
Formal Certification of Randomized Algorithms

Abstract
Randomized algorithms have broad applications throughout
computer science. They also pose a challenge for formal
verification: even intuitive properties of simple programs
can have elaborate proofs, mixing program verification with
probabilistic reasoning.

We present Ellora, a tool-assisted framework for the in-
teractive verification of general properties of randomized
algorithms. The central component of Ellora is a new and
expressive program logic for imperative programs with ad-
versarial code. In particular, the logic supports fine-grained
reasoning about probabilistic loops by offering different rea-
soning principles according to the termination behavior, and
assertions can model key notions from probability theory,
such as probabilistic independence and expected values. We
show soundness for the logic and develop an implementation
on top of the EasyCrypt proof assistant.

We demonstrate the strength of Ellora in two ways. First,
we embed several specialized logics into Ellora: an adaptation
of greatest pre-expectation calculus from Kozen [26], Morgan
et al. [31] (restricted to loop-free programs without non-
determinism), the union bound logic from Barthe et al. [6],
and a novel Hoare logic for reasoning about distribution laws
and probabilistic independence. Second, we formally verify
several classical randomized algorithms.

1. Introduction
Randomized algorithms are fundamental objects of study
in theoretical computer science, with broad applications to
computational fields like cryptography and machine learning.
They also present a challenging target for formal verifica-
tion. Often presented as imperative programs, they satisfy
appealing properties such as computational efficiency and
various notions of probabilistic accuracy. While the proper-
ties often capture intuitive features, their correctness can be
subtle—even simple properties may require intricate proofs
using complex mathematical theorems.

While mathematical results can play a role in proving
correctness for all programs, probabilistic or not, proofs
for randomized algorithms frequently apply tools from a
broad collection of concepts and results from probability
theory, like distribution laws, probabilistic independence, and
concentration bounds. As a consequence, a formal framework
for reasoning about randomized algorithms should provide
mechanisms for smoothly applying these common tools, as
they are traditionally used in paper-and-pen proofs.

For deductive verification, where specifications are given
by a pre-condition and a post-condition, a natural verifica-
tion strategy is to let assertions be interpreted as sets of
distributions over program states. This idea was first pro-
posed by Ramshaw [33], and subsequently refined by other
researchers [8, 13, 34]. However, existing systems have sev-
eral shortcomings. First, typical examples of randomized
algorithms and their properties are difficult to express. Exist-
ing program logics do not support assertions about general
expected values, a fundamental part of many target proper-
ties, and restrict sampling to Boolean distributions. All other
distributions, like the uniform distribution or the normal dis-
tribution, need to be simulated with loops.

Second, existing reasoning principles for proving speci-
fications are also limited. Prior work does not consider rea-
soning about lossy programs, i.e. programs which terminate
with probability strictly less than 1, and about programs with
adversarial code, a natural concept in many applications from
security and privacy (which naturally carry a notion of adver-
sary), and from game theory and mechanism design (where
adversaries model strategic agents). Furthermore, proofs com-
monly require low-level reasoning about the semantics of pro-
grams and assertions. For instance, reasoning about loops in-
volves semantic side conditions that can be difficult to prove;
many program logics use non-standard logical connectives to
reason about random sampling and conditionals.

The Ellora framework
In this paper we introduce Ellora, a mechanized framework
for general-purpose, interactive reasoning about randomized
algorithms. The central component is a new probabilistic
program logic alleviating the shortcomings of previous work
in several respects; we highlight the main novelties here.

Reasoning about loops. Proving a property of a probabilis-
tic loop typically requires analyzing its termination behavior
and establishing a loop invariant. Moreover, the class of loop
invariants that can be soundly used depends on the termina-
tion behavior. We identify three classes of assertions that can
be used for reasoning about probabilistic loops, and provide
a proof rule for each one:

• arbitrary assertions for certainly terminating loops, i.e.
loops that terminate in a finite amount of iterations;

• topologically closed assertions for almost surely terminat-
ing loops, i.e. loops terminating with probability 1;

• downwards closed assertions for arbitrary loops.
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Our definition of topologically closed assertion is reminiscent
of Ramshaw [33]; the stronger notion of downwards closed
assertion appears to be new.

Besides broadening the class of loops that can be analyzed,
a diverse collection of rules can lead to simpler proofs. For
instance, if the loop is certainly terminating, then there is
no need to prove semantic side conditions. Likewise, there
is no need to consider the termination behavior of the loop
when the invariant is downwards and topologically closed.
For example, in many applications, especially cryptography,
the target property is that a “bad” event has low probability:
Pr [E] ≤ k. This assertion is downwards and topologically
closed, so it can be a sound loop invariant regardless of the
termination behavior.

Reasoning about adversaries. Adversaries are special pro-
cedures, specified by an interface listing the concrete pro-
cedures that an adversary can call, along with restrictions
like how many calls an adversary may make. Adversaries are
widely used in cryptography, where security notions are de-
scribed using experiments in which one or several adversaries
interact with a challenger, and in game theory and mechanism
design, where they are used for modeling strategic agents. Ad-
versaries can also model online algorithms, where an external
party interacts with an algorithm.

Reasoning with specialized tools. The first central goal of
Ellora is providing support for specialized reasoning princi-
ples from existing, “paper” proofs of randomized algorithms.
These patterns do not always apply, but they are lightweight
methods to prove specific types of commonly-used properties.
By simplifying and organizing proofs about common prop-
erties, these patterns form an indispensable part of a toolkit
for reasoning about randomized algorithms. We demonstrate
support in Ellora for these principles by embedding several
specialized logics that neatly capture specific aspects of prob-
abilistic reasoning: the union bound logic by Barthe et al.
[6] (for proving upper bounds on probabilities), the loop-
free fragment of the greatest pre-expectation calculus due
to McIver and Morgan [28] (for computing expectations),
and an independence and distribution law logic. This last
logic is new and potentially of independent interest, designed
to reason about independence in a lightweight way that is
common in paper proofs.

Reasoning about probabilistic notions. The second cen-
tral goal of Ellora is general reasoning about common prop-
erties and notions from existing proofs, like probabilities,
expected values, distribution laws and probabilistic indepen-
dence. There is prior work covering some of these aspects—
most notably for expected values—but it remains practi-
cally challenging to carry out general probabilistic arguments
within a unified system. We demonstrate Ellora on a col-
lection of case studies, including textbook examples and a
randomized routing algorithm. Our experience suggests that
Ellora is capable of both expressing and reasoning about the

toolbox of properties found in existing proofs, freely applying
theorems from probability theory.

Implementation. We develop a full-featured implementation
of our framework on top of EasyCrypt, a general-purpose
proof assistant for reasoning about probabilistic programs.
Assertions in our implementation have a concrete syntax,
encoding a two-level assertion language. The first level
contains state predicates—deterministic assertions about a
single memory—while the second layer includes probabilistic
assertions constructed from probabilities and expected values
over discrete distributions. While the concrete language
cannot express arbitrary predicates on distributions, it is a
natural fit for all properties and invariants of randomized
algorithms that we have encountered. More importantly, the
assertion language supports several syntactic tools to simplify
verification:

• an automated procedure for generating pre-conditions
of non-looping commands, inspired from prior work on
greatest pre-expectations [26, 31]; and

• syntactic conditions for the closedness and termination
properties required for soundness of the loop rules, and
syntactic conditions for soundness of the frame and adver-
sary rules.

In order to carry out full verification of example algorithms in
our implementation, we also develop a partial formalization
of probability theory in Ellora, including common tools like
concentration bounds (e.g., the Chernoff bound), Markov’s
inequality, and theorems about probabilistic independence.

Contributions
To summarize, we present the following contributions.

• A probabilistic Hoare logic with general predicates on
distributions, rules for handling different kinds of proba-
bilistically terminating loops and procedure calls, and a
mechanized proof of soundness for the logic;

• a concrete version of the logic with an assertion language
suitable for syntactic tools, and an implementation within
a general-purpose theorem prover;

• embeddings of three specialized reasoning tools: a core
version of the greatest pre-expectation calculus from
Morgan et al. [31], the union bound logic from Barthe
et al. [6], and a novel Hoare logic for reasoning about
distribution laws and probabilistic independence; and

• case studies demonstrating formal verification of random-
ized algorithms.

Comparison with expectation-based techniques. To date,
arguably the most mature systems for deductive verification
of randomized algorithms are derived from expectation-based
techniques. These systems consider expectations, functionsE
from states to real numbers; the name comes by considering a
program as mapping an input state s to a distribution µ(s) on
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output states, when the expected value of E on µ(s) is an ex-
pectation. Roughly speaking, expectation-based approaches
offer deductive principles to compositionally apply the effect
of the program to the expectation, transforming it until it can
be analyzed purely mathematically. A probabilistic property,
expressed as a formula involving probabilities and expec-
tations, is proved by separately transforming each compo-
nent in this way. Classical examples include PPDL [26] and
pGCL [31]; the latter work also considers non-determinism.
Expectation-based systems are very elegant and have a neat
meta-theory. Moreover, they have been used for verifying
several randomized algorithms. In particular, there have been
efforts to mechanize these systems and to verify sophisticated
case studies, e.g. Hurd [18], Hurd et al. [20].

A direct comparison with probabilistic Hoare logics is dif-
ficult, since the two approaches are quite different. In broad
strokes, program logics can verify richer properties in one
shot, have assertions that are easier to understand, and can
make assertions about the input viewed as a distribution,
while expectation-based approaches can transform expecta-
tions mechanically and reason about loops without semantic
side conditions. (Vásquez et al. [39] provide a more thorough
comparison.) By incorporating tools inspired by expectation-
based techniques and designing loop rules with syntactic side
conditions, we aim for the best of both worlds within Ellora.

2. Example: accuracy of private sum

proc psum (a[N]:int array):
var s:int, l[N]:int array;
s ← 0;
for j ← 0 to N-1 do

l[j] $← Lε;
s ← s + l[j] + a[j];

return s

Figure 1. Private sum

We illustrate the style
of reasoning that we
want to capture in
Ellora using a sim-
ple program inspired
by differential pri-
vacy. The program
(Fig. 1) computes the
private sum of an
array as follows: it

draws samples from the Laplace distribution Lε for each
element, and then adds each element with its noise to the
current sum.

Our goal is to establish an accuracy bound for private sum:
the return value s, which holds the sum of a, should be close
to the true sum ŝ of a with high probability. First, we establish
the following loop invariant for each iteration j:s−

j∑
k=0

a[k] =

j∑
k=0

l[k]

∧#(l[0], . . . , l[j])∧
∧

1≤i≤j

l[k] ∼ Lε

where the second conjunct states that l[0], . . . , l[j] are inde-
pendent random variables and the third conjunct states that
they are all distributed according to Lε. Next, we use the
second and third conjuncts of the invariant to apply a concen-
tration bound. This theorem gives a formula T : (0, 1)→ R

such that for every failure probability b ∈ (0, 1), T (b) upper

bounds the sum of l except with probability b:

Pr [|s− ŝ| > T (b)] = Pr

[∣∣∣∣∣
N-1∑
k=0

l[k]

∣∣∣∣∣ > T (b)

]
≤ b

This simple example highlights two desirable features of
a proof system for probabilistic programs:

1. the ability to both prove and use properties of distributions,
like probabilistic independence and i.i.d. variables;

2. the ability to internalize basic theorems of probability, like
concentration bounds.

To compare, using the concentration bound yields a bet-
ter than the bound than simpler approaches like aHL [6],
a lightweight program logic which can reason about accu-
racy of differentially private computations by using the union
bound but cannot reason about independence. Expectation-
based approaches (e.g., PPDL [26] or pGCL [31]) can in prin-
ciple establish the same bound, but the verification strategy
would be rather different from the proof we sketched above.
Since there is no direct way to use concepts like probabilis-
tic independence or concentration bounds, expectation-based
proofs propagate probabilities like Pr

[∣∣∣∑N-1
k=0 l[k]

∣∣∣ > T (b)
]
,

throughout the program. This is difficult to do when there are
distributions with infinite support (e.g., the Laplace distribu-
tion), or parameters (e.g., the number of samples N). Further-
more, this reasoning must be repeated throughout the proof
for each application of the concentration bound. By working
with predicates on distributions, we are able to directly model
probabilistic independence and concentration bounds, giving
a more natural and concise formal proof.

3. Programs and assertions
Programs. We base our development on pWhile, a core
language with deterministic assignments, probabilistic as-
signments, conditionals, loops, procedure calls and an abort
statement which halts the computation with no result. Prob-
abilistic assignments are of the form x $← g, which assigns
a value sampled according to the distribution g to the pro-
gram variable x. The syntax of statements is defined by the
grammar:

s ::= skip | abort | x← e | x $← g | s; s
| if e then s else s | while e do s | x← F(e) | x← A(e)

where x, e, and g range over (typed) variables in X , expres-
sions in E and distribution expressions in D respectively. E
is defined inductively from X and a set F of simply typed
function symbols, while D is defined by combining a set of
distribution symbols S with expressions in E . For instance,
e1 + e2 is a valid expression, and Bern(e)—the Bernoulli
distribution with parameter e—is a valid distribution expres-
sion. We assume that expressions, distribution expressions,
and statements are typed in the usual way with SDist(T )
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the type for probability (sub-)distributions over the type T .
Ellora can be flexibly extended with custom functions and
types.

We distinguish two kinds of procedure calls: A is a set of
external procedure names, andF is a set of internal procedure
names. We assume we have access to the code of internal
procedures, but not the code of external procedures. We
think of external procedures as controlled by some external
adversary, who can select the next input in an interactive
algorithm.

The denotational semantics of programs is adapted from
the seminal work of Kozen [25] and interprets programs
as sub-distribution transformers. We first define memories
as type-preserving mappings from variables to values, and
let State denote the set of memories. The semantics of a
statement sw.r.t. to some sub-distribution µ over memories is
another sub-distribution over memories, denoted JsKµ. When
s contains adversarial procedures, the semantics is further
parametrized by an interpretation of the adversary calls. We
defer details to the supplemental materials.

We conclude this section with a taxonomy of the termina-
tion behavior of statements and loops.

Definition 1 (Lossless). A (closed) statement s is lossless iff
for every sub-distribution µ, |JsKµ| = |µ|, where |µ| is the
total probability of µ.

Programs that are not lossless are called lossy.

Definition 2 (Certain and almost sure termination). A loop
while b do s is:

• certainly (c.) terminating if there exists n such that
for every sub-distribution µ: |Jwhile b do sKµ| =
|J(if b then s)nKµ|.

• almost surely (a.s.) terminating if it is lossless.

Certain termination is similar to termination in determinis-
tic programs, whereas almost sure termination is probabilistic
in nature: the program always terminates eventually, but we
may not be able to give a single finite bound for all executions
since particular executions may proceed arbitrarily long. Note
that certain termination need not entail losslessness.

Assertions. We model assertions as predicates on states.

Definition 3 (Assertions and satisfaction). The set Assn of
assertions is defined as P(SDist(State)). We write η(µ)
for µ ∈ η.

Usual set operations are lifted to assertions using their
logical counterparts, e.g., η∧η′ , η∩η′ and ¬η , η. Beside
these standard constructions, we frequently use the following
assertions. Given a predicate φ over states, we let �φ be the
assertion defined by:

�φ , λµ.∀m.m ∈ supp(µ) =⇒ φ(m)

where supp(µ) is the set of all memories with non-zero
probability under µ. Intuitively, this means that φ holds

on all memories that we may sample from the distribution.
Moreover, given two assertions η1 and η2, we let η1 ⊕ η2 be
the assertion defined by the clause:

η1 ⊕ η2 , λµ. ∃µ1, µ2. µ = µ1 + µ2 ∧ η1(µ1) ∧ η2(µ2)

The sub-distribution µ1 + µ2 is the sub-distribution that
has probabilities given by the sum (see, e.g. Kozen [25]).
Intuitively, this assertion means that the sub-distribution is
the sum of two sub-distributions, such that η1 holds on the
first piece and η2 holds on the second piece. Finally, given
an assertion η and a function F from SDist(State) to
SDist(State), we let η[F ] be the assertion defined by the
clause: η[F ] , λµ. η(F (µ)).

Now, we can define the closedness properties of assertions.
These properties will later be used to achieve soundness of
the rules for while loops.

Definition 4 (Closedness properties).
• An assertion η is t-closed if for every converging sequence

of sub-distributions (µn)n∈N such that η(µn) for all
n ∈ N then

η( lim
n→∞

µ).

• An assertion η is d-closed if it is t-closed and downward
closed, that is for every sub-distributions µ ≤ µ′, η(µ′)
implies η(µ).

While closedness is a semantic property, there are several
sufficient conditions that are easier to check. First, both t-
closed and d-closed assertions are closed under finite boolean
combinations, universal quantification over arbitrary sets and
existential quantification over finite sets. We can give some
examples:

• assertions of the form p1 ./ p2, where ./ is a non-strict
comparison operator (./ ∈{≤,≥,=}) for bounded proba-
bilistic expressions p1, p2—for instance probabilities or
expectations of bounded variables—are t-closed. There
are simple examples where t-closedness fails for un-
bounded expressions. An example of a t-closed assertion
is the equivalence of two variables x, y:

Universal quantification︷ ︸︸ ︷
∀n ∈ N,

Bounded expression︷ ︸︸ ︷
Pr[x = n] =

Bounded expression︷ ︸︸ ︷
Pr[y = n]

• assertions of the form p1 ≤ k for bounded probabilistic
expression p1 are d-closed.

4. Proof system
In this section, we introduce a program logic for proving
properties of probabilistic programs, and prove its soundness.

Judgments and proof rules. Judgments are of the form
{η} s {η′}, where η, η′ ∈ Assn.

Definition 5. A judgment {η} s {η′} is valid, written
|= {η} s {η′}, if η′(JsKµ) for every probabilistic state µ
such that η(µ).
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CONSEQ

η0 ⇒ η1 {η1} s {η2} η2 ⇒ η3

{η0} s {η3}

ABORT

{η} abort {�⊥}

ASSGN

η′ , η[Jx← eK]

{η′} x← e {η}

SKIP

{η} skip {η}

SAMPLE

η′ , η[Jx $← gK]

{η′} x $← g {η}

SEQ

{η0} s1 {η1} {η1} s2 {η2}
{η0} s1; s2 {η2}

COND
{η1 ∧�e} s1 {η′1} {η2 ∧�¬e} s2 {η′2}

{(η1 ∧�e)⊕ (η2 ∧�¬e)} if e then s1 else s2 {η′1 ⊕ η′2}

SPLIT
{η1} s {η′1} {η2} s {η′2}
{η1 ⊕ η2} s {η′1 ⊕ η′2}

CALL
{η} farg ← e; finit; fbody {η′[Jx← fresK]}

{η} x← f(e) {η′}

FRAME
separated(η,mod(s)) s is lossless

{η} s {η}

Figure 2. Structural and basic rules

Figure 2 describes the structural and basic rules of the
proof system. Validity of judgments is preserved under stan-
dard structural rules, like the rule of consequence [CONSEQ].
The rule of consequence is especially important for our pur-
poses, since it serves as the interface between the program
logic and theorems probability theory. For instance, this rule
is how we can apply concentration bounds and other mathe-
matical results.

The rules for skip, assignments, random samplings and
sequences are all straightforward. The rule for abort re-
quires �⊥ to hold after execution; this assertion uniquely
characterizes the resulting null sub-distribution. The rules
for assignments and random samplings are semantical; we
give more concrete versions in the next section. The [CALL]
rule for procedure calls reduces to proving the given pre- and
post-conditions on the body of the procedure.

The rule [COND] for conditionals is unusual in that the
post-condition must be of the form η1 ⊕ η2; this reflects the
semantics of conditionals, which splits the initial probabilistic
state depending on the guard, runs both branches, and adds
the resulting two probabilistic states.

The next two rules ([SPLIT] and [FRAME]) are critical for
local reasoning. The [SPLIT] rule reflects the additivity of the

semantics and can be used for simultaneously recombining
pre- and post-conditions using the ⊕ operator. The [FRAME]
rule states that lossless statements preserve assertions that are
not influenced by its set mod(s) of modified variables: the
variables on the left of an assignment, a random sampling or
a procedure call. In this setting, we say that an assertion η is
separated from a set of variablesX , written separated(η,X),
if η(µ1) ⇐⇒ η(µ2) for any distributions µ1, µ2 s.t.
|µ1| = |µ2| and µ1|X = µ2|X where for a set S, µ|S is
defined as:

µ|S : m ∈ State|S 7→ Pr
m′∼µ

[m = m′|S ]

Intuitively, an assertion is separated from a set of variables
X if every two sub-distributions that agree on the variables
outside X either both satisfy the assertion, or both refute the
assertion.

Figure 3 presents the rules for while loops and external
procedure calls. The [WHILE] rule has three instantiations,
depending on the termination behavior of the loop. As usual,
we must provide a loop invariant; in our case, a loop invariant
is an arbitrary assertion that is preserved by one (guarded)
iteration of the loop. The instantiations consider arbitrary,
almost surely, and certainly terminating loops. In the general
case, when no restriction are required about the termination
behavior, we require the invariant to be d-closed. This condi-
tion can be weakened for terminating loops: in the case of a
loop that terminates surely, a t-closed invariant is sufficient;
whereas we do not require anything for loops terminating
certainly.

The rule [ADV] for external procedure calls follows the
same idea: it states when an assertion that is preserved by
oracle calls is also preserved by the external procedure call.
Some framing conditions are required, similar to the ones of
the [FRAME] rule: the invariant must not be influenced by
the state writable by the external procedures, which also must
be lossless. Similar to the loop rule, different flavors exist.
In Figure 3, we only give the most general one where the
invariant is required to be d-closed. However, for example,
this restriction can be removed by bounding the number of
calls the external procedure can make to oracles, leading to a
rule akin to the certain termination case of the loop rule.

Soundness. Our proof system is sound w.r.t. the semantics.

Theorem 6 (Soundness). Every judgment {η} s {η′} prov-
able using the rules of our logic is valid.

Completeness of the logic is left for future work.

5. A two-level syntax for assertions
So far, we have seen a version of Ellora where assertions
are arbitrary predicates on distributions. While this version
is quite general, it is desirable for practical applications to
define a syntax for assertions and to develop specialized proof
rules which are easier to use.
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WHILE-X
{η} if b then s {η} CX
{η} while b do s {η ∧�¬b}

ADV
separated(η, {x, s}) η is d-closed a is lossless
∀f ∈ aocl, x ∈ XL

a , e ∈ E . {η} x← f(e) {η}
{η} x← a(e) {η}

SIDE CONDITIONS:

CCTerm , ∀µ. η(µ) =⇒ ∃k ∈ N.Prm∼ν [JbKm] = 0 where ν , J(if b then s)kKµ
CASTerm , η t-closed and ∀µ. η(µ) =⇒ |ν| = 1 where ν , Jwhile b do sKµ
CATerm , η d-closed

Figure 3. Rules for while loops and external calls

Assertions. Fig. 4 presents a two-level assertion language
which is sufficiently expressive for typical assertions that
arise in the analysis of randomized algorithms. The assertion
language supports probabilistic assertions and state assertions.
A probabilistic assertion η is a formula built from comparison
of probabilistic expressions, using first-order quantifiers and
connectives, and the special connective ⊕. A probabilistic
expression p can be a logical variable v, an operator applied to
probabilistic expressions o(~p) (constants are 0-ary operators),
or the expectation E[ẽ] of a state expression ẽ. A state
expression ẽ is either a program variable x, the characteristic
function 1φ of a state assertion φ, an operator applied to
state expressions o(~̃e), or the expectation Ev∼g[ẽ] of state
expression ẽ in a given distribution g. Finally, a state assertion
φ is a first-order formula over program variables. Note that
the set of operators is left unspecified but we assume that all
the expressions in E and D can be encoded by operators.

The interpretation of the concrete syntax is as expected.
The interpretation of probabilistic assertions is relative to a
valuation ρ which maps logical variables to values, and is
an element of Assn. The definition of the interpretation is
straightforward; the only interesting case is JE[ẽ]Kρµ which
is defined by Em∼µ[JẽKρm], where JẽKρm is the interpreta-
tion of the state expression ẽ in the memory m and valu-
ation ρ. The interpretation of state expressions is a mapping
from memories to values, which can be lifted to a mapping
from distributions over memories to distributions over val-
ues. The definition of the interpretation is straightforward;
the most interesting case is for expectation JEv∼g[ẽ]Kρm ,
Ew∼JgKρm [JẽKρ[v:=w]

m ]. We present the full interpretations in
the supplemental materials.

Many standard concepts from probability theory have a
natural representation in our syntax. For example:

• the probability that φ holds in some probabilistic state
is represented by the probabilistic expression Pr[φ] ,
E[1φ];

• probabilistic independence of state expressions ẽ1, . . . , ẽn
is modeled by the probabilistic assertion #{ẽ1, . . . , ẽn},

ẽ ::= x | v | 1φ | Ev∼g[ẽ] | o(~̃e) (S-expr.)

φ ::= ẽ ./ ẽ | FO(φ) (S-assn.)

p ::= v | o(~p) | E[ẽ] (P-expr.)

η ::= p ./ p | η ⊕ η | FO(η) (P-assn.)

./ ∈ {=, <,≤} o ∈ Ops (Operators)

Figure 4. Assertion syntax

defined by the clause1

∀v1 . . . vn, Pr[>]n−1 Pr[
∧

i=1...n

ẽi = vi] =
∏

i=1...n

Pr[ẽi = vi];

• losslessness of a distribution is modeled by the probabilis-
tic assertion L , Pr[>] = 1;

• a state expression ẽ distributed according to a law g is
modeled by the probabilistic assertion ẽ ∼ g defined as:

∀w, Pr[ẽ = w] = E[Ev∼g[1v=w]].

The inner expectation computes the probability that v
drawn from g is equal to a fixed w; the outer expectation
weights the inner probability by the probability of each
value of w.

We can easily define � operator from the previous section in
our new syntax: �φ , Pr[¬φ] = 0.

Syntactic proof rules. Now that we have a concrete syntax
for assertions, we can give syntactic versions of many of the
existing proof rules. Such proof rules are often easier to use,
since they avoid reasoning about the semantics of commands
and assertions. We tackle the non-looping rules first, begin-
ning with the following syntactic rules for assignment and
sampling:

1 The term Pr[>]n−1 is necessary since we work with sub-distributions; for
distributions, Pr[>] = 1 and we recover the usual definition.
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SAMPLE

{η[x := e]} x← e {η}

ASSGN

{Pgx(η)} x $← g {η}

The rule for assignment is the usual rule from Hoare
logic, replacing the program variable x by its corresponding
expression e in the pre-condition. The replacement η[x := e]
is done recursively on the probabilistic assertion η; for
expectation it is defined by

E[ẽ][x := e] , E[ẽ[x := e]]

where ẽ[x := e] is the syntactic substitution of the variable x
by the expression e in ẽ.

The rule for sampling is a generalization of assignment
using a probabilistic substitution operator Pgx(η), which
replaces all occurrences of x in η by a new integration
variable t and records that t is drawn from g. More formally,
Pgx(η) is defined recursively on probabilistic assertions; for
expectation, it is defined as

Pgx (E[ẽ]) , E[Et∼g[ẽ[x := t]]].

Next, we turn to the loop rule. The side conditions from
Fig. 3 are purely semantic, while in practice it is more
convenient to use a sufficient condition in the Hoare logic. We
give sufficient conditions for ensuring certain and almost-sure
termination in Fig. 5.

The first side condition CCTerm shows certain termination
given a strictly decreasing variant ẽ that is bounded below,
similar to how a decreasing variant shows termination for
deterministic programs. The second side condition CASTerm
shows almost-sure termination given a probabilistic variant ẽ,
which must be bounded both above and below. While ẽ may
increase with some probability, it must decrease with strictly
positive probability. This sufficient condition for almost-sure
termination was previously considered by Hart et al. [17] for
probabilistic transition systems, and also used in expectation-
based approaches [19, 30].

Precondition calculus. With a concrete syntax for asser-
tions, we are also able to incorporate syntactic reasoning
principles. One classic tool is Morgan and McIver’s great-
est pre-expectation, which we take as inspiration for a pre-
condition calculus for the loop-free fragment of Ellora. Given
an assertion η and a loop-free statement s, we wish to me-
chanically construct an assertion η∗ that is the pre-condition
of s that implies η as a post-condition.

Given a statement s and a probabilistic assertion η, the
computation of the pre-condition replaces each expectation
expression p inside η by an expression p∗ that has the same
denotation before running s as p after running s. This process
yields an assertion η∗ that, interpreted before running s, is
logically equivalent to η interpreted after running s.

The computation rules for pre-conditions are defined
in Fig. 6. For a probability assertion η, its pre-condition

pc(s, η) corresponds to η where the expectation expres-
sions of the form E[ẽ] are replaced by their corresponding
preterm, pe(s,E[ẽ]). Preterms correspond loosely to Morgan
and McIver’s pre-expectations—we will make this correspon-
dence more precise in the next section. The main interesting
cases for computing preterms are for random sampling and
conditionals. For random sampling the result is Pgx(E[ẽ]),
which corresponds to the [SAMPLE] rule. For conditionals,
the expectation expression is split into a part where e is true
and a part where e is not true. We restrict the expectation to a
part satisfying e with the following operator:

E[ẽ]|e , E[ẽ · 1e]

This corresponds to the expected value of ẽ on the portion of
the distribution where e is true.

Then, we can build the pre-condition calculus into Ellora.

Theorem 7. Let s be a non-looping command. Then, the
following rule is derivable in the concrete version of Ellora:

PC
{pc(s, η)} s {η}

6. Embedding logics
While our presentation of Ellora so far is suitable for general-
purpose reasoning about probabilistic programs, in practice
proofs typically use more lightweight, specific reasoning
principles to prove certain assertions. To see that such patterns
can also be naturally used in Ellora, we consider embeddings
of three tools in our framework: the union bound logic from
Barthe et al. [6], a fragment of pGCL [31], and a new logic
for reasoning about independence.

Union bound logic. Barthe et al. [6] have recently intro-
duced a lightweight program logic, called aHL, for estimating
accuracy of randomized computations. One main application
of aHL is proving accuracy of randomized algorithms, both in
the offline and online settings—i.e. with adversary calls. aHL
is based on the union bound, a basic tool from probability
theory, and has judgments of the form

|=β {Φ} s {Ψ},

where s is a statement, Φ and Ψ are first-order formulae over
program variables, and β is a probability, i.e. β ∈ [0, 1].
A judgment |=β {Φ} s {Ψ} is valid if for every memory
m such that Φ(m), the probability of ¬Ψ in JsKm is upper
bounded by β, i.e. PrJsKm [¬Ψ] ≤ β.

Figure 7 presents some key rules of aHL, including a
rule for sampling from the Laplace distribution Lε centered
around e. The predicate CCTerm(k) indicates that the loop
terminates in at most k steps on any memory that satisfies
the pre-condition. Moreover, β is a function of ε. aHL has a
simple embedding into Ellora.

Theorem 8 (Embedding of aHL). If |=β {Φ} s {Ψ} is
derivable, then {�Φ} s {E[1¬Ψ] ≤ β} is derivable in Ellora.
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CCTerm , {L ∧�(ẽ = k ∧ 0 < k ∧ b)} s {L ∧�(ẽ < k)}
|= η ⇒ (∃ẏ. �ẽ ≤ ẏ) ∧�(ẽ = 0⇒ ¬b)

ẽ : N

CASTerm , {L ∧�(ẽ = k ∧ 0 < k ≤ K ∧ b)} s {L ∧�(0 ≤ ẽ ≤ K) ∧ Pr[ẽ < k] ≥ ε}
|= η ⇒ �(0 ≤ ẽ ≤ K ∧ ẽ = 0⇒ ¬b)
|= η t-closed

ẽ : N

Figure 5. Side-conditions for loop rules

pe(s1; s2,E[ẽ]) , pe(s1, pe(s2,E[ẽ]))

pe(x← e,E[ẽ]) , E[ẽ][x := e]

pe(x $← g,E[ẽ]) , Pgx(E[ẽ])

pe(if e then s1 else s2,E[ẽ]), pe(s1,E[ẽ])|e + pe(s2,E[ẽ])|¬e

pc(s, p1 ./ p2) , pe(s, p1) ./ pe(s, p2)

Figure 6. Precondition calculus (selected)

|=β {>} x $← Lε(e) {|x− e| ≤
1

ε
log

1

β
}

|=β1 {Φ} s1 {Θ} |=β2 {Θ} s2 {Ψ}
|=β1+β2

{Φ} s1; s2 {Ψ}

|=β {Φ} c {Φ} CCTerm(k)

|=k·β {Φ} while e do c {Φ ∧ ¬e}

Figure 7. aHL proof rules (selected)

Of course, there are valid judgments that cannot be derived
with the aHL rules but are provable using Ellora. For instance,
the proof of the private sum example from § 2 requires apply-
ing concentration bounds and reasoning about independence,
which are not supported in aHL.

The logic pGCL. Probabilistic Guarded Command Lan-
guage (pGCL) [31] is a well-studied deductive system for
reasoning about programs. This language is the same as the
core imperative language that we consider, except instead
of a random sampling command from general distributions
x $← g, pGCL encodes random choice with a probabilistic
guarded command of the form s1 ⊕p s2. This command ex-
ecutes s1 with probability p, otherwise it executes s2. For
the embedding, we will simulate this command by sampling
from the Bernoulli (coin flip) distribution with parameter p,
denoted B(p). pGCL also notably supports reasoning about
various kinds of non-deterministic choice; we do not consider
these features here. We also will only embed loop-free pGCL
commands.

The key object in pGCL reasoning is an expectation—a
map from states to real numbers—and the key tool is greatest
pre-expectation. This procedure takes a command s and an

expectation E, and mechanically computes an expectation
gpe(s, E) such that if we view s as a map from an input
memory m to an output distribution µ(m), then

gpe(s, E)(m) = Es′∼µ(m)[E]

for every memory m. That is, the greatest pre-expectation
takes an expectation E on the output distribution, and trans-
forms it into an expectation E′ that takes the same value as
E when E′ is evaluated on the input memory. In this way,
we can calculate a target final expectation by propagating it
backwards through the program, until we compute a mathe-
matical formula for the expectation as a function of the input
memory only.

For the embedding, we will assume that each expectation
E can be directly interpreted as a state expression ẽ. The
embedding uses the precondition calculus presented in the
previous section. We will need one technical lemma.

Lemma 9. For every state expression ẽ, loop-free and deter-
ministic pGCL program s, and real number α,

�(gpe(s, ẽ) = α) =⇒ pc(dse,E[ẽ] = α)

where dse is the program obtained from s by replacing all
occurrences of the probabilistic choice s1 ⊕p s2 by
x $← B(p); if x then s1 else s2 for a fresh variable x.

Then, we can embed a fragment of pGCL into Ellora.

Theorem 10 (Embedding of core pGCL). For every state
expression ẽ, loop-free and deterministic pGCL program s,
and real number α, the following judgment is derivable:

{�(gpe(s, ẽ) = α)} dse {E[ẽ] = α}.

Proof. Since dse is loop-free, we can derive {pc(dse,E[ẽ] =
α)} dse {E[ẽ] = α}. by rule [PC]. By Lemma 9 we also
have �(gpe(s, ẽ) = α) =⇒ pc(dse,E[ẽ] = α), so we can
conclude with the rule [CONSEQ].

Law and Independence Logic. Our final example is a
proof system for reasoning about probabilistic independence
and distribution laws. This type of reasoning is common
when analyzing randomized algorithms; yet, it is particularly
hard to capture formally. Many existing program logics for
probabilistic programs either cannot capture these notions or
provide poor support. We begin by describing the law and
independence logic IL, a proof system with intuitive rules that
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are easy to apply and amenable to automation. For simplicity,
we only consider programs which sample from the binomial
distribution, and have deterministic control flow—for lack of
space, we also omit procedure calls.

Definition 11 (Assertions). IL assertions have the grammar:

ξ := det(e) | #E | e ∼ B(e, p) | > | ⊥ | ξ ∧ ξ

where e ∈ E , E ⊆ E , and p ∈ [0, 1].

The assertion det(e) states that e is deterministic in the
current distribution, i.e., there is at most one element in
the support of its interpretation. The assertion #E states
that the expressions in E are independent, as formalized in
the previous section. The assertion e ∼ B(m, p) states that
e is distributed according to a binomial distribution with
parameter m (where m can be an expression) and constant
probability p, i.e. the probability that e = k is equal to the
probability that exactly k independent coin flips return heads
using a biased coin that returns heads with probability p.

Assertions can be seen as an instance of a logical abstract
domain, where the order between assertions is given by
implication based on a small number of axioms. Examples of
such axioms include independence of singletons, irreflexivity
of independence, anti-monotonicity of independence, an
axiom for the sum of binomial distributions, and rules for
deterministic expressions:

#{x} #{x, x} ⇐⇒ det(x) #(E ∪ E′) =⇒ #E

e∼B(m, p)∧e′∼B(m′, p)∧ #{e, e′} =⇒

e+e′∼B(m+m′, p)∧
1≤i≤n

det(ei) =⇒ det(f(e1, . . . , en))

Definition 12. Judgments of the logic are of the form
{ξ} s {ξ′}, where ξ and ξ′ are IL-assertions. A judgment
is valid if it is derivable from the rules of Fig. 8 (structural
rules and rule for sequential composition are similar to those
from § 4 and omitted.

The rule [IL-ASSGN] for deterministic assignments is as
in § 4. The rule [IL-SAMPLE] for random assignments yields
as post-condition that the variable x and a set of expressions
E are independent assuming that E is independent before
the sampling, and moreover that x follows the law of the
distribution that it is sampled from. The rule [IL-COND] for
conditionals requires that the guard is deterministic, and that
each of the branches satisfies the specification; if the guard is
not deterministic, there are simple examples where the rule is
not sound.The rule [IL-WHILE] for loops requires that the
loop is certainly terminating with a deterministic guard. Note
that the requirement of certain termination could be avoided
by restricting the structural rules such that a statement s has
deterministic control flow whenever {ξ} s {ξ′} is derivable.

IL-ASSGN
{ξ[x := e]} x← e {ξ}

IL-SAMPLE
{x} ∩ FV(E) ∩ FV(e) = ∅

{#E} x $← B(e, p) {#(E ∪ {x}) ∧ x ∼ B(e, p)}

IL-SEQ
{ξ} s1 {ξ′} {ξ′} s2 {ξ′′}

{ξ} s1; s2 {ξ′′}

IL-COND

{ξ} s1 {ξ′} {ξ} s2 {ξ′}
ξ =⇒ det(b)

{ξ} if b then s1 else s2 {ξ′}

IL-WHILE
{ξ} s {ξ} ξ =⇒ det(b) CCTerm

{ξ} while b do s {ξ}

Figure 8. Selected proof rules of IL logic

We now turn to the embedding. The embedding of IL
assertions into general assertions is immediate, except for
det(e) which is translated as �e ∨�¬e. We let ξ denote the
translation of ξ.

Theorem 13 (Embedding and soundness of IL logic). If
{ξ} s {ξ′} is derivable in the IL logic, then {ξ} s {ξ′}
is derivable in (the syntactic variant of) Ellora. As a conse-
quence, every derivable judgment {ξ} s {ξ′} is valid.

Proof sketch. By induction on the derivation. The interest-
ing cases are conditionals and loops. For conditionals, the
soundness follows from the soundness of the rule:

{η} s1 {η′} {η} s2 {η′} �e ∨�¬e
{η} if e then s1 else s2 {η′}

To prove the soundness of this rule, we proceed by case
analysis on �e ∨�¬e. We treat the case �e; the other case
is similar. In this case, η is equivalent to η1 ∧�e⊕ η2 ∧�¬e,
where η1 = η and η2 = ⊥. Let η′1 = η′ and η2 = �⊥;
again, η′1 ⊕ η′2 is logically equivalent to η′. The soundness of
the rule thus follows from the soundness of the [COND] and
[CONSEQ] rules. For loops, there exists a natural number
n such that while b do s is semantically equivalent to
(if b then s)n. By assumption {ξ} s {ξ} holds, and thus by
induction hypothesis {ξ} s {ξ}. We also have ξ =⇒ det(b),
and hence {ξ} if b then s {ξ}. We conclude by using the
[SEQ] rule.

To illustrate our system IL, consider the statement s
in Fig. 9 which flips a fair coin N times and counts the
number of heads. Using the logic, we can prove that s ∼
B(N · (N + 1)/2, 1/2) is a valid post-condition for s. We
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omit the proof that the loop guard is deterministic, and focus
on the distribution of s. We take the following invariant:

s ∼ B (j(j + 1)/2, 1/2)

The invariant holds initially, as 0 ∼ B(0, 1/2). For the
inductive case, we have to establish

{s ∼ B (0, 1/2)} c0 {s ∼ B ((j + 1)(j + 2)/2, 1/2)}

where c0 represents the loop body, i.e. x $← B (j, 1/2) ; s←
s + x. First, we apply the rule for sequence taking as interme-
diate assertion

s ∼ B (j(j + 1)/2, 1/2) ∧ x ∼ B (j, 1/2) ∧ #{x, s}

The first premise follows from the rule for random assignment
and structural rules. The second premise follows from the
rule for deterministic assignment and the rule of consequence,
applying axioms about sums of binomial distributions.

proc sum () =
var s:int, x:int;
s ← 0;
for j ← 1 to N do

x $← B(j,1/2);
s ← s + x;

return s

Figure 9. Sum of bin.

We briefly comment on sev-
eral limitations of IL. First, IL is
restricted to programs with de-
terministic control flow, but this
restriction could be partially re-
laxed by enriching IL with as-
sertions for conditional indepen-
dence. Such assertions are al-
ready expressible in the logic
of Ellora; adding conditional in-

dependence would significantly broaden the scope of the
IL proof system and open the possibility to rely on ax-
iomatizations of conditional independence (e.g., based on
graphoids [32]). Second, the logic only supports sampling
from binomial distributions. It is possible to enrich the
language of assertions with clauses s ∼ g where g can
model other distributions, like the uniform distribution or the
Laplace distribution. The main design challenge is finding a
core set of useful facts about these distributions. Enriching
the logic and automating the analysis are interesting avenues
for further work.

7. Case studies
In this section, we will demonstrate Ellora on a selection of
examples; we present further examples in the supplemental
material. Together, they exhibit a wide variety of different
proof techniques and reasoning principles which are available
in the Ellora’s implementation.

Hypercube routing. We will begin with the hypercube
routing algorithm [37, 38]. Consider a network topology (the
hypercube) where each node is labeled by a bitstring of length
D, and two nodes are connected by an edge if and only if the
two corresponding labels differ in exactly one bit position.

In the network, there is initially one packet at each node,
and each packet has a unique destination. The algorithm

implements a routing strategy based on bit fixing: if the
current position has bitstring i, and the target node has
bitstring j, we compare the bits in i and j from left to right,
moving along the edge that corrects the first differing bit.
Valiant’s algorithm uses randomization to guarantee that the
total number of steps grows logarithmically in the number of
packets. In the first phase, each packet i select an intermediate
destination ρ(i) uniformly at random, and use bit fixing to
reach ρ(i). In the second phase, each packet use bit fixing
to go from ρ(i) to the destination j. We will focus on the
first phase, since the reasoning for the second phase is nearly
identical. We can model the strategy with the following code,
using some syntactic sugar for the for loops2.

proc route (D T : int) :
var ρ, pos, usedBy : node map;
var nextE : edge;

pos ← Map.init id 2D; ρ ←Map.empty;
for i ← 1 to 2D do ρ[i] $←[1 , 2D ]
for t ← 1 to T do

usedBy ← Map.empty;

for i ← 1 to 2D do
if pos[i ] 6= ρ [i ] then

nextE ← getEdge pos[i] ρ [i ];
if usedBy[nextE] = ⊥ then

usedBy[nextE] ← i; // Mark edge used
pos[i] ←dest nextE // Move packet

return (pos, ρ)

We assume that initially the position of the packet i is at node
i (see Map.init). Then, we initialize the random intermediate
destinations ρ. The remaining loop encodes the evaluation of
the routing strategy iterated T time. The variable usedBy is a
map that logs if an edge is already used by a packet, it is empty
at the beginning of each iteration. For each packet, we try to
move it across one edge along the path to its intermediate
destination. The function getEdge returns the next edge to
follow, following the bit-fixing scheme. If the packet can
progress (its edge is not used), then its current position is
updated and the edge is marked as used.

We show that if the number of timesteps T is 4D+1, then
all packets reach their intermediate destination in at most T
steps, except with a small probability 2−2D of failure. That
is, the number of timesteps grows linearly in D, logarithmic
in the number of packets. This is formalized in our system as:

{T = 4D+1} route {Pr[∃i . pos[i ] 6= ρ [i ] ] ≤ 2−2D ]}

Modeling infinite processes. Our second example is the
coupon collector process. The algorithm draws a uniformly
random coupon (we haveN coupon) on each day, terminating
when it has drawn at least one of each kind of coupon. The
code of the algorithm is displayed in Figure 10. The code
uses the array cp to keep track of the coupons seen so far; t
to keep track of the number of steps taken before seeing a
new coupon; X to keep track of the total number of steps.

2 We recall that the number of node in a hypercube of dimension D is 2D so
each node can be identified by a number in [1, 2D].
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Our goal is to bound the average number of iterations. This
is formalized in our logic as:

{L} coupon
{
E[X] =

∑
i∈[1,N ]

(
N

N−i+1

)}
.

proc coupon (N : int) :
var int cp[N], t[N ];
var int X ←0;
for p ←1 to N do
ct ← 0;

cur $← [1 , N ];
while cp[cur] = 1 do
ct ← ct + 1;

cur $← [1 , N ];
t[p] ←ct;
cp[cur] ← 1;
X ← X + t[p];

return X

Figure 10. Coupon collector

Comparison with
Kaminski et al. [22].
At a high level, their
analysis involves com-
plex equations instead
of our invariants. The
two approaches are dif-
ficult to compare, in
the sense that it seems
hard to infer their equa-
tions from our invari-
ants and vice-versa.
However, we believe
that the logical invari-

ants used by our proof are more intuitive and easier to dis-
cover than the equations used in the pGCL proof. Moreover,
we note that Ellora naturally supports reasoning about inde-
pendence, and could be used to reason about the variance of
X , whereas reasoning about independence in pGCL remains
possible but challenging.

Limited randomness. pairwise independence says that if
we see the result of Xi, we do not gain information about
all other variables Xk. However, if we see the result of
two variables Xi, Xj , we may gain information about Xk.

proc pwInd (N : int) :

var bool X[2N], B[N];
for i ← 1 to N do

B[i] $← Ber(1/2);

for j ← 1 to 2N do
X[j] ← 0;
for k ← 1 to N do
if k ∈ bits(j) then
X[j] ← X[j] ⊕ B[k]

return X

Figure 11. Pairwise Indep.

There are many con-
structions in the algo-
rithms literature that
grow a small num-
ber of independent
bits into more pair-
wise independent bits.
Figure 11 gives one
procedure, where ⊕
is exclusive-or, and
bits(j) is the set of po-
sitions set to 1 in the
binary expansion of j.

The proof uses the following fact, which we fully verify: for
a uniformly distributed Boolean random variable Y , and a
random variable Z of any type,

Y # Z ⇒ Y ⊕ f(Z) # g(Z) (1)

for any two Boolean functions f, g. Then, note that X[i] =⊕
{j∈bits(i)} B[j] where the big XOR operator ranges over

the indices j where the bit representation of i has bit j set.
For any two i, k ∈ [1, . . . , 2N] distinct, there is a bit position
in [1, . . . , N] where i and k differ; call this position r and

suppose it is set in i but not in k. By rewriting,

X[i] = B[r]⊕
⊕

{j∈bits(i)\r}

B[j] and X[k] =
⊕

{j∈bits(k)\r}

B[j].

Since B[j] are all independent, X[i] # X[k] follows from Eq. (1)
taking Z to be the distribution on tuples 〈B[1], . . . , B[N]〉
excluding B[r]. This verifies pairwise independence:

{L} pwInd(N) {L ∧ ∀i, k ∈ [2N]. i 6= k ⇒ X[i] # X[k]}.

Adversarial programs. Pseudorandom functions (PRF)
and pseudorandom permutations (PRP) are two idealized
primitives that play a central role in the design of symmetric-
key systems. Although the most natural assumption to make
about a blockcipher is that it behaves as a pseudorandom
permutation, most commonly the security of such a system
is analyzed by replacing the blockcipher with a perfectly
random function. The PRP/PRF Switching Lemma [7, 21]
fills the gap: given a bound for the security of a blockcipher
as a pseudorandom function, it gives a bound for its security
as a pseudorandom permutation.

Lemma 14 (PRP/PRF switching lemma). Let A be an adver-
sary with blackbox access to an oracle O implementing either
a random permutation on {0, 1}l or a random function from
{0, 1}l to {0, 1}l. Then the probability that the adversary A
distinguishes between the two oracles in less that q calls is
bounded by q(q−1)

2l+1 :

| Pr
PRP

[b ∧ |H| ≤ q]− Pr
PRF

[b ∧ |H| ≤ q]| ≤ q(q − 1)

2l+1

where H is a map storing each call performed by the adver-
sary and |H| the size of H .

Proving this lemma can be done using the Fundamental
Lemma of Game-Playing, and bounding the probability of
bad in the program from Fig. 12. We focus on the latter.
Here we apply the [ADV] rule of Ellora with the invariant
∀k,Pr[bad ∧ |H| ≤ k] ≤ k(k−1)

2l+1 where |H| is the size of
the map H , i.e. the number of adversary call. Intuitively, the
invariant says that at each call to the oracle the probability
that bad has been set before and that the number of adversary
call is less than k is bounded by a polynomial in k.

The invariant is d-closed and true before the adversary
call, since at that point Pr[bad] = 0. Then we need to prove
that the oracle preserves the invariant, which can be done
easily using the precondition calculus ([PC] rule).

8. Implementation and mechanization
We have built a prototype implementation of Ellora within
EasyCrypt [3, 4], a tool-assisted framework originally de-
signed for verifying proofs of cryptographic protocols. Easy-
Crypt provides a convenient environment for constructing
proofs in various Hoare logics, supporting interactive, tactic-
based proofs for manipulating assertions and allowing users
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var H: ({0 , 1} l, {0 , 1} l) map;

proc orcl (q:{0 , 1} l):
var a : {0 , 1} l;
if q 6∈ H then

a $← {0 , 1} l;
bad ← bad || a ∈ codom(H );
H [q ] ← a;

return H [q ];

proc main():
var b: bool;
bad ← false;
H ← [];
b ← A();
return b;

Figure 12. PRP/PRF game

to invoke external tools, like SMT-solvers, to discharge sim-
pler proof obligations. Moreover, EasyCrypt provides a ma-
ture set of libraries for both data structures (sets, maps, lists,
arrays, etc.) and formalized mathematical theorems (algebra,
real analysis, etc.), which we extended with theorems from
probability theory. We used the implementation for verifying
many examples from the literature, including all the programs
presented in § 7 as well as some additional examples (such
as polynomial identity test, private running sums, properties
about random walks, etc.). The verified proofs bear a strong
resemblance to the existing, paper proofs.

9. Related work
There is a long tradition of research on verification of proba-
bilistic programs.

More on Expectation-based techniques. Expectation-based
techniques are one of the most well-studied ideas for deduc-
tive verification of probabilistic programs. One of the first
such formalisms was Probabilistic Propositional Dynamical
Logic (PPDL), proposed by Kozen [26], drawing a close anal-
ogy to Propositional Dynamical Logic. The central objects
in this logic are real-valued functions f, g on program states,
along with rules for constructing and reasoning about the
expected value of f and g on the output distribution of a pro-
gram c. In a series of works initiated by Morgan et al. [31] and
described in their textbook [28], McIver, Morgan, and their
collaborators extended ideas from PPDL to study an impera-
tive language with probabilistic choice and non-determinism
called probabilistic Guarded Command Language (pGCL).
Like PPDL, pGCL reasons about the expected value of a sin-
gle real-valued function on program states. The central tool
of pGCL is greatest pre-expectation, a mechanical procedure
similar to Dijkstra’s weakest-pre-condition but transforming
expectations instead of predicates. Many subsequent works
build on pGCL [15, 16, 20, 23] or use related ideas [1, 22]. In
particular, Kaminski et al. [22] give a calculus for bounding
expected running time, with support for probabilistic loops
that terminate almost surely. They also analyze the coupon
collector example of § 7.

Program logics for probabilistic programs. Instead of rea-
soning about a single probability or expected value, a different
line of research investigates Hoare logics for probabilistic pro-
grams, where the pre-condition and post-condition are prob-

abilistic assertions about the input and output distributions.
The earliest system is due to Ramshaw [33], who proposes
a program logic where assertions can be formulas involv-
ing frequencies, essentially probabilities on sub-distributions.
Ramshaw’s logic allows assertions to be combined with op-
erators like ⊕, similar to our approach. More recently, den
Hartog [13] presents a Hoare-style logic with supporting gen-
eral assertions on the distribution, allowing expected values
and probabilities. However his while rule is based on a seman-
tic condition on the guarded loop body, which is less desirable
for verification because it requires reasoning about the seman-
tics of programs. Chadha et al. [8] give decidability results
for a probabilistic Hoare logic without while loops. We are
not aware of any existing system that supports assertions
about general expected values; existing works also restrict to
Boolean distributions. Rand and Zdancewic [34] formalize a
Hoare logic for probabilistic programs but unlike our work,
their assertions are interpreted on distributions rather than
sub-distributions. For conditionals, their semantics rescales
the distribution of states that enter each branch. However,
their assertion language is restricted and they impose strong
restrictions on loops.

Other approaches. There have been many other significant
works to verify probabilistic program using different formal
approaches. For instance, verification of Markov transition
systems goes back to at least Hart et al. [17], Sharir et al.
[36]; our condition for ensuring almost-sure termination in
loops is directly inspired by their work. Automated methods
include model checking (see e.g., [2, 24, 27]) and abstract
interpretation (see e.g., [12, 29]). For analyzing probabilistic
loops in particular, there are tools for reasoning about running
time. There are also automated systems for synthesizing
invariants [5, 11]. Chakarov and Sankaranarayanan [9, 10]
use a martingale method to compute the expected time of
the coupon collector process for N = 5—fixing N lets
them focus on a program where the outer while loop is fully
unrolled. Martingales are also used by Fioriti and Hermanns
[14] for analyzing probabilistic termination. Finally, there are
approaches involving symbolic execution; Sampson et al.
[35] use a mix of static and dynamic analysis to check
probabilistic programs from the approximate computing
literature.

10. Conclusion and perspective
Ellora is a general-purpose framework for verification of ran-
domized programs. We have proved its soundness, and its
expressiveness through representative examples from the liter-
ature. Prime targets for future formalization include accuracy
of differentially private algorithms, lower bounds, distributed
algorithms, and amortized complexity. We also hope to apply
Ellora to more mathematical areas, like combinatorics proofs
based on the probabilistic method. Finally, we plan to extend
and automate the IL logic.
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