variant i initially set to n and decreasing by 1 at each iteration.
Assuming that fk denotes the distance transformer corresponding to the (n − k)th iteration, i.e.
the iteration where the variant i is equal to k , the distance transformer for the while loops is the
function composition of the distance transformers: f1 ◦ · · · ◦ fn .
The remaining rules are structural rules. The [Conseq] rule captures the fact that validity is

preserved by weakening the post-conditions, strengthening the pre-conditions, and increasing the
distance transformer.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:14 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

The [Struct] rule captures the fact that validity is preserved by replacing programs by equivalent
ones. Fig. 4 gives the rules for proving two programs s, s ′ equivalent under some relational assertion
Φ; the judgments are of the form Φ ⊢ s ≡ s ′. We keep the notion of structural equivalence as simple
as possible.

The [Frame-D] rule is a structural rule, analogous to a typical frame rule, that allows to modify
the distance in a judgment. Assuming that the distance d′′ is not modified by the statements of
the judgments and f is a linear function such that x ≤ f (x) for all x , validity is preserved when
adding d′′ to the pre-distance and post-distance of the judgment. Formally, MV(s) denotes the
set of modified variables of s and the notation d′′#MV(s1),MV(s2) states that for every memories
m1 andm′1 that coincide on the non-modified variables of s1 andm2 andm′2 that coincide on the
non-modified variables of s2, we have d′′(m1,m2) = d

′′(m′1,m
′
2).

Theorem 4.3 (Soundness). For every derivable judgment ⊢ {Φ; d} s1 ∼f s2 {Ψ; d′} and initial

memoriesm1 andm2 such that (m1,m2) |= Φ, there exists µ such that

Js1Km1
⟨µ⟩Ψ
d′≤f (d(m1,m2))

Js2Km2
.

Proof. By induction on the derivation. We defer the details to the appendix. □

4.3 Derived rules and weakest pre-condition

Fig. 3 presents some useful derived rules of our logic, including rules for standard sequential
composition and conditionals, and one-sided rules.

The [Seq] rule for sequential composition simply composes the two product programs in sequence.
This rule reflects the compositional property of couplings. It can be derived from the rule [SeqCase]
by taking e1 to be true.
The [Cond] rule for conditional statements requires that the two guards of the left and right

programs are equivalent under the pre-condition, and then that each branch is related.
The [Case] rule allows proving a judgment by case analysis; specifically, the validity of a judgment

can be established from the validity of two judgments, one where the boolean-valued pre-condition
is strengthened with e and the other where the pre-condition is strengthened with ¬e .

The [Assg-L] is the left one-sided rule for assignment. It can be derived from the assignment rule
using structural equivalence. The full version of the logic also has similar one-sided rules for other
constructs, notably random assignments and conditionals. Using one sided-rules, one can define
a relational weakest pre-condition calculus wp, taking as inputs two loop-free and deterministic
programs, a post-condition, and a distance, and returning a pre-condition and a distance.

Proposition 4.4. Let (Φ′, d′) = wp(s1, s2,Ψ, d′). Assume Φ =⇒ Φ′ and d(m1,m2) ≤ d
′(m1,m2)

for every (m1,m2) |= Φ. Then ⊢ {Φ; d} s1 ∼id s2 {Ψ; d′}.

5 UNIFORM STABILITY OF STOCHASTIC GRADIENT METHOD, REVISITED

Now that we have described the logic, let’s return to the Stochastic Gradient Method we first saw
in § 2. Recall that the loss function has type ℓ : Z → Rd → [0, 1]. We consider two versions: one
where the loss function ℓ(z,−) is convex, and one where ℓ(z,−) may be non-convex. The algorithm
is the same in both cases, but the stability properties require different proofs. For convenience, we

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:15

[Assg]
⊢ {Ψ[x1◁ B e1,x2▷ B e2]; d′[x1◁ B e1,x2▷ B e2]} x1 ← e1 ∼id x2 ← e2 {Ψ; d′}

[Rand]

h : supp(д1) 1-1−→ supp(д2)
d ≜ Ev∼д1 [d

′[x1◁ B v,x2▷ B h(v)]] ∀v ∈ supp(д1).д1(v) = д2(h(v))
⊢ {∀v ∈ supp(д1), Ψ[x1◁ B v,x2▷ B h(v)]; d} x1 $← д1 ∼id x2 $← д2 {Ψ; d′}

[SeqCase]

⊢ {Φ; d} s1 ∼f0 s2 {Ψ; d′} ∀i ∈ I , ⊢ {Ψ ∧ ei◁ ; d′} s ′1 ∼fi s ′2 {Ψ′; d′′}∀m1,m2 |= Φ, (
∑

i ∈I PrJs1Km1
[ei] · fi) ◦ f0 ≤ f |= Ψ =⇒

∨
i ∈Iei◁

⊢ {Φ; d} s1; s ′1 ∼f s2; s ′2 {Ψ′; d′′}

[While]

∀0 < k ≤ n. ⊢ {Ψ ∧ e1◁ ∧ i◁ = k ; dk } s1 ∼fk s2 {Ψ ∧ i◁ = k − 1; dk−1}
|= Ψ =⇒ e◁ = e▷ ∧ (i◁ ≤ 0 ⇐⇒ ¬e◁)

⊢ {Ψ ∧ i◁ = n; dn} while e1 do s1 ∼f1◦···◦fn while e2 do s2 {Ψ ∧ i◁ = 0; d0}

[Conseq]

⊢ {Φ; d} s1 ∼f s2 {Ψ; d′}
|= Φ′ =⇒ Φ |= Ψ =⇒ Ψ′ |= Φ′ =⇒ f (d) ≤ f ′(d′′) |= Ψ =⇒ d

′′′ ≤ d′

⊢ {Φ′; d′′} s1 ∼f ′ s2 {Ψ′; d′′′}

[Struct]

⊢ {Φ; d} s1 ∼f s2 {Ψ; d′}
Φ1 ⊢ s1 ≡ s

′
1 Φ2 ⊢ s2 ≡ s

′
2 ∀(m1,m2) |= Φ, Φ1(m1) ∧ Φ2(m2)

⊢ {Φ; d} s ′1 ∼f s ′2 {Ψ; d′}

[Frame-D]

f ∈ L d
′′#MV(s1),MV(s2) |= Φ =⇒ d

′′ ≤ f (d′′)
⊢ {Φ; d} s1 ∼f s2 {Ψ; d′}

⊢ {Φ; d + d′′} s1 ∼f s2 {Ψ; d′ + d′′}

Fig. 2. Selected proof rules

[Seq]
⊢ {Φ; d} s1 ∼f s2 {Ξ; d′} ⊢ {Ξ; d′} s ′1 ∼f ′ s ′2 {Ψ; d′′}

⊢ {Φ; d} s1; s ′1 ∼f ′◦f s2; s ′2 {Ψ; d′′}

[Case]
⊢ {Φ ∧ e◁ ; d} s1 ∼f s2 {Ψ; d′} ⊢ {Φ ∧ ¬e◁ ; d} s1 ∼f s2 {Ψ; d′}

⊢ {Φ; d} s1 ∼f s2 {Ψ; d′}

[Cond]

|= Φ =⇒ e1◁ = e2▷
⊢ {Φ ∧ e1◁ ; d} s1 ∼f s2 {Ψ; d

′} ⊢ {Φ ∧ ¬e1◁ ; d} s
′
1 ∼f s

′
2 {Ψ; d′}

⊢ {Φ; d} if e1 then s1 else s ′1 ∼f if e2 then s2 else s ′2 {Ψ; d′}

[Assg-L]
⊢ {Ψ[x1◁ B e1]; d[x1◁ B e1]} x1 ← e1 ∼id skip {Ψ; d′}

Fig. 3. Selected derived rules

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:16 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

Φ ⊢ s ≡ s

Φ ⊢ s1 ≡ s2

Φ ⊢ s2 ≡ s1 Φ ⊢ x $← δx ≡ skip

Φ =⇒ x = e

Φ ⊢ x ← e ≡ skip Φ ⊢ s; skip ≡ s

Φ ⊢ skip; s ≡ s
Φ ⊢ s1 ≡ s

′
1

Φ ⊢ s1; s2 ≡ s ′1; s2

⊤ ⊢ s2 ≡ s
′
2

Φ ⊢ s1; s2 ≡ s1; s ′2

Φ =⇒ e

Φ ⊢ if e then s else s ′ ≡ s

Φ =⇒ ¬e

Φ ⊢ if e then s else s ′ ≡ s ′
Φ ∧ e ⊢ s1 ≡ s2 Φ ∧ ¬e ⊢ s ′1 ≡ s

′
2

Φ ⊢ if e then s1 else s ′1 ≡ if e then s2 else s ′2

Fig. 4. Equivalence rules

reproduce the code sgm:
w ← w0;
t ← 0;
while t < T do
i $← [n];
д← ∇ℓ(S[i],−)(w);
w ← w − αt · д;
t ← t + 1;

returnw

We will assume that ℓ(z,−) is L-Lipschitz for all z: for all w,w ′ ∈ Rd , we can bound |ℓ(z,w) −
ℓ(z,w ′)| ≤ L∥w −w ′∥ where ∥ · ∥ is the usual Euclidean norm on Rd :

∥x ∥ ≜

(
d∑
i=1

x2i

)1/2
Furthermore, we will assume that the loss function is β-smooth: the gradient ∇ℓ(z,−) : Rd → Rd

must be β-Lipschitz.

5.1 SGM with convex loss

Suppose that the function ℓ(z,−) is a convex function for every z, i.e., we have: ⟨(∇ℓ(z,−))(w) −
(∇ℓ(z,−))(w ′),w −w ′⟩ ≥ 0 where ⟨x ,y⟩ is the inner product between two vectors x ,y ∈ Rd :

⟨x ,y⟩ ≜
d∑
i=1

xi · yi .

When the step sizes satisfy 0 ≤ αt ≤ 2/β , we can prove uniform stability of SGM in this case by
following the strategy outlined in § 2. We refer back to the judgments there, briefly describing
how to apply the rules (for lack of space, we defer details to the appendix). Let sa be the sampling
command, and sb be the rest of the loop body. We will prove the following judgment:

⊢ {Φ; ∥w◁ −w▷ ∥} sgm ∼+γ sgm {Φ; |ℓ(w◁ , z) − ℓ(w▷ , z)|},
where Φ ≜ Adj(S◁ , S▷) ∧ (w0)◁ = (w0)▷ ∧ t◁ = t▷ and

γ ≜
2L2
n

T−1∑
t=0

αt .

By soundness (Theorem 4.3), this implies that SGM is γ -uniformly stable.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:17

As before, we will first establish a simpler judgment:

⊢ {Φ; ∥w◁ −w▷ ∥} sgm ∼+γ /L sgm {Φ; ∥w◁ −w▷ ∥}.

As we proceed through the proof, we will indicate the corresponding step from the proof outline in
§ 2. Let j be the index such that the S[j]◁ , S[j]▷ ; this is the index of the differing example. First,
we couple the samplings in sa with the identity coupling, using rule [Rand] with h = id (Eq. (2)).
Next, we perform a case analysis on whether we sample the differing vertex or not. We can define
guards e= ≜ i = j and e, ≜ i , j, and then apply the probabilistic case rule [SeqCase]. In the case
e=, we can use the Lipschitz property of ℓ(z,−) and some properties of the norm ∥ · ∥ to prove

⊢ {Φ ∧ e=; ∥w◁ −w▷ ∥} sb ∼+2αt L sb {Φ; ∥w◁ −w▷ ∥};

this corresponds to Eq. (3). In the case e,, we know that the examples are the same in both runs. So,
can use the Lipschitz, smoothness, and convexity of ℓ(z,−) to prove:

⊢ {Φ ∧ e,; ∥w◁ −w▷ ∥} sb ∼id sb {Φ; ∥w◁ −w▷ ∥};

this corresponds to Eq. (4). Applying [SeqCase], noting that the probability of e, is 1 − 1/n and the
probability of e= is 1/n, we can bound the expected distance for the loop body (Eq. (5)). Applying
the rule [While], we can bound the distance for the whole loop (Eq. (6)). Finally, we can use the
Lipschitz property of ℓ(z,−) and the rule [Conseq] to prove the desired judgment.

5.2 SGM with non-convex loss

When the loss function is non-convex, the previous proof no longer goes through. However, we
can still verify the uniform stability bound by Hardt et al. [20]. Roughly, their proof proceeds by
showing that with sufficiently high probability, SGM does not select the differing example until
many iterations have already passed. If the step size αt is taken to be rapidly decreasing, SGM will
be contracting when it visits the differing example.

Technically, Hardt et al. [20] prove uniform stability by dividing the proof into two pieces. First
they show that with sufficiently high probability, the algorithm does not select the differing example
before a fixed cutoff time t0. In particular, with high probability the parameters w◁ and w▷ are
equal up to iteration t0. Then, they prove a uniform stability bound for SGM started at iteration t0,
assumingw◁ = w▷ .
This proof can also be carried out in ExSeL, with some extensions. First, we split the SGM

program into two loops: iterations before t0, and iterations after t0. The probability ofw◁ , w▷ is
is precisely the expected value of the indicator function 1[w◁ , w▷], which is 1 if the parameters
are not equal and 0 otherwise. Thus, we can bound the probability for the first loop by bounding
this expected value in ExSeL. For the second loop, we can proceed much like we did for standard
SGM: assume that the parameters are initially equal, and then bound the expected distance on
parameters.
The most difficult part is gluing these two pieces together. Roughly, we want to perform case

analysis on w◁ = w▷ but this event depends on both sides—the existing probabilistic case rule
[SeqCase] does not apply. However, we can give an advanced probabilistic case rule, [SeqCase-A],
that does the trick. We defer the details to the appendix.

6 POPULATION DYNAMICS

Our second example comes from the field of evolutionary biology. Consider an infinite population
separated intom ∈ N classes of organisms. The population at time t is described by a probability
vector ®xt = (x1, . . . ,xm), where xi represents the fraction of the population belonging to the class
i . In the RSM model, the evolution is described by a function f —called the step function—which

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:18 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

[Mult-Max]
⊢ {⊤; ∥ ®p◁ − ®p▷ ∥1} ®x◁ $← Mult(®p◁) ∼id ®x▷ $← Mult(®p▷) {®x◁ , ®x▷ ∈ {0, 1}m ; ∥ ®x◁ − ®x▷ ∥1}

Fig. 5. Maximal coupling rule for multinomial

updates the probability vectors. More precisely, the population at time t+1 is given as the average of
N ∈ N samples according to the distribution f (®xt). A central question is whether this process mixes
rapidly: starting from two possibly different population distributions, how fast do the populations
converge?
We will verify a probabilistic property that is the main result needed to show rapid mixing:

there is a coupling of the population distributions such that the expected distance between the
two populations decreases exponentially quickly. Concretely, letm ∈ N be the number of different
classes. We will work with real vectors ®x = (x1, . . . ,xn) ∈ Rm , along with the associated norm
∥ ®x ∥1 ≜

∑m
i=1 |xi |. Let the simplex ∆m be the set of non-negative vectors with norm 1:

∆m ≜ {®x ∈ R
m | xi ≥ 0, ∥ ®x ∥1 = 1}

Elements of ∆m can be viewed as probability distributions over the classes {1, . . . ,m}; this is how
we will encode the distribution of species in the population.

In the RSMmodel, the population evolution is governed by two vectors: the true class frequencies,
and the current empirical frequencies. In each timesteps, we apply a function step : ∆m → ∆m to
the empirical frequencies to get the updated true frequencies; we will assume that the step function
is contractive, i.e., it is L-Lipschitz

∥step(®x) − step(®y)∥1 ≤ L · ∥ ®x − ®y∥1

for L < 1. Then, we draw N samples from the distribution given by the true frequency and update
the empirical frequencies. We can model the evolutionary process as a simple probabilistic program
popdyn(T) which repeats T iterations of the evolutionary step.

®x ← x0; t ← 0;
while t < T do
®p ← step(®x);
®x ← ®0; j ← 0;
while j < N do
®z $← Mult(®p);
®x ← ®x + (1/N) · ®z;
j ← j + 1;

t ← t + 1
The vector ®x stores the current empirical frequencies (the distribution of each class in our current
population), while the vector ®p represents the true frequencies for the current step.

The sampling instruction is new. We writeMult(®p) for the multinomial distribution with parame-
ters ®p; this distribution can be thought of as generalizing a Bernoulli (biased coin toss) distribution
tom outcomes, where each outcome has some probability pi such that

∑
i pi = 1. We represent

samples from the multinomial distribution as binary vectors in ∆m : with probability pi , the sampled
vector has the ith entry set to 1 and all other entires 0.

To analyze the sampling instruction, we introduce the rule [Mult-Max] in Fig. 5. This rule
encodes the maximal coupling—a standard coupling construction that minimizes the probability of
returning different samples—of two multinomial distributions; in the appendix, we show that this
rule is sound. The post-condition ®x◁ , ®x▷ ∈ {0, 1}m states that the samples are always binary vectors

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:19

of lengthm, while the distances indicate that the expected distance between the sampled vectors
∥ ®x◁ − ®x▷ ∥1 are at most the distance between the parameters ∥ ®p◁ − ®p▷ ∥1.
Given two possibly different initial frequencies (x0)◁ , (x0)▷ ∈ ∆m , we want to show that the

resulting distributions on empirical frequencies from popdyn(T) converge as T increases. We will
construct an expectation coupling where the expected distance between the empirical distributions
x◁ and x▷ decays exponentially in the number of steps T ; by Proposition 3.3, this implies that the
TV distance between the distributions of x◁ and x▷ decreases exponentially quickly. Formally, we
prove the following judgement:

⊢ {Φ; ∥(®x0)◁ − (®x0)▷ ∥1} popdyn(T) ∼•LT popdyn(T) {Φ; ∥ ®x◁ − ®x▷ ∥1} (10)
where Φ is short for the relational assertion

Φ ≜ ∥ ®x◁ − ®x▷ ∥1 < 1/N → ®x◁ = ®x▷ .
Φ is an invariant throughout because every entry of ®x◁ and ®x▷ is an integer multiple of 1/N .

To prove the inner judgment, let sout and sin be the outer and inner loops, and letwout andwin be
the respective loop bodies. We can handle the verification in two steps. In the inner loop, we want

⊢ {Φ; ∥ ®p◁ − ®p▷ ∥1} sin ∼id sin {Φ; ∥ ®x◁ − ®x▷ ∥1} (11)
hiding invariants asserting j, t are equal in both runs. By the loop rule [While], it suffices to prove:

⊢ {e◁ = k ∧ Φ; dk } win ∼id win {e◁ = k − 1 ∧ Φ; dk−1} (12)
for each 0 < k ≤ N , where dk ≜ ∥x◁ − x▷ ∥1 + (k/N) · ∥p◁ − p▷ ∥1 and the decreasing variant is
e ≜ N − j. Let the sampling command be w ′

in
, and the remainder of the loop body be w ′′

in
. By

applying the multinomial rule [Mult-Max] and using the rule of consequence to scale the distances
by 1/N , we have

⊢ {Φ; (1/N) · ∥ ®p◁ − ®p▷ ∥1} w ′in ∼id w ′in {Φ; (1/N) · ∥®z◁ − ®z▷ ∥1}.
Since the sampling command does not modify the vectors ®x , ®p, we can add the distance dk−1 to
the pre-condition and the post-condition by the frame rule [Frame-D] (noting that the distance
transformer id is a linear function). Since dk = dk−1 + (1/N) · ∥ ®p◁ − ®p▷ ∥1 by definition

⊢ {Φ; dk } w ′in ∼id w ′in {Φ; dk−1 + (1/N) · ∥®z◁ − ®z▷ ∥1}. (13)
For the deterministic commandsw ′′

in
, the assignment rule [Assg] gives

⊢ {Φ; dk−1[®x B (®x + (1/N) · ®z)]} w ′′in ∼id w ′′in {Φ; dk−1}, (14)
where the substitution is made on the respective sides. Applying the rule of consequence with
the triangle inequality in the pre-condition, we can combine this judgment (Eq. (14)) with the
judgment for w ′

in
(Eq. (13)) to verify the inner loop body (Eq. (12)). The rule [While] gives the

desired judgment for the inner loop sin (Eq. (11)).
Turning to the outer loop, we first prove a judgment for the loop bodies:

⊢ {Φ; ∥ ®x◁ − ®x▷ ∥1} wout ∼•L wout {Φ; ∥ ®x◁ − ®x▷ ∥1}.
By the sequence and assignment rules and the judgment for the inner loop (Eq. (11)), we have

⊢ {Φ; ∥step(®x◁) − step(®x▷)∥1} wout ∼id wout {Φ; ∥ ®x◁ − ®x▷ ∥1}.
Applying the fact that step is L-Lipschitz, the rule of consequence gives

⊢ {Φ; ∥ ®x◁ − ®x▷ ∥1} wout ∼•L wout {Φ; ∥ ®x◁ − ®x▷ ∥1}
for the outer loop body. We can then apply the rule [While] to conclude the desired judgment for
the whole program (Eq. (10)).

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:20 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

This judgment shows that the distributions of ®x in the two runs converge exponentially quickly.
More precisely, let ν◁ ,ν▷ be the distributions of ®x after T steps of popdyn, starting from any two
initial frequencies (x0)◁ , (x0)▷ ∈ ∆m . Eq. (10) implies that there is an expectation coupling

ν◁ ⟨ν⟩
Φ
∥ · ∥1≤δ

ν▷ ,

where δ = LT · ∥(x0)◁ − (x0)▷ ∥1. All pairs of vectors (v1,v2) in the support of ν with v1 , v2 are at
distance at least 1/N , so Proposition 3.3 implies the bound

TV(ν◁ ,ν▷) ≤ N · LT .

Since L < 1, the distributions converge exponentially fast as T increases.

7 PATH COUPLING AND GRAPH COLORING

Path coupling [13] is a powerful method for proving rapid mixing of Markov chains. We review
the central claim of path coupling from the perspective of expected sensitivity. Then, we define
an extension of our program logic that incorporates the central idea of path coupling. Finally, we
apply of our logic to verify a classic example using the path coupling method.

7.1 Path coupling and local expected sensitivity

So far, we have assumed very little structure on our distances; essentially they may be arbitrary
non-negative functions from A ×A to the real numbers. Commonly used distances tend to have
more structure. For integer-valued distances, we can define a weakening of sensitivity that only
considers pairs of inputs at distance 1, rather than arbitrary pairs of inputs. We call the resulting
property local expected sensitivity.

Definition 7.1. Let dA be an integer-valued distance overA and dB be a distance over B. Moreover,
let f ∈ L. We say that a probabilistic function д : A→ D(B) is locally expected f -sensitive (with
respect to dA and dB) iff for every x1,x2 ∈ A such that dA(x1,x2) = 1, we have:

E(y1,y2)∼µ [dB (y1,y2)] ≤ f (1)

for some coupling д(x1) ⟨µ⟩ д(x2).

In general, local expected f -sensitivity is weaker than expected f -sensitivity. However, both
notions coincide under some mild conditions on the distances. We introduce a pair of conditions:{

∀x ,y. d(x ,y) = 0 =⇒ x = y

∀x ,y. d(x ,y) = n + 1 =⇒ ∃z. d(x , z) = 1 ∧ d(z,y) = n
(P){

∀x . d(x ,x) = 0
∀x ,y, z. d(x , z) ≤ d(x ,y) + d(y, z) (H)

In condition (P), d is an integer-valued distance. The first condition is standard for metrics. The
second condition is more interesting: if two points are at distance 2 or greater, we can find a strictly
intermediate point. We will soon see an important class of distances—path metrics—that satisfy
these conditions (Definition 7.3). Condition (H) is more standard: the distance d should assign
distance 0 to two equal points, and satisfy the triangle inequality. Every metric satisfies these
properties; in general, such a distance is called a hemimetric.

When the pre-distance satisfies (P) and the post-distance satisfies (H), local expected sensitivity
is equivalent to expected sensitivity for linear distance transformers.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:21

Proposition 7.2. Let dA be an integer-valued distance over A satisfying (P), and dB be distance

over B satisfying (H). Let f ∈ L and д : A → D(B). Then д is locally expected f -sensitive iff it is

expected f -sensitive (both with respect to dA and dB).

Proof. The reverse direction is immediate. The forward implication is proved by induction on
dA(x1,x2). For the base case, where dA(x1,x2) = 0, we have x1 = x2 and hence д(x1) = д(x2). Let µ
be the identity coupling for д(x1) and д(x2). We have Eµ [dB] =

∑
y∈B dB (y,y) = 0, since dB (y,y) = 0

for every y. For the inductive step, assume that dA(x1,x2) = n + 1. Then there exists x0 such that
dA(x1,x0) = 1 and dA(x0,x2) = n. Therefore, there exists expectation couplings µ0 and µn satisfying
the distance conditions

Eµ0 [dB] ≤ f (dB (x1,x0)) and Eµn [dB] ≤ f (dB (x0,x2)).

Define µ as

µ(x ,y) ≜
∑
z∈A

µ0(x , z) · µn(z,y)

д(x0)(z)
.

We treat terms with zero in the denominator as 0; note that since µ0 and µn satisfy the marginal
conditions, we have π2(µ0) = π1(µn) = д(x0), so д(x0)(z) = 0 implies that µ0(x , z) = µn(z,y) = 0, so
the numerator is also zero in these cases.
Now, the marginal conditions π1(µ) = д(x1) and π2(µ) = д(x2) follow from the marginal condi-

tions for µ0 and µn . The distance condition Eµ [dB] ≤ f (dA(x1,x2)) is more involved. Indeed,

Eµ [dB] =
∑
x,y

µ(x ,y) dB (x ,y)

=
∑
x,y

∑
z

(
µ0(x , z) µn(z,y)

д(x0)(z)

)
dB (x ,y)

≤
∑
x,y,z

(
µ0(x , z) µn(z,y)

д(x0)(z)

)
dB (x , z) +

∑
x,y,z

(
µ0(x , z) µn(z,y)

д(x0)(z)

)
dB (z,y) (triangle ineq.)

=
∑
y,z

(∑
x

µ0(x , z)

д(x0)(z)

)
µn(z,y) dB (z,y) +

∑
x,z

(∑
y

µn(z,y)

д(x0)(z)

)
µ0(x , z) dB (x , z)

=
∑
x,z

µ0(x , z) dB (x , z) +
∑
y,z

µn(z,y) dB (z,y) (marginals)

= Eµ0 [dB] + Eµn [dB]

≤ f (dA(x1,x0)) + f (dA(x0,x2)) (distances)
= f (dA(x1,x0) + dA(x0,x2)) (f linear)
= f (dA(x1,x2)).

Thus, we have an expectation coupling д(x1) ⟨µ⟩dB ≤δ д(x2) for δ = f (dA(x1,x2)). This completes
the inductive step, so д is expected f -sensitive. □

One important application of our result is for path metrics.

Definition 7.3 (Path metric). Let Φ be a binary relation over A, and let Φ∗ denote its reflexive-
transitive closure and Φn denote its n-fold composition. Assume that for every a,a′ ∈ A, we have
(a,a′) ∈ Φ∗. The path metric pdΦ of Φ is the distance defined by the clause

pdΦ(a,a′) = min
n
{(a,a′) ∈ Φn}

Note that the set is non-empty by assumption, and hence the minimum exists.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:22 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

[Trans]
f ∈ L d

′ satisfies (H) |= Ψ∗ =⇒ Ψ ⊢ {Φ ∧ Φ′;−} s ∼f (1) s {Ψ; d′}
⊢ {Φ; pdΦ∧Φ′} s ∼f s {Ψ; d′}

Fig. 6. Rule for path coupling

Path metrics satisfy evidently satisfy (P). Since they are also metrics, they also satisfy (H). The
fundamental theorem of path coupling is then stated—in our terminology—as follows.

Corollary 7.4 (Bubley and Dyer [13]). Let d = pdΦ for some a binary relation Φ over A. Let
д : A → D(A) be a locally expected f -sensitive function, where f ∈ L. Then for every T ∈ N, the

T -fold (monadic) composition дT of д is expected f T -sensitive, i.e. for every x1,x2 ∈ A, there exists a
coupling µ of дT (x1) and д

T (x2) such that

Eµ [d] ≤ f T (d(x1,x2))

Proof. The proof follows from the equivalence between local expected sensitivity and sensitivity,
and the composition theorem of expected sensitive functions. □

7.2 Program logic

One could express an analogue of local expected f -sensitivity for expectation couplings. For
convenience, we instead formulate a proof rule inspired from local expected sensitivity, in Figure 6.
Let us first consider the conclusion of the rule. Intuitively, Φ plays the role of a standard pre-
condition, while Φ′ defines the path distance—the pre-distance is a path metric for Φ ∧ Φ′. The first
and second premises of the rule also require that the post-distance is a hemimetric, i.e. satisfies the
condition (H), and that the distance transformer is a linear function f ; these two requirements are
inherited from Proposition 7.2. The third premise requires that the post-condition Ψ is reflexive
and transitive. Then, the main premise of the rule considers a constant distance transformer that
always returns f (1)—for this reason, we do not need to specify a pre-distance for the premise. The
precondition of this premise states that the two initial memories are related by Φ∧Φ′, corresponding
to the case that the two memories are adjacent (that is, at path distance 1). Since the post-condition
Ψ is transitive, it is preserved.

Theorem 7.5 (Soundness). The rule [Trans] is sound, i.e. for every instance of the rule concluding

{Φ; d} s1 ∼f s2 {Ψ; d′} and initial memoriesm1 andm2 such that (m1,m2) |= Φ, there exists µ such

that

Js1Km1
⟨µ⟩Ψ
d′≤f (d(m1,m2))

Js2Km2
.

7.3 Example: Glauber dynamics

The Glauber dynamics is a randomized algorithm for approximating uniform samples from the
valid colorings of a finite graph. This algorithm is a prime example of algorithm where rapid mixing
can be established using the path coupling method [13].

Before detailing this example, we recall some basic definitions and notations. Consider a graph
G with a finite set of verticesV and a symmetric relation E ⊆ V ×V representing the edges, and let
C be a finite set of colors. A coloring of G is a map w : V → C; a coloring is valid if neighboring
vertices receive different colors: if (a,b) ∈ E, thenw(a) , w(b). We writew(V ′) for the set of colors
at vertices V ′.

For a graphG and a fixed set of colorsC , there may be multiple (or perhaps zero) valid colorings.
Jerrum [23] proposed a simple Markov chain, called the Glauber dynamics, for sampling a uniformly

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:23

random coloring. Beginning at any valid coloring w , it draws a uniform vertex v and a uniform
color c , and then change the color of v to c inw if this gives a valid coloring. The Glauber dynamics
repeats this process for some finite number of steps T and returns the final coloring. We can model
this process with the following program glauber(T):

i ← 0;
while i < T do
v $← V ;
c $← C;
if VG (w, (v, c)) thenw ← w[v 7→ c];
i ← i + 1;

returnw

The guardVG (w, (v, c)) is true when the vertexv in coloringw can be colored c . Jerrum [23] proved
that the distribution on outputs for this process converges rapidly to the uniform distribution on
valid colorings of G as we take more and more steps. While the original proof was quite technical,
Bubley and Dyer [13] gave a much simpler proof of the convergence by applying their path coupling
technique.

Roughly, suppose that for every two colorings that differ in exactly one vertex coloring, we can
couple the distributions obtained by executing one step of the transition function of the Markov
process (i.e. the loop body of the program above) such that the expected distance (measuring in
how many vertices the colorings differ) is at most β < 1. Then, the path coupling machinery gives
a coupling of the processes started at two colorings at any distance, and concludes that after T
steps the expected distance between two executions started with colorings at distance k is upper
bounded by βT · k .

In ExSeL, this final property corresponds to the following judgment:

⊢ {Φ; pdAdj} glauber(T) ∼•βT glauber(T) {⊤; pdAdj}

In the judgment above, Adj holds on two states iff the colorings (stored in the variable w) differ
in the color of a single vertex, and d′ ≜ pdAdj counts the number of vertices with w◁ (v) , w▷ (v).
In addition, Φ captures some properties of the graph; in particular, Φ states that ∆ is the maximal
degree of vertices in G, i.e., each vertex in G has at most ∆ neighbors. Finally, β is a constant
determined by the graph; in certain parameter ranges, β is strictly less than 1 and the Markov chain
converges quickly from any initial state.
Working backwards from the conclusion, the outline of the proof is as follows. We first apply

the [While] rule, then the [Trans] rule on the loop bodies. We apply the rule with Φ,Ψ ≜ i◁ = i▷
and Φ′ ≜ Adj, and f ≜ •β . We must prove the premise of the rule, i.e.

⊢ {Φ ∧ Adj;−} s ∼β s {Φ; pdAdj},

where s denotes the loop body. In this case, we apply the [SeqCase] rule with the first judgment
for ssamp, consisting of the two random samplings in the loop body, and the second judgment for
the deterministic statement srest , consisting of the conditional statement and the updates. For the
first judgment, let vδ be the vertex that is colored differently (a and b respectively) in the two input
states. We will first couple the vertex samplings with the identity coupling so that v◁ = v▷ , using
the rule [Rand] with h = id. This gives:

⊢ {Φ ∧ Adj;−} v $← V ∼β v $← V {Φ ∧v◁ = v▷ ; pdAdj}.

Next, we can perform a case analysis on v◁ using the rule [Case]. If v◁ is not a neighbor of vδ , then
we couple samplings so that c◁ = c▷ with [Rand] with h = id. Otherwise, we couple c◁ = πab (c▷),

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:24 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

where πab swaps a and b and leaves all other colors unchanged. Combined:
⊢ {Φ ∧ Adj;−} ssamp ∼β ssamp {Θ; pdAdj},

where ssamp are the two sampling commands, and

Θ ≜ Φ ∧v◁ = v▷ ∧

{
v◁ = vδ =⇒ c◁ = πab (c▷)

v◁ , vδ =⇒ c◁ = c▷ .

Now, we combine the sampling commands ssamp with the remaining commands srest using the rule
[SeqCase]. We distinguish three mutually exclusive cases, depending on how the distance changes
under the coupling. Let qb ,qд ,qn be the probability of the three cases.
• In the bad case, the distance grows to 2. We use the guard eb ≜ v ∈ NG (vδ) ∧ c = b ∧ b <
w(NG (vδ)), and the assignment and consequence rules gives:

⊢ {Θ ∧ eb◁ ; pdAdj} srest ∼•2 srest {i◁ = i▷ ;−}.

Note that qb ≤ ∆/|V | |C | since for eb to hold, we must select a neighbor of vδ and the color b
in the first side.
• In the good case, the distance shrinks to zero. We use the guard eд ≜ v = vδ ∧ c < w(NG (v)).
By applying the assignment and consequence rules, we can prove:

⊢ {Θ ∧ eд
◁
; pdAdj} srest ∼•0 srest {i◁ = i▷ ; pdAdj}.

We will use a lower bound on the probability of this case: since we must choose the differing
vertex and a color different from its neighbors, and there are at most ∆ neighbors, qд ≥
(|C | − ∆)/|C | |V |.
• In the neutral case, the distance stays unchanged. We use the guard en ≜ v ∈ NG (vδ)∪vδ →
c ∈ w(NG (v)), and the assignment rule gives:

⊢ {Θ ∧ en◁ ; pdAdj} srest ∼id srest {i◁ = i▷ ; pdAdj}.
To put everything together, we need to bound the average change in distance. Since the cases are
mutually exclusive and at least one case holds, we know qn = 1 − qb − qд . Combining the three
cases, we need to bound the function x 7→ (qn + 2 · qb) · x = (1 − qд + qb) · x . By the upper bound
on qb and the lower bound on qд , we can conclude

⊢ {Φ ∧ Adj;−} ssamp; srest ∼β ssamp; srest {Φ; pdAdj},
where

β ≜ 1 − 1
|V |
+

2∆
|C | |V |

.

When the number of colors |C | is strictly larger than 2∆, the constant β is strictly less than 1 and
the Glauber dynamics is rapidly mixing.

8 PROTOTYPE IMPLEMENTATION

We have developed a prototype implementation of our program logic on top of EasyCrypt, a
general-purpose proof assistant for reasoning about probabilistic programs, and formalized stability
of the convex version of Stochastic Gradient Method and convergence of population dynamics.
• For some rules, we implement stronger versions that are required for formalization of the
examples. For instance, our implementation of the [Conseq] rule supports scaling of distances.
• The ambient higher-order logic of EasyCrypt is used both for specifying distributions and for
reasoning about their properties. Likewise, the logic is used for defining distances, Lipschitz
continuity, and affine functions, and for proving their basic properties.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:25

• We axiomatize the gradient operator and postulate its main properties. Defining gradients
from first principles and proving their properties is technically possible, but beyond the scope
of the paper. Similarly, we axiomatize norms and state relevant properties as axioms. A small
collection of standard facts, including the Cauchy-Schwartz inequality, are assumed.

The formalization of the examples is reasonably straightforward. The formalization of stability for
the Stochastic Gradient Method is 338 lines; about one third is devoted to proving mathematical
facts. The formalization of convergence of the population dynamics is 144 lines.

We have not implemented the [Trans] rule, which is required for path coupling, and we have not
interfaced the prototype with the rich set of program transformations supported by EasyCrypt, e.g.
code motion, loop unrolling, loop range splitting, which are required for the non-convex version of
Stochastic Gradient Method. Implementing these features should not pose any difficulty, and is left
for future work.

9 RELATEDWORK

There is a long tradition of using non-expansive (α-sensitive functions, with α < 1) maps over
metric spaces for defining the denotational semantics of deterministic and probabilistic programs;
e.g., [3, 15, 16, 25, 35]. It is also common to interpret programs as functions between ultrametric
spaces, a special class of metric spaces where max is used instead of addition in the triangular
inequality; e.g. [1, 2, 27, 29].

Lipschitz continuity has also been considered extensively in the setting of program verification:
Chaudhuri, Gulwani, and Lublinerman [14] develop a SMT-based analysis for proving programs
robust, in the setting of a core imperative language; Reed and Pierce [32] develop a linear type
system for proving sensitivity and differential privacy in a higher-order language.

There is also a long tradition of verifying expectation properties of probabilistic programs; seminal
works include PPDL [26] and pGCL [30]. Recently, Kaminski, Katoen, Matheja, and Olmedo [24]
have developed a method based on similar ideas to reason about expected runtime of probabilistic
programs. This line of work is focused on non-relational properties, such as proving upper bounds
on errors, whereas expected sensitivity is intrinsically relational.

Finally, there has been a significant amount of work on the relational verification of probabilistic
programs. Barthe and collaborators develop relational program logics for reasoning about the
provable security of cryptographic constructions [9] and differential privacy of algorithms [10].
ExSeL subsumes the relational program logic considered in Barthe et al. [9]; indeed, one can prove
that the two-sided rules of pRHL are essentially equivalent to the fragment of ExSeL where the
pre-distance and post-distance are the null functions. In contrast, the relational program logic
apRHL considered by Barthe et al. [10] is not comparable with ExSeL. apRHL uses a notion of
approximate coupling tailored to applications to differential privacy, while expectation couplings
are more broadly applicable and designed for average versions of quantitative relational properties.
Generally speaking, apRHL considers pointwise notions of distance between distributions, without
assuming a distance on the sample space. In contrast, ExSeLworks with distances on the underlying
space, proving fundamentally different properties with a substantially different style of reasoning.
There have been some works that apply formal verification to specific examples of relational

expectation properties. For instance, the standard target property in masking implementations in
cryptography is a variant of probabilistic non-interference, known as probing security. Recent work
introduces quantitative masking strength [18], a quantitative generalization that measures average
leakage of the programs. Similarly, the boundedmomentmodel [4] is a qualitative, expectation-based
non-interference property for capturing security of parallel implementations against differential

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:26 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

power analyses. Current verification technology for the bounded moment model is based on a meta-
theorem which reduces security in the bounded moment model to probing security, and a custom
program logic inspired from pRHL for proving probing security. It would be interesting to develop
a custom program logic based on ExSeL to verify a broader class of parallel implementations.
For another example, there are formal verification techniques for verifying incentive properties

in mechanism design. These properties are relational, and when the underlying mechanism is
randomized (or when the inputs are randomized), incentive properties describe the expected payoff
of an agent in two executions. Barthe, Gaboardi, Arias, Hsu, Roth, and Strub [6, 7] show how to use
a relational type system to verify these properties. While their approach is also based on couplings,
they reason about expectations only at the top level, as a consequence of a particular coupling. In
particular, it is not possible to compose reasoning about expected values like in ExSeL.
Lastly, there have been prior efforts to verify rapid mixing for Markov chains via the path

coupling method. In particular, Barthe, Grégoire, Hsu, and Strub [8] use ×pRHL, a proof-relevant
variant of pRHL, to extract a product program that can then be verified (using an external system) in
order to prove rapid mixing. This approach can be used for proving formally rapid convergence of
Markov chains, and in particular it has been applied to prove convergence of the Glauber dynamics.
Our system improves upon this work in two respects. First, we can internalize the path coupling
principle as a rule in our logic. Second, the probabilistic reasoning in our system is confined to a
handful of side-conditions (e.g., in the [SeqCase] rule).

10 CONCLUSION

We have introduced the notion of expected f -sensitivity for reasoning about algorithmic stability
and convergence of probabilistic processes, and proved some of its basic properties. Moreover, we
have introduced expectation couplings for reasoning about a broader class of relational expectation
properties, and proposed a relational program logic for proving such properties. We have illustrated
the expressiveness of the logic with recent and challenging examples from machine learning,
evolutionary biology, and statistical physics.
There are several directions for future work. On the foundational side, it would be interesting

to develop semantic foundations for advanced fixed point-theorems and convergence criteria
that arise in probabilistic analysis. There is a wealth of results to consider, for instance, see the
survey by Bharucha-Reid et al. [11]. On the practical side, it would be interesting to formalize
more advanced examples featuring relational and probabilistic analysis. For instance, it would be
extremely interesting to formally verify a recent result by Shamir [33], which proves convergence
of a practical variant of the Stochastic Gradient Method, or algorithms for regret-minimization in
learning theory and algorithmic game theory. Another goal would be to verify more general results
about population dynamics, including the general case from Panageas et al. [31].

REFERENCES

[1] Martín Abadi and Gordon D. Plotkin. 1990. A per model of polymorphism and recursive types. In IEEE Symposium on

Logic in Computer Science (LICS), Philadelphia, Pennsylvania. 355–365. https://doi.org/10.1109/LICS.1990.113761
[2] Pierre America and Jan J. M. M. Rutten. 1987. Solving reflexive domain equations in a category of complete metric

spaces. In Conference on the Mathematical Foundations of Programming Semantics (MFPS), New Orleans, Louisiana

(Lecture Notes in Computer Science), Michael G. Main, Austin Melton, Michael W. Mislove, and David A. Schmidt (Eds.),
Vol. 298. Springer-Verlag, 254–288. https://doi.org/10.1007/3-540-19020-1_13

[3] André Arnold and Maurice Nivat. 1980. Metric interpretations of infinite trees and semantics of non deterministic
recursive programs. Theoretical Computer Science 11 (1980), 181–205. https://doi.org/10.1016/0304-3975(80)90045-6

[4] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier Standaert, and Pierre-Yves
Strub. 2016. Parallel implementations of masking schemes and the bounded moment leakage model. IACR Cryptology

ePrint Archive 2016 (2016), 912. http://eprint.iacr.org/2016/912

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

https://doi.org/10.1109/LICS.1990.113761
https://doi.org/10.1007/3-540-19020-1_13
https://doi.org/10.1016/0304-3975(80)90045-6
http://eprint.iacr.org/2016/912

Proving expected sensitivity of probabilistic programs 1:27

[5] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and Pierre-Yves Strub. 2013.
Easycrypt: A tutorial. In Foundations of Security Analysis and Design VII (FOSAD) (Lecture Notes in Computer Science),
Vol. 8604. Springer-Verlag, 146–166. Tutorial Lectures.

[6] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Pierre-Yves Strub. 2015. Higher-
order approximate relational refinement types for mechanism design and differential privacy. InACM SIGPLAN–SIGACT

Symposium on Principles of Programming Languages (POPL), Mumbai, India. 55–68.
[7] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Pierre-Yves Strub. 2016.

Computer-aided verification in mechanism design. In Conference on Web and Internet Economics (WINE), Montréal,

Québec. http://arxiv.org/abs/1502.04052
[8] Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2017. Coupling proofs are probabilistic product

programs. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), Paris, France.
http://arxiv.org/abs/1607.03455

[9] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. 2009. Formal certification of code-based cryptographic
proofs. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), Savannah, Georgia.
New York, 90–101. http://certicrypt.gforge.inria.fr/2013.Journal.pdf

[10] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. 2012. Probabilistic relational reasoning for
differential privacy. InACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), Philadelphia,

Pennsylvania. 97–110.
[11] AT Bharucha-Reid et al. 1976. Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82, 5 (1976),

641–657.
[12] Olivier Bousquet and André Elisseeff. 2002. Stability and generalization. Journal of Machine Learning Research 2 (2002),

499–526. http://www.jmlr.org/papers/v2/bousquet02a.html
[13] Russ Bubley and Martin Dyer. 1997. Path coupling: A technique for proving rapid mixing in Markov chains. In IEEE

Symposium on Foundations of Computer Science (FOCS), Miami Beach, Florida. 223–231.
[14] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2010. Continuity analysis of programs. In ACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), Madrid, Spain. 57–70.
[15] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, and Ikram Cherigui. 2017. A semantic

account of metric preservation. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),

Paris, France. 545–556.
[16] J. W. de Bakker and Jeffery I. Zucker. 1982. Denotational semantics of concurrency. In ACM SIGACT Symposium on

Theory of Computing (STOC), San Francisco, California, Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and
Lawrence H. Landweber (Eds.). 153–158. https://doi.org/10.1145/800070.802188

[17] Narendra M Dixit, Piyush Srivastava, and Nisheeth K Vishnoi. 2012. A finite population model of molecular evolution:
Theory and computation. Journal of Computational Biology 19, 10 (2012), 1176–1202.

[18] Hassan Eldib, ChaoWang,MostafaM. I. Taha, and Patrick Schaumont. 2015. Quantitativemasking strength: Quantifying
the power side-channel resistance of software code. IEEE Transansactions on CAD of Integrated Circuits and Systems 34,
10 (2015), 1558–1568. https://doi.org/10.1109/TCAD.2015.2424951

[19] André Elisseeff, Theodoros Evgeniou, and Massimiliano Pontil. 2005. Stability of randomized learning algorithms.
Journal of Machine Learning Research 6 (2005), 55–79. http://www.jmlr.org/papers/v6/elisseeff05a.html

[20] Moritz Hardt, Ben Recht, and Yoram Singer. 2016. Train faster, generalize better: Stability of stochastic gradient descent.
In International Conference on Machine Learning (ICML), New York, NY (Journal of Machine Learning Research), Vol. 48.
JMLR.org, 1225–1234. http://jmlr.org/proceedings/papers/v48/hardt16.html

[21] Daniel L. Hartl and Andrew G. Clark. 2006. Principles of Population Genetics (fourth ed.). Sinauer Associates.
[22] Thomas Jansen. 2013. Analyzing Evolutionary Algorithms: The Computer Science Perspective. Springer-Verlag. https:

//doi.org/10.1007/978-3-642-17339-4
[23] Mark Jerrum. 1995. A very simple algorithm for estimating the number of k -colorings of a low-degree graph. Random

Structures and Algorithms 7, 2 (1995), 157–166. https://doi.org/10.1002/rsa.3240070205
[24] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest precondition

reasoning for expected run-times of probabilistic programs. In European Symposium on Programming (ESOP), Eindhoven,

The Netherlands (Lecture Notes in Computer Science), Vol. 9632. Springer-Verlag, 364–389. https://doi.org/10.1007/
978-3-662-49498-1_15

[25] Dexter Kozen. 1979. Semantics of probabilistic programs. In IEEE Symposium on Foundations of Computer Science

(FOCS), San Juan, Puerto Rico. 101–114.
[26] Dexter Kozen. 1985. A probabilistic PDL. J. Comput. System Sci. 30, 2 (1985), 162–178.
[27] Neelakantan R. Krishnaswami and Nick Benton. 2011. Ultrametric semantics of reactive programs. In IEEE Symposium

on Logic in Computer Science (LICS), Toronto, Ontario. 257–266.
[28] Torgny Lindvall. 2002. Lectures on the coupling method. Courier Corporation.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

http://arxiv.org/abs/1502.04052
http://arxiv.org/abs/1607.03455
http://certicrypt.gforge.inria.fr/2013.Journal.pdf
http://www.jmlr.org/papers/v2/bousquet02a.html
https://doi.org/10.1145/800070.802188
https://doi.org/10.1109/TCAD.2015.2424951
http://www.jmlr.org/papers/v6/elisseeff05a.html
http://jmlr.org/proceedings/papers/v48/hardt16.html
https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1007/978-3-642-17339-4
https://doi.org/10.1002/rsa.3240070205
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15

1:28 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

[29] David B. MacQueen, Gordon D. Plotkin, and Ravi Sethi. 1984. An ideal model for recursive polymorphic types. In
ACM Symposium on Principles of Programming Languages (POPL), Salt Lake City, Utah, Ken Kennedy, Mary S. Van
Deusen, and Larry Landweber (Eds.). 165–174. https://doi.org/10.1145/800017.800528

[30] Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic predicate transformers. ACM Transactions on

Programming Languages and Systems 18, 3 (1996), 325–353.
[31] Ioannis Panageas, Piyush Srivastava, and Nisheeth K. Vishnoi. 2016. Evolutionary dynamics in finite populations mix

rapidly. In ACM–SIAM Symposium on Discrete Algorithms (SODA), Arlington, Virginia. 480–497. https://doi.org/10.
1137/1.9781611974331.ch36

[32] Jason Reed and Benjamin C Pierce. 2010. Distance makes the types grow stronger: A calculus for differential
privacy. In ACM SIGPLAN International Conference on Functional Programming (ICFP), Baltimore, Maryland. http:
//dl.acm.org/citation.cfm?id=1863568

[33] Ohad Shamir. 2016. Without-replacement sampling for stochastic gradient methods: Convergence results and applica-
tion to distributed optimization. CoRR abs/1603.00570 (2016). http://arxiv.org/abs/1603.00570

[34] Hermann Thorisson. 2000. Coupling, Stationarity, and Regeneration. Springer-Verlag.
[35] Franck van Breugel. 1997. Comparative Metric Semantics of Programming Languages: Nondeterminism and Recursion.

Birkhauser.
[36] Cédric Villani. 2008. Optimal transport: Old and new. Springer-Verlag.
[37] Nisheeth K. Vishnoi. 2015. The speed of evolution. In ACM–SIAM Symposium on Discrete Algorithms (SODA), San

Diego, California. 1590–1601. https://doi.org/10.1137/1.9781611973730.105

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

https://doi.org/10.1145/800017.800528
https://doi.org/10.1137/1.9781611974331.ch36
https://doi.org/10.1137/1.9781611974331.ch36
http://dl.acm.org/citation.cfm?id=1863568
http://dl.acm.org/citation.cfm?id=1863568
http://arxiv.org/abs/1603.00570
https://doi.org/10.1137/1.9781611973730.105

Proving expected sensitivity of probabilistic programs 1:29

A SOUNDNESS

First, we can show that the equivalence judgment Φ ⊢ s1 ≡ s2 shows that programs s1, s2 have equal
denotation under any memory satisfying the (non-relation) pre-condition Φ.

Lemma A.1. If Φ ⊢ s1 ≡ s2, then for anym |= Φ, Js1Km = Js2Km .

Proof. Direct induction on Φ ⊢ s1 ≡ s2, using the semantics in Fig. 1 for the base cases. □

Next, we prove the key lemma showing composition of expectation couplings (Proposition 3.8).

Proof of composition of expectation couplings (Proposition 3.8). We check each of the
conditions in turn.
For the support condition, supp(µ) ⊆ Φ by the first premise, and for every (a,b) ∈ Φ we have

supp(M(a,b)) ⊆ Ψ by the second premise, so
supp(µ ′) = supp(Eµ [M]) ⊆ Ψ.

For the marginal condition, we have π1(µ) = µa and π2(µ) = µb by the first premise, and for every
(a,b) ∈ Φ we have π1(M(a,b)) = Ma(a) and π2(M(a,b)) = Mb (b) by the second premise. We can
directly calculate the marginals of µ ′. For instance, for every a′ ∈ A the first marginal is

π1(µ
′)(a′) = π1(Eµ [M])(a

′)

=
∑
b′∈B

∑
(a,b)∈A×B

µ(a,b) ·M(a,b)(a′,b ′)

=
∑
b′∈B

∑
(a,b)∈Φ

µ(a,b) ·M(a,b)(a′,b ′) (Support of µ)

=
∑
(a,b)∈Φ

µ(a,b) · π1(M(a,b))(a
′)

=
∑
(a,b)∈Φ

µ(a,b) ·Ma(a)(a
′) (Marginal ofM(a,b))

=
∑
a∈A

Ma(a)(a
′)

∑
b ∈B

µ(a,b) (Support of µ)

=
∑
a∈A

Ma(a)(a
′) · µa(a) (Marginal of µ)

= µa(a
′).

The second marginal π2(µ ′) = µb is similar.
Finally, we check the distance condition. By the premises, we have

Eµ [d] ≤ δ

EM (a,b)[d
′] ≤ f (d(a,b)) for every (a,b) ∈ Φ.

Then, we can bound

Eµ′[d
′] =

∑
(a′,b′)∈A×B

d
′(a′,b ′) · µ ′(a′,b ′)

=
∑

(a′,b′)∈A×B

d
′(a′,b ′)

∑
(a,b)∈A×B

µ(a,b) ·M(a,b)(a′,b ′)

=
∑
(a,b)∈Φ

µ(a,b)EM (a,b)[d
′] (Support of µ)

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:30 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

≤
∑
(a,b)∈Φ

µ(a,b) · f (d(a,b)) (Expectation ofM(a,b))

= Eµ [f (d)] (Support of µ)
≤ f (Eµ [d]) (Linearity of expectation)
≤ f (δ). (Monotonicity of f , expectation of µ)

□

We now move to the soundness of the logic.

Proof of the soundness of the logic. We prove that each rule is sound.
[Conseq] Letm1,m2 |= Φ′′. Hence,m1,m2 |= Φ, and there exists η such that Js1Km1

⟨η⟩Ψ
d′≤δ Js2Km2

.
We use η for the coupling of the conclusion. We already know that ∀i ∈ {1, 2}. πi (µ) = JsiKmi
and that supp(µ) ⊆ Ψ ⊆ Ψ′′. Finally,

Eµ [d
′′′] ≤ Eµ [d

′] (E monotone)
≤ f (d(m1,m2)) (µ coupling)
≤ f ′(d′′(m1,m2)) (premise).

[Struct] Immediate consequence of Lemma A.1.
[Assg] & [Assg-L] Immediate.
[Rand] Let m1,m2 |= ∀v ∈ supp(д1).Ψ[x1◁ ← v,x2▷ ← h(v)] and, for i ∈ {1, 2}, let µi ≜

Ev∼дi [δmi [vBxi]
]. Since h is a one to one mapping from supp(д1) to supp(д2) that preserves

the mass, we have |µ1 | = |µ2 | and µ2 = Ev∼д1 [δm2[h(v)Bx2]
]. Let

µ ≜ Ev∼д1 [δ(m1[vBx1],m2[h(v)Bv2])
].

By construction, for i ∈ {1, 2}, we have πi (µ) = µi . Letm ∈ supp(µ). By definition, there
exists a v ∈ supp(д1) s.t.m = (m1[v B x1],m2[h(v) B x2]). Hence,m |= Ψ. Last,

Em∼µ [d
′] = Ev∼д1 [Em∼δ(m1[vBx1],m2[h(v)Bv2])

[d′]]

= Ev∼д1 [d
′(m1[v B x1],m2[h(v) B v2])]

= Ev∼д1 [d
′[(x1)◁ ← v, (x2)▷ → h(v)]].

[Seq] Let (m1,m2) |= Φ and, for i ∈ {1, 2}, let µi ≜ JciKmi
and ηi (m) ≜ Jc ′i Km . From the first

premise, we know that there exists an η such that µ1 ⟨η⟩d′≤δ µ2 and supp(η) |= Ξ, where
δ ≜ f (d(m1,m2)). Likewise, from the second premise, form ≜ (m′1,m′2) |= Ξ, there exists an
ηm such that η1(m) ⟨ηm⟩d′′≤δ ′(m) η2(m) and supp(ηm) |= Ψ, where δ ′(m) ≜ f ′(d′(m)).
Let µ ≜ Em∼η[ηm | Ξ]. By Proposition 3.8, we already know that Eµ1 [η1] ⟨µ⟩ Eµ2 [η2] and that
supp(µ) |= Ψ. We are left to prove that Eµ [d

′′] ≤ (f ′ ◦ f)(d(m1,m2)):
Eµ [d

′′] = Em∼η[Eηm [d
′′] | Ξ]

≤ Em∼η[f
′(d′(m))] (monotonicity of E)

≤ f ′(Eη[d
′]) (Linearity of expectation)

≤ f ′(f (d(m1,m2))). (f ′ is increasing)

[Case] Letm1,m2 |= Φ. We do a case analysis on Je1Km1
and conclude from we one of the two

premises.
[Cond] Immediate consequence of [Case] and [Struct], using the synchronicity of both guards.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:31

[SeqCase] Form |= Ψ ∧ ∃i . ei◁ , we denote by ι(m) an index i s.t.m |= ei◁ , and by ηm the coupling
obtained, form seen as an initial relational memory, from:

⊢ {Ψ ∧ eι(m)
◁
; d′} s ′1 ∼fi s ′2 {Ψ′; d′′},

i.e. ηm is s.t. Js ′1Kπ1(m) ⟨ηm⟩
Ψ′

d′′≤δm
Js ′2Kπ2(m), where δm ≜ fι(m)(d

′(m)). Letm1,m2 |= Φ and µ

s.t. Js1Km1
⟨µ⟩Ψ
d′≤δ Js2Km2

, where δ ≜ f0(d(m1,m2))—such a coupling is obtained from the
premise ⊢ {Φ; d} s1 ∼f0 s2 {Ψ; d′}. Let η ≜ Em∼µ [ηm]. The distribution η is well-defined if for
anym ∈ supp(µ),m |= Ψ ∧ ∃i . ei◁ . By definition of µ, we already know that supp(µ) ⊆ Ψ.
Moreover, from the premise Ψ =⇒

∨
i ∈Iei , we obtain the existence of a ι ∈ I s.t. π1(m) |= eι ,

i.e. such that m |= eι◁ . It is immediate that supp(η) ⊆ Ψ′ since for any m ∈ supp(µ), by
definition of ηm , we know that ηm ⊆ Ψ′. Now, for i ∈ {1, 2}, we have:

πi (η) = πi (Em∼µ [ηm]) = Em∼µ [πi (ηm)︸ ︷︷ ︸
Js ′i Kπi (m)

]

= Em∼πi (µ)[Js
′
i Km] = Em∼Jsi Kmi

[Js ′i Km]

=m 7→ Jsi ; s ′i Km .

We are left to prove the bounding property of η. For i ∈ I , we denote by pi the quantity
Prm∼µ [ι(m) = i]. Then,

pi = Prm∼µ [ι(m) = i] ≤ Prm∼µ [JeiKπ1(m)] = Prm∼π1(µ)︸ ︷︷ ︸
m∼Js1Km1

[JeiKm].

Denote this last quantity by pi . By the law of total expectation:
Eµ [d

′′] = Em∼µ [Eµm [d
′′]]

=
∑
i ∈I

pi · Em∼µ [Eµm [d
′′] | ι(m) = i]

≤
∑
i ∈I

pi · Em∼µ [Eµm [d
′′] | ι(m) = i].

Now, form ∈ supp(µ) s.t. ι(m) = i , we have:
Eµm [d

′′] ≤ δm = fi (d
′(m)).

Hence,

Eµ [d
′′] ≤

∑
i ∈I

pi · Em∼µ [fi (d
′(m)) | ι(m) = i]

≤
∑
i ∈I

pi · Em∼µ [fi (d
′(m))] =

∑
i ∈I

pi fi (Eµ [d
′])

≤
∑
i ∈I

pi · fi (f0(d(m1,m2))) = f (d(m1,m2))

where the last step is by the premise.
[While] We proceed by induction on n. For i ∈ {1, 2}, let si ≜ while e do si . For n ∈ N, let Ψn ≜

Ψ ∧ (i◁ = n) and f n ≜ f1 ◦ · · · ◦ fn . If n = 0, underm1,m2 |= Ψ, we have JeKm1
= JeKm2

= ⊥.
Hence, for i ∈ {1, 2}, JsiKmi

= δmi
and we are in a case similar to [Skip]. Otherwise, assume

that the rule is valid for n. From the premises and the induction hypothesis, we have:
⊢ {Ψn+1 ∧ e1◁ ; d

′
n+1} s1 ∼fn+1 s2 {Ψn ; d′n}

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:32 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

⊢ {Ψn ; d′n} s1 ∼f n s2 {Ψ0; d′0}

Hence, by a reasoning similar to the one of [Seq], we have ⊢ {Ψn+1; d′n+1} s1; s1 ∼f n+1
s2; s2 {Ψ0; d′0}. Now, underm1,m2 |= Ψ, we have, for i ∈ {1, 2}, Jsi ; siKmi

= JsiKmi
. Hence, by a

reasoning similar to the one of [Struct], we obtain ⊢ {Ψn+1 ∧ e1◁ ; d′n+1} s1 ∼f n+1 s2 {Ψ0; d′0}.
Last, from Ψn+1 ⇐⇒ (Ψn+1 ∧ e1◁), we conclude that ⊢ {Ψn+1; d′n+1} s1 ∼f n+1 s2 {Ψ0; d′0}.

[Frame-D] Let m1,m2 |= Φ. From the premise we know the existence of a coupling η s.t.
Js1Km1

⟨η⟩Ψ
d′≤δ Js2Km2

, where δ ≜ f (d(m1,m2)). Now, we have

Eη[d
′ + d′′] = Eη[d

′] + Eη[d
′′] ≤ f (d(m1,m2)) + Eη[d

′′].

Form1,m2 ∈ supp(η), from πi (η) = JsiKmi
and d′′#MV(s1),MV(s2), we have d′′(m1,m2) =

d′′(m1,m2). Hence,

Eη[d
′ + d′′] ≤ f (d(m1,m2)) + Em1,m2∼η[d

′′(m1,m2)]

= f (d(m1,m2)) + |η | · d
′′(m1,m2) ≤ f (d(m1,m2)) + d

′′(m1,m2)

≤ f (d(m1,m2)) + f (d′′(m1,m2)) = f (d(m1,m2) + d
′′(m1,m2)).

Hence, η is a coupling s.t. Js1Km1
⟨η⟩Ψ
d′+d′′≤δ ′ Js2Km2

, where δ ′ ≜ f ((d + d′′)(m1,m2)).
[Mult-Max] A basic result about couplings is that for any two distributions η1,η2 over the same

set, there exists a coupling η such that:

Pr
(a1,a2)∼η

[a1 , a2] = ∥η1 − η2∥TV .

This coupling is called the maximal or optimal coupling (see, e.g., Thorisson [34]).
To show soundness of the rule, let (m1,m2) two memories and, for i ∈ {1, 2}, let µi ≜
J®x $← Mult(®p)Kmi

. Let νi be the distributions JMult(®p)Kmi
. Let µ be a coupling of µ1 and µ2

such that the projection of µ on the variables x◁ and x▷ is an maximal coupling of ν1 and ν2;
note that the projection of µ1 onto x◁ is ν1, and the projection of µ2 onto x▷ is ν2. Now, we
can prove the inequality on distances:

E(m′1,m
′
2)∼µ [∥J®xKm′1 − J®xKm′2 ∥1] ≤ ∥J®pKm1

− J®pKm2
∥1

By definition we have:

E(m′1,m
′
2)∼µ [∥J®xKm′1 − J®xKm′2 ∥1] =

∑
m′1,m

′
2

µ(m′1,m
′
2) · ∥J®xKm′1 − J®xKm′2 ∥1

= 2
∑

m′1,m
′
2

∑
a,b

1[J®xKm′1 = a]1[J®xKm′2 = b]µ(m
′
1,m

′
2)

(distance is 0 or 2)

= 2
∑
a,b

∑
m′1,m

′
2

1[J®xKm′1 = a]1[J®xKm′2 = b]µ(m
′
1,m

′
2)

= 2
∑
a,b

Pr
(m′1,m

′
2)∼µ
[J®xKm′1 = a, J®xKm′2 = b]

= 2 · Pr
(m′1,m

′
2)∼µ
[J®xKm′1 , J®xKm′2]

= 2∥ν1 − ν2∥TV (maximal coupling)
= ∥J®pKm1

− J®pKm2
∥1

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:33

[Trans] Weprove by induction onn that for every twomemoriesm1 andm2 such that pdΦ∧Φ′(m1,m2) =
n, there exists a coupling µ s.t. JsKm1

⟨µ⟩Ψ
d′≤f (pdΦ∧Φ′ (m1,m2))

JsKm2
. If pdΦ∧Φ′(m1,m2) = 0, then

m1 =m2(≜ m) by definition of path coupling. Let µ the diagonal distribution of JsKm . Since
Ψ and Eµ [d

′] = 0, we have:

JsKm1
⟨µ⟩Ψ
d′≤f (pdΦ∧Φ′ (m1,m2))

JsKm2
.

Assume now that pdΦ∧Φ′(m1,m2) > 0. Then, by the definition of path-coupling, there exists
m s.t. pdΦ∧Φ′(m1,m2) = pdΦ∧Φ′(m1,m) + pdΦ∧Φ′(m,m2) with and pdΦ∧Φ′(m,m2) = 1, that is
m,m2 |= Φ ∧ Φ′. By induction hypothesis, there exists µ∗ such that JsKm1

⟨µ∗⟩Ψ
∗

d′≤δ ∗ JsKm ,
where δ ∗ ≜ f (pdΦ∧Φ′(m1,m)). From the premise ⊢ {Φ ∧ Φ′;−} s ∼f s {Ψ; d′}, there exists µ1
such that JsKm ⟨µ1⟩

Ψ
d′≤f (1) JsKm2

, Let

µ : (m1,m2) 7→
∑
m

1
M(m)

· µ∗(m1,m) · µ1(m,m2)

where M(m) ≜ π1(µ1)(m) = π2(µ
∗)(m). It is clear that supp(µ) |= Ψ∗2 ⊆ Ψ∗ ⊆ Ψ. Moreover,

for anym1:

π1(µ)(m1) =
∑
m2

µ(m1,m2)

=
∑
m

(
µ∗(m1,m)

π1(µ1)(m)
·
∑
m2

µ1(m,m2)︸ ︷︷ ︸
π1(µ1)(m)

)

=
∑
m

µ∗(m1,m) = π1(µ
∗)(m1) = JsKm1

.

Likewise, ∀m2. π2(µ)(m2) = JsKm2
. Last:

Eµ [d
′] =

∑
m1,m2

µ(m1,m2) · d
′(m1,m2)

=
∑

m1,m2,m

µ∗(m1,m) · µ1(m,m2)

M(m)
· d′(m1,m2)

≤
∑
m1,m

µ∗(m1,m) · d
′(m1,m) ·

∑
m2 µ1(m,m2)

M(m)

+
∑
m,m2

µ1(m,m2) · d
′(m,m2) ·

∑
m1 µ

∗(m1,m)

M(m)

(Triangle Inequality (d′ satisfies (H))
= Eµ∗ [d

′] + Eµ1 [d
′]

≤ f (pdΦ′(m1,m)) + f (1) (Induction hypothesis)
= f (pdΦ′(m1,m) + 1) (Linearity of f)

= f (pdΦ′(m1,m2)).

□

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:34 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

B DETAILS FOR EXAMPLES

B.1 Convex SGM (§ 5.1)

We detail the bounds in the two cases. In the first case, the selected samples S[i]◁ and S[i]▷ may be
different. We need to show:

∥(w◁ − αt · (∇ℓ(S[i],−))(w)◁) − (w▷ − αt · (∇ℓ(S[i],−))(w)▷)∥ ≤ ∥w◁ −w▷ ∥ + 2αtL.
We can directly bound:

∥(w◁ − αt · (∇ℓ(S[i],−))(w)◁) − (w▷ − αt · (∇ℓ(S[i],−))(w)▷)∥

≤ ∥w◁ −w▷ ∥ + αt ∥∇ℓ(S[i],−))(w)◁ ∥ + αt ∥∇ℓ(S[i],−))(w)▷ ∥

≤ ∥w◁ −w▷ ∥ + 2αtL
where the first inequality is by the triangle inequality, and the second follows since ℓ(z,−) is
L-Lipschitz. Thus, we can take f = +2αtL in the first case.

The second case boils down to showing
∥(w◁ − αt · (∇ℓ(S[i],−))(w)◁) − (w▷ − αt · (∇ℓ(S[i],−))(w)▷)∥ ≤ ∥w◁ −w▷ ∥.

when S[i]◁ = S[i]▷ . This follows from a calculation similar to the proof by Hardt et al. [20, Lemma
3.7.2]:

∥(w◁ − αt · (∇ℓ(S[i],−))(w)◁) − (w▷ − αt · (∇ℓ(S[i],−))(w)▷)∥
2

= ∥w◁ −w▷ ∥
2 − 2αt ⟨∇ℓ(S[i],−))(w)◁ − ∇ℓ(S[i],−))(w)▷ ,w◁ −w▷⟩

+ α2
t ∥∇ℓ(S[i],−))(w)◁) − ∇ℓ(S[i],−))(w)▷ ∥

2

≤ ∥w◁ −w▷ ∥
2 − (2αt/β − α2

t)∥∇ℓ(S[i],−))(w)◁) − ∇ℓ(S[i],−))(w)▷ ∥
2

≤ ∥w◁ −w▷ ∥
2.

The first inequality follows since convexity and Lipschitz gradient implies that

⟨∇ℓ(S[i],−))(w)◁ − ∇ℓ(S[i],−))(w)▷ ,w◁ −w▷⟩ ≥
1
β
∥∇ℓ(S[i],−))(w)◁ − ∇ℓ(S[i],−))(w)▷ ∥

2.

The second inequality follows from 0 ≤ αt ≤ 2/β . Thus, we can take f = id in the second case.

B.2 Non-convex SGM (§ 5.2)

Suppose that the loss function ℓ is bounded in [0, 1], possibly non-convex, but L-Lipschitz and
with gradient β-Lipschitz. Suppose that we take non-increasing step sizes 0 ≤ αt ≤ σ/t for some
constant σ ≥ 0. Then, we will prove the following judgment:

⊢ {Adj(S◁ , S▷);−} sgm ∼ϵ sgm {⊤; |ℓ(w◁ , z) − ℓ(w▷ , z)|}
where

ϵ ≜ (2/n)
⌈(

2L2
β(1 − 1/n)

)1/(q+1)
T q/(q+1)

⌉
.

This example uses an advanced analysis from Hardt et al. [20, Lemma 3.11]. We can’t directly
express that result in our logic, but we can inline the proof. Roughly, the idea is that with large
probability, the first bunch of steps don’t see the differing example. By the time we hit the differing
example, the step size has already decayed enough. To model this kind of reasoning, we will use the
program transformation rules to split the loop into iterations before the critical step, and iterations
after the critical step. Then, we will perform a probabilistic case in between, casing on whether we
have seen the differing example or not.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:35

To begin, let the critical iteration be

t0 ≜

⌈(
2L2

β(1 − 1/n)

)1/(q+1)
T q/(q+1)

⌉
,

where q ≜ βσ . We can split the loop in sgm into two:
t ← 0;
while t < T ∧ t < t0 do
i $← [n];
w ← w − αt · (∇ℓ(S[i],−))(w);
t ← t + 1;

while t < T do
i $← [n];
w ← w − αt · (∇ℓ(S[i],−))(w);
t ← t + 1;

returnw

Call the loops c< and c≥ , with loop bodiesw< andw≥ . In the first loop, we will bound the probability
of ∥w◁ −w▷ ∥ > 0. We want to prove the judgment

{t◁ = t▷ ; 1[w◁ , w▷]} w< ∼+1/n w< {t◁ = t▷ ; 1[w◁ , w▷]}.
Again, we use the identity coupling when sampling i . Then, we case on whether we hit the differing
example or not. In the first case, we hit the differing example and we need to prove

{t◁ = t▷ ; 1[w◁ , w▷]} w< ∼+1 w< {t◁ = t▷ ; 1[w◁ , w▷]}.
This boils down to showing:

1[w − αt · (∇ℓ(S[i],−))(w)◁ , w − αt · (∇ℓ(S[i],−))(w)▷] ≤ 1[w◁ , w▷] + 1
but this is clear since the indicator is in {0, 1}.

In the second case, we hit the same example and need to prove:
{t◁ = t▷ ∧ S[i]◁ = S[i]▷ ; 1[w◁ , w▷]} w< ∼id w< {t◁ = t▷ ; 1[w◁ , w▷]}

This boils down to showing:
1[w − αt · (∇ℓ(S[i],−))(w)◁ , w − αt · (∇ℓ(S[i],−))(w)▷] ≤ 1[w◁ , w▷]

assuming that S[i]◁ = S[i]▷ . But this clear also—ifw◁ , w▷ then there is nothing to prove, otherwise
ifw◁ = w▷ then the projections are equal.
Putting these two cases together (noting that they happen with probability 1/n and 1 − 1/n

respectively) and applying the loop rule, we have:
{t◁ = t▷ ; 1[w◁ , w▷]} w< ∼+t0/n w< {t◁ = t▷ ; 1[w◁ , w▷]}

as desired.
Now, we perform a probabilistic case onw◁ = w▷ . Supposew◁ = w▷ . In the second loop, we know

that t◁ = t▷ ≥ t0. By similar reasoning to the previous sections, we have:
{t◁ = t▷ ∧ t◁ ≥ t0; ∥w◁ −w▷ ∥} w≥ ∼fc w≥ {t◁ = t▷ ∧ t◁ ≥ t0; ∥w◁ −w▷ ∥}

where
fc (x) ≜ (1/n + (1 − 1/n)(1 + αt β))x + 2αtL/n

≤ (1 + (1 − 1/n)σβ/t)x + 2σL/tn
≤ exp((1 − 1/n)σβ/t)x + 2σL/tn.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:36 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

In the last step, we use 1 + x ≤ exp(x).
We can then apply the loop rule to show:

{t◁ = t▷ ∧ t◁ ≥ t0 ∧w◁ = w▷ ; ∥w◁ −w▷ ∥} c≥ ∼f c≥ {t◁ = t▷ ∧ t◁ ≥ t0; ∥w◁ −w▷ ∥}
where

f (x) ≜ x ·
T∏

r=t0+1
exp

(
(1 − 1/n)σβ

r

)
+

T∑
s=t0+1

2σL
sn

T∏
r=s+1

exp
(
(1 − 1/n)σβ

r

)
= x · exp

(
σβ(1 − 1/n)

T∑
r=t0+1

1
r

)
+

T∑
s=t0+1

2σL
sn

exp
(
σβ(1 − 1/n)

T∑
r=s+1

1
r

)
≤ x · exp (σβ(1 − 1/n) log(T /t0)) +

T∑
s=t0+1

2σL
sn

exp (σβ(1 − 1/n) log(T /s))

= x · exp (σβ(1 − 1/n) log(T /t0)) +
2σL
n

T βσ (1−1/n)
T∑

s=t0+1
s−βσ (1−1/n)−1

≤ x · exp (σβ(1 − 1/n) log(T /t0)) +
2σL
n

T βσ (1−1/n) ·
1

βσ (1 − 1/n)t
−βσ (1−1/n)
0

= x · exp (σβ(1 − 1/n) log(T /t0)) +
2L

β(n − 1)

(
T

t0

)βσ (1−1/n)
≤ x · exp (σβ(1 − 1/n) log(T /t0)) +

2L
β(n − 1)

(
T

t0

)βσ
.

Let the last term be ρ. The first inequality uses
∑b

t=a+1 1/t ≤ log(b/a) and the second inequality
uses σbt=a+11/tc ≤ a1−c/(c − 1) for c > 1; both facts follow from bounding the sum by an integral.
By applying the Lipschitz assumption on ℓ and the [Conseq] rule, we have:

{t◁ = t▷ ∧ t◁ ≥ t0 ∧w◁ = w▷ ;−} c≥ ∼Lρ c≥ {t◁ = t▷ ∧ t◁ ≥ t0; |ℓ(w, z)◁ − ℓ(w, z)▷ |}
for every example z ∈ Z .

In the other case, supposew◁ , w▷ . Applying the rule of consequence using the fact that the loss
function is bounded in [0, 1], we have:

{t◁ = t▷ ∧ t◁ ≥ t0 ∧w◁ , w▷ ;−} c≥ ∼1 c≥ {t◁ = t▷ ∧ t◁ ≥ t0; |ℓ(w, z)◁ − ℓ(w, z)▷ |}.
Applying the rule [SeqCase-A] to link the two loops, we have:

{Adj(S◁ , S▷);−} sgm ∼t 0/n+Lρ sgm {⊤; |ℓ(w, z)◁ − ℓ(w, z)▷ |}.
Now, we have chosen t0 to balance the two terms. Note that setting

t0 ≥ δ ≜

(
2L2

β(1 − 1/n)

)1/(q+1)
T q/(q+1)

gives t0/n + Lρ ≤ 2t0/n since δ balances the two terms, so we can conclude.
The proof uses an advanced sequential composition rule [SeqCase-A], shown in Figure 7. This

rule combines sequential composition with a case analysis on an event that, compared to [SeqCase],
may depend on both memories.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Proving expected sensitivity of probabilistic programs 1:37

[SeqCase-A]

⊢ {Φ;−} s1 ∼γ s2 {Θ; 1[e]}
⊢ {Θ ∧ e;−} s ′1 ∼f s ′2 {Ψ; d} ⊢ {Θ ∧ ¬e;−} s ′1 ∼f¬ s ′2 {Ψ; d}

⊢ {Φ;−} s1; s ′1 ∼γ ·f +f¬ s2; s ′2 {Ψ; d}

Fig. 7. Additional rules

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

	Abstract
	1 Introduction
	1.1 Expected sensitivity
	1.2 Expected sensitivity from expectation couplings
	1.3 ExSeL: A program logic for proving expected sensitivity bounds
	1.4 Applications
	1.5 Extension: path coupling
	1.6 Outline and core contributions

	2 Stability of Stochastic Gradient Method
	3 Expected sensitivity
	3.1 Mathematical preliminaries
	3.2 Expected f-sensitivity
	3.3 Continuity from expectation couplings

	4 Program logic
	4.1 Programming language
	4.2 Proof system
	4.3 Derived rules and weakest pre-condition

	5 Uniform stability of Stochastic Gradient Method, revisited
	5.1 SGM with convex loss
	5.2 SGM with non-convex loss

	6 Population dynamics
	7 Path coupling and graph coloring
	7.1 Path coupling and local expected sensitivity
	7.2 Program logic
	7.3 Example: Glauber dynamics

	8 Prototype implementation
	9 Related work
	10 Conclusion
	References
	A Soundness
	B Details for examples
	B.1 Convex SGM (ex:convex-sgm)
	B.2 Non-convex SGM (ex:nonconvex-sgm)

