
A Semantic Account of Metric Preservation

Abstract
Program sensitivity measures how robust program’s outputs
are to changes in its input. This is a useful measure in
fields like differential privacy and cyber-physical systems,
in order to guarantee that input changes have a limited
effect on the program behavior. A natural way to formalize
program sensitivity is in terms of metrics on the input and
output spaces, requiring that a 𝑘-sensitive function maps
inputs that are at distance 𝑑 to outputs that are at most
at distance 𝑘 ⋅ 𝑑. Program sensitivity is thus an analog of
Lipschitz continuity for programs.

Reed and Pierce introduced Fuzz, a functional language
with a linear type system that can express program sensi-
tivity. They show soundness operationally, in the form of
a metric preservation property. Inspired by their work, we
study program sensitivity and metric preservation from a
denotational point of view. In particular, we introduce met-
ric CPOs, a novel semantic structure for reasoning about
computation on metric spaces, endowing CPOs with a com-
patible notion of distance. This structure is useful for rea-
soning about metric properties of programs, and specifically
about program sensitivity. We demonstrate metric CPOs by
giving a model for the deterministic fragment of Fuzz.

1. Introduction
In many applications, programs should not be too sensitive
to small changes in their input. For example, in cyber-
physical systems often the input has a small degree of
uncertainty that must be taken into account to make sure
that a program correctly responds to measurement errors; in
differential privacy [22], a strong statistical guarantee that
protects the privacy of individuals in a database, the amount
of noise that one needs to add to the output of a program
in order to guarantee the privacy of individual depends on
how much a single individual can influence the result of the
program, etc.

To measure this dependency, researchers have focused
on the notion of sensitivity for programs. Roughly speak-
ing, sensitivity is a measure of how much the results of the
program may vary when the program is run on nearby in-
puts. More formally, a function 𝑓 ∶ 𝑋 → 𝑌 is 𝑟-sensitive if
𝑑u�(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑟 ⋅ 𝑑u�(𝑥, 𝑦) for every pair of inputs 𝑥, 𝑦 ∈ 𝑋,
where 𝑑u� is a function assigning a non-negative distance to
pairs of elements of a set 𝑆. This notion of program sen-
sitivity is an analog of Lipschitz continuity for programs.
Accordingly, program sensitivity is also a natural tool for
expressing notions of uniform continuity and numerical sta-
bility properties.

Due to its useful applications, several works have pro-
posed tools for formal reasoning about sensitivity. On the
one hand, some works have used standard tools from pro-
gram verification to design analyses specifically tailored for
reasoning about sensitivity. Two important examples are the

work by Reed and Pierce [37], based on a linear type sys-
tem annotated with sensitivity information, and the work
by Chaudhuri et al. [14], based on a program analysis for
reasoning about sensitivity of imperative programs. On the
other hand, by noticing that sensitivity can be seen as a
natural example of a relational property (or 2-property), a
property of a set of pairs of runs of a program, other works
have used tools for relational properties to directly reason
about sensitivity, e.g. Barthe et al. [8] use a relational Hoare
Logic, and Barthe et al. [9] use relational refinement types.

In this work we consider the formal approach to program
sensitivity taken by Reed and Pierce [37] which is closely in-
spired by the original description in terms of metric spaces
provided by the initial paper on differential privacy [22].
Reed and Pierce introduced Fuzz, a purely functional lan-
guage featuring a linear indexed type system for a PCF-like
language. In Fuzz, every type 𝜏 is endowed with a notion
of distance, and function types !u� 𝜏 ⊸ 𝜎 carry an index 𝑟
describing the sensitivity of the program to which the type
can be assigned. The soundness result, called metric preser-
vation by Reed and Pierce [37], essentially says that the type
system assigns correct sensitivity values to programs, i.e. a
program 𝑒 of type !u� 𝜏 ⊸ 𝜎 maps two expressions ⊢ 𝑒1, 𝑒2 ∶ 𝜏
that are at distance 𝑘 to expressions that are at distance
𝑘 ⋅ 𝑟. Metric preservation and the compositionality of the
type system allow a clean, compositional analysis of sensi-
tivity for higher-order programs.

The design of sensitivity analyses leads to interesting
technical challenges. In Fuzz, reasoning about sensitivities is
complicated by the expressive programming language, which
allows general recursion and features recursive types. The
original proof of metric preservation relies on the defini-
tion of intricate, syntactic logical relations that mix step-
indexing and metric information. The logical relations are
used at the same time to define the notion of distance and
as the proof method to prove the soundness of the type sys-
tem. This combined approach makes it difficult to reason
about programs and values as objects of a metric space.

In this paper, instead of considering a syntactic logical-
relations approach, we provide a denotational, domain-
theoretic view of sensitivity and metric preservation. A
denotational model for sensitivity based on metric spaces
is insufficient to interpret a language with general recursion
and recursive types in the style of Reed and Pierce, so we
introduce a category of metric CPOs with non-expansive,
Scott-continuous functions as morphisms. A metric CPO is
a complete partial order endowed with a metric for which
every open ball is stable under limits of ascending chains.
This additional requirement is a compatibility condition be-
tween the metric structure and the CPO structure. While
simple, this notion of compatibility seems to have seen lit-

1 2016/7/8

tle investigation in the literature, and provides a natural
extension of the notion of sensitivity to partial functions.1

The category of metric CPOs has rich structure that
suffices to interpret the sensitivity analysis of Fuzz.2 At
the same time, by grounding our work on well-established
domain-theoretic notions, we are able to reuse a vast array
of standard tools from the literature to model recursive defi-
nitions of functions, types, and relations. First, we show that
metric CPOs have the right structure for solving recursive
domain equations, following the approach laid out by Freyd
[25], Smyth and Plotkin [39], and others. Second, we prove
the adequacy of the denotational semantics of Fuzz with re-
spect to its operational semantics, by adapting a method
due to Pitts [35] for constructing a family of type-indexed
logical relations. Fibrational category theory plays a unify-
ing role, initially for lifting colimits of CPOs to the metric
setting, and later for defining relations on metric CPOs.

While the motivation of our work comes from Fuzz,
the structure of metric CPO is richer, supporting a metric
interpretation of constructs not directly definable in Fuzz.
For instance, the model indicates a significantly more precise
type for fixed-point combinators than had previously been
considered before (cf. Lemma 4.10). Metric CPOs can also
provide a useful tool to model other languages that reason
about sensitivity.

The rest of the paper is organized as follows. We begin
with a simplified setting that highlights the core features
of sensitivity analysis without general recursion, reviewing
basic notions of metric spaces (Section 2) and showing
how they yield a model of a terminating fragment of Fuzz
(Section 3). We present our main contribution in Section 4:
the notion of metric CPO. We show how the constructions
carried out for metric spaces can be naturally lifted to this
setting, and how we can use these structures to interpret
recursive definitions of functions and data types. We use this
infrastructure to extend our model of Fuzz with recursive
types in Section 5, thereby validating metric preservation.
We conclude with a discussion of related work, pointing to
promising directions for future work (Sections 6 and 7).

2. Metric Spaces
We begin by studying the essence of sensitivity analysis in
the simplest setting, with metric spaces and total functions.
Most results here are standard, and covered in more detail
in other works (e.g. [27]).

Let ℝ∞
≥0 ≜ {𝑟 ∈ ℝ ∣ 𝑟 ≥ 0} ∪ {∞} be the set of

extended non-negative reals. We extend addition and the
order relation on ℝ to ℝ∞

≥0 by setting
∞ + 𝑟 = 𝑟 + ∞ = ∞, 𝑟 ≤ ∞, for every 𝑟 ∈ ℝ≥0.

An extended pseudo-metric space is a tuple (𝑋, 𝑑u�), where
𝑋 is a set and 𝑑u� ∶ 𝑋2 → ℝ∞

≥0 is a metric: a function
satisfying (i) 𝑑u�(𝑥, 𝑥) = 0 (ii) 𝑑u�(𝑥, 𝑦) = 𝑑u�(𝑦, 𝑥); and
(iii) the triangle inequality 𝑑u�(𝑥, 𝑧) ≤ 𝑑u�(𝑥, 𝑦) + 𝑑u�(𝑦, 𝑧).

An extended pseudo-metric space differs from the classic
notion of metric space in two aspects. First, two points can

1 Although there is a wide range of semantics based on metric
spaces, these were designed with quite different applications in
mind. We return to this point when discussing related work.
2 While Fuzz allows probabilistic sampling to model algorithms
from differential privacy, the probabilistic features of Fuzz are
orthogonal to the sensitivity analysis. We keep the discussion fo-
cused on sensitivity analysis, leaving modeling of the probabilistic
features for future work.

Space (Carrier) 𝑑(𝑎, 𝑏)
ℝ |𝑎 − 𝑏|
𝟏 0

𝑟 · 𝑋 (𝑋) 𝑟 · 𝑑u�(𝑎, 𝑏)
𝑋 & 𝑌 (𝑋 × 𝑌) max(𝑑u�(𝑎1, 𝑏1), 𝑑u�(𝑎2, 𝑏2))
𝑋 ⊗ 𝑌 (𝑋 × 𝑌) 𝑑u�(𝑎1, 𝑏1) + 𝑑u�(𝑎2, 𝑏2)

𝑑u�(𝑎, 𝑏) if 𝑎, 𝑏 ∈ 𝑋
𝑋 + 𝑌 𝑑u�(𝑎, 𝑏) if 𝑎, 𝑏 ∈ 𝑌

∞ otherwise
𝖬𝖾𝗍(𝑋, 𝑌) supu�∈u� 𝑑u�(𝑎(𝑥), 𝑏(𝑥))

Figure 1. Basic metric spaces

be at distance 0 from each other without being equal; we
don’t impose the axiom 𝑑(𝑥, 𝑦) = 0 ⇒ 𝑥 = 𝑦. Second, since
distances range over ℝ∞

≥0, pairs of points can be infinitely
apart. We simplify the exposition by henceforth referring
to extended pseudo-metric spaces simply as metric spaces.
Figure 1 summarizes some useful metrics. Besides standard
examples, such as the real numbers ℝ under the Euclidian
metric, we consider metrics that we can define on more
general sets: products, sums, and functions.

The heart of sensitivity analysis is the notion of non-
expansiveness. A function 𝑓 ∶ 𝑋 → 𝑌 between metric spaces
is non-expansive if

𝑑u�(𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝑑u�(𝑥1, 𝑥2)
for all 𝑥1, 𝑥2 ∈ 𝑋. Metric spaces and non-expansive functions
form a category 𝖬𝖾𝗍 with rich structure, which we develop
in the remainder of this section.

Non-expansiveness subsumes the notion of function sen-
sitivity, thanks to the metric scaling operation (cf. Figure 1).
Unpacking definitions, an 𝑟-sensitive function 𝑋 → 𝑌 is ex-
actly a non-expansive function from the 𝑟-scaled space 𝑟 · 𝑋
to 𝑌. It is important to point out that we will extend multi-
plication to ℝ∞

≥0 in a non-standard way, by setting:

𝑟 · ∞ ≜ ∞ ∞ · 𝑟 ≜ {0 if 𝑟 = 0
∞ otherwise.

Note that multiplication on ℝ∞
≥0 is non-commutative but

otherwise well-behaved: it is associative, monotone in both
arguments, and it distributes over addition. We will later see
that this treatment of ∞ is crucial for scaling to distribute
over sums, and for modeling function sensitivity in the
presence of non-termination.

If 𝑓 ∈ 𝖬𝖾𝗍(𝑋, 𝑌), then 𝑓 ∈ 𝖬𝖾𝗍(𝑟 · 𝑋, 𝑠 · 𝑌) for any 𝑟 and
𝑠 such that 𝑟 ≥ 𝑠. In categorical language, this means that
scaling extends to a bifunctor ℝ∞

≥0 × 𝖬𝖾𝗍 → 𝖬𝖾𝗍, where ℝ∞
≥0

is regarded as the category arising from the order ≥.
Now that we have pinned down the basic definitions for

metric spaces, we turn our attention to simple constructions
for building spaces. These operations will be used to inter-
pret more complex types, as usual. The first observation is
that there are two natural metrics on a product space 𝑋×𝑌,
denoted 𝑋 & 𝑌 and 𝑋 ⊗ 𝑌. The first one combines distances
with the max operator, whereas the second one adds them
up. The two metrics on products correspond to different sen-
sitivity analyses. For instance, addition on real numbers is
a non-expansive function ℝ ⊗ ℝ → ℝ, but not for 𝑋 & 𝑌.

From the perspective of the 𝖬𝖾𝗍 category, there are other
differences between the two metrics as well. The first, 𝑋&𝑌,

2 2016/7/8

yields the usual notion of Cartesian product on 𝖬𝖾𝗍: given
two non-expansive functions 𝑓 ∶ 𝑍 → 𝑋 and 𝑔 ∶ 𝑍 → 𝑌, the
function ⟨𝑓, 𝑔⟩ ∶ 𝑍 → 𝑋 × 𝑌, that wraps the result of both
functions in a pair,

⟨𝑓, 𝑔⟩(𝑧) ≜ (𝑓(𝑧), 𝑔(𝑧)),
is non-expansive for 𝑋 & 𝑌. Note that the projections

𝜋1 ∶ 𝑋 × 𝑌 → 𝑋 𝜋2 ∶ 𝑋 × 𝑌 → 𝑌
are trivially non-expansive for this metric.

The second product 𝑋 ⊗ 𝑌 also supports the projections
𝜋u�, but not pairing. Instead, it allows us to split the metric
of a space: the diagonal function 𝛿(𝑥) = (𝑥, 𝑥) is a non-
expansive function

(𝑟 + 𝑠) · 𝑋 → (𝑟 · 𝑋) ⊗ (𝑠 · 𝑋).
Furthermore, this is the metric for which the operations of
currying and function application are non-expansive. More
precisely, (𝖬𝖾𝗍, ⊗, 𝟏) is a symmetric monoidal category, and
there is an adjunction

(−) ⊗ 𝑋 ⊣ 𝖬𝖾𝗍(𝑋, −)
making this structure closed. Here, non-expansive functions
are endowed with the supremum metric of Figure 1.

We can also define a metric on the disjoint union of two
spaces, placing elements from different components infinitely
far apart. Note that this metric yields a coproduct on 𝖬𝖾𝗍:
if 𝑓 ∶ 𝑋 → 𝑍 and 𝑔 ∶ 𝑌 → 𝑍, then the case-analysis function
[𝑓, 𝑔] ∶ 𝑋 + 𝑌 → 𝑍, defined as

[𝑓, 𝑔](𝜄1(𝑥)) ≜ 𝑓(𝑥) [𝑓, 𝑔](𝜄2(𝑦)) ≜ 𝑔(𝑦),
is non-expansive, where 𝜄1 ∶ 𝑋 → 𝑋 + 𝑌 and 𝜄2 ∶ 𝑌 → 𝑋 + 𝑌
are the (trivially non-expansive) canonical injections.

We conclude by remarking useful identities that relate
scaling to the above constructions:

𝑟 · (𝑋 & 𝑌) = 𝑟 · 𝑋 & 𝑟 · 𝑌
𝑟 · (𝑋 ⊗ 𝑌) = 𝑟 · 𝑋 ⊗ 𝑟 · 𝑌
𝑟 · (𝑋 + 𝑌) = 𝑟 · 𝑋 + 𝑟 · 𝑌

𝑟 · (𝑠 · 𝑋) = (𝑟𝑠) · 𝑋.
The case for sums relies crucially on the fact that 0·∞ = ∞,
which guarantees that the copies of 𝑋 and 𝑌 in 𝑋+𝑌 remain
infinitely apart after scaling. This point was overlooked in
the original Fuzz work [37], where 0 · ∞ is defined as 0. In
that case, the identity only holds for 𝑟 > 0.

3. Core Fuzz
We now show how to use the structure described in the
previous section to model a fragment of Fuzz without gen-
eral recursion. The syntax, described in Figure 2, is based
on a 𝜆-calculus with products and sums, with a few mod-
ifications. First, Fuzz has two pair constructors, (𝑒1, 𝑒2)
and ⟨𝑒1, 𝑒2⟩, corresponding to the two product metrics of
last section. The first one is eliminated using case analysis
(let  (𝑥, 𝑦) = 𝑒 in 𝑒′), whereas the second one is eliminated
using the projections 𝜋u�. The ! is a constructor with trivial
computational meaning: it boxes its argument, which can
later be unboxed with the form let  ! 𝑥 = 𝑒 in 𝑒′. This con-
structor is used by the type system to mark where we need to
scale the metric of a space. Finally, we include two kinds of
constants (real numbers 𝑘 and a unit ()), and one operation,
addition on real numbers.

Programs execute under a standard call-by-value big-step
semantics. We write 𝑒 ↪ 𝑣 to say that term 𝑒 evaluates to

𝑒 ∈ 𝐸 ∶∶= 𝑥 ∣ 𝑘 ∈ ℝ ∣ 𝑒1 + 𝑒2 ∣ ()
∣ 𝜆𝑥. 𝑒 ∣ 𝑒1 𝑒2

∣ (𝑒1, 𝑒2) ∣ let  (𝑥, 𝑦) = 𝑒 in 𝑒′

∣ ⟨𝑒1, 𝑒2⟩ ∣ 𝜋u� 𝑒
∣ ! 𝑒 ∣ let  ! 𝑥 = 𝑒 in 𝑒′

∣ inl 𝑒 ∣ inr 𝑒 ∣ (case 𝑒 of inl 𝑥 ⇒ 𝑒u� ∣ inr 𝑦 ⇒ 𝑒u�)
𝑣 ∈ 𝑉 ∶∶= 𝑘 ∈ ℝ ∣ () ∣ 𝜆𝑥. 𝑒

∣ (𝑣1, 𝑣2) ∣ ⟨𝑣1, 𝑣2⟩ ∣ ! 𝑣 ∣ inl 𝑣 ∣ inr 𝑣

Figure 2. Syntax of Core Fuzz

value 𝑣 (also a term). We omit the definition of this relation,
which can be found in the original paper [37].

Turning to the type system of Fuzz, terms are typed
with judgments of the form Γ ⊢ 𝑒 ∶ 𝜎, where Γ is a typing
environment and 𝜎 is a type. The complete definition is given
in Figure 3. The type system is loosely inspired by bounded
linear logic, but unusual in some respects that we review
here.

First, judgments keep track of the sensitivity of each
variable used in a term. More precisely, a binding 𝑥 ∶u� 𝜎
in an environment Γ means that the variable 𝑥 has type 𝜎
under Γ and that terms typed under Γ are 𝑟-sensitive with
respect to 𝑥. Most rules use environment scaling (𝑟Γ) and
addition (Γ + Δ) to track sensitivities. Note that the latter
operation is only defined when Γ and Δ agree on the types
of all variable bindings.3

An abstraction 𝜆𝑥. 𝑒 can only be typed if 𝑒 is 1-sensitive
on 𝑥 (cf. (⊸ 𝐼)). Functions of different sensitivities must take
arguments in a scaled type !u� 𝜎 and unwrap them using let
(cf. (! 𝐸)).

The Fuzz type system essentially corresponds to the
constructions of last section, and can be interpreted in
metric spaces in a straightforward manner. Given a type
𝜎, we define a metric space ⟦𝜎⟧ with the rules

⟦ℝ⟧ = ℝ ⟦1⟧ = 𝟏
⟦𝜎 ⊸ 𝜏⟧ = 𝖬𝖾𝗍(⟦𝜎⟧, ⟦𝜏⟧) ⟦𝜎 ⊗ 𝜏⟧ = ⟦𝜎⟧ ⊗ ⟦𝜏⟧
⟦𝜎 & 𝜏⟧ = ⟦𝜎⟧ & ⟦𝜏⟧ ⟦!u� 𝜎⟧ = 𝑟 · ⟦𝜎⟧.

Each environment Γ is interpreted as a tensor product,
scaled by the corresponding sensitivities:

⟦∅⟧ = 𝟏 ⟦Γ, 𝑥 ∶u� 𝜎⟧ = ⟦Γ⟧ ⊗ (𝑟 · ⟦𝜎⟧)

We sometimes treat elements of ⟦Γ⟧ as maps from variables
in Γ to elements of the denotations of their types.

We can show by a straightforward induction how this
interpretation interacts with scaling and addition.
Lemma 3.1. For every 𝑟 and Γ, ⟦𝑟Γ⟧ = 𝑟 · ⟦Γ⟧. For every Γ
and Δ, if Γ+Δ is defined, then the diagonal function 𝛿(𝑥) =
(𝑥, 𝑥) is a non-expansive function ⟦Γ + Δ⟧ → ⟦Γ⟧ ⊗ ⟦Δ⟧.

Finally, each typing derivation Γ ⊢ 𝑒 ∶ 𝜎 yields a non-
expansive function ⟦𝑒⟧ ∶ ⟦Γ⟧ → ⟦𝜎⟧ by structural induction:

(Var) ⟦𝑥⟧(𝑎) = 𝑎(𝑥).

3 In the original paper [37], two environments Γ, Δ can be added
also when a variable appears either only in Γ or only in Δ. For
simplicity, here we require instead all the variables to appear both
in Γ and Δ. These are essentially equivalent, since we can always
assume that the sensitivity of a variable is 0.

3 2016/7/8

𝑟, 𝑠 ∈ ℝ∞
≥0 𝜎, 𝜏 ∶∶= ℝ ∣ 1 ∣ 𝜎 ⊸ 𝜏 ∣ 𝜎 ⊗ 𝜏 ∣ 𝜎 & 𝜏 ∣ 𝜎 + 𝜏 ∣ !u� 𝜎 Γ, Δ ∶∶= ∅ ∣ Γ, 𝑥 ∶u� 𝜎

Γ = 𝑥1 ∶u�1
𝜎1, …, 𝑥u� ∶u�u�

𝜎u�

𝑟Γ = 𝑥1 ∶u�·u�1
𝜎1, …, 𝑥u� ∶u�·u�u�

𝜎u�

Γ = 𝑥1 ∶u�1
𝜎1, …, 𝑥u� ∶u�u�

𝜎u� Δ = 𝑥1 ∶u�1
𝜎1, …, 𝑥u� ∶u�u�

𝜎u�

Γ + Δ = 𝑥1 ∶u�1+u�1
𝜎1, …, 𝑥u� ∶u�u�+u�u�

𝜎u�

(𝑥 ∶u� 𝜎) ∈ Γ 𝑟 ≥ 1
Γ ⊢ 𝑥 ∶ 𝜎

(Var)
𝑘 ∈ ℝ

Γ ⊢ 𝑘 ∶ ℝ
(Const)

Γ ⊢ 𝑒1 ∶ ℝ Δ ⊢ 𝑒2 ∶ ℝ
Γ + Δ ⊢ 𝑒1 + 𝑒2 ∶ ℝ

(Plus)
Γ ⊢ () ∶ 1

(1𝐼)

Γ, 𝑥 ∶1 𝜎 ⊢ 𝑒 ∶ 𝜏
Γ ⊢ 𝜆𝑥. 𝑒 ∶ 𝜎 ⊸ 𝜏

(⊸ 𝐼)
Γ ⊢ 𝑒1 ∶ 𝜎 ⊸ 𝜏 Δ ⊢ 𝑒2 ∶ 𝜎

Γ + Δ ⊢ 𝑒1 𝑒2 ∶ 𝜏
(⊸ 𝐸)

Γ ⊢ 𝑒1 ∶ 𝜎 Δ ⊢ 𝑒2 ∶ 𝜏
Γ + Δ ⊢ (𝑒1, 𝑒2) ∶ 𝜎 ⊗ 𝜏

(⊗𝐼)

Γ ⊢ 𝑒 ∶ 𝜎1 ⊗ 𝜎2 Δ, 𝑥 ∶u� 𝜎1, 𝑦 ∶u� 𝜎2 ⊢ 𝑒′ ∶ 𝜏
𝑟Γ + Δ ⊢ let  (𝑥, 𝑦) = 𝑒 in 𝑒′ ∶ 𝜏

(⊗𝐸)
Γ ⊢ 𝑒1 ∶ 𝜎 Γ ⊢ 𝑒2 ∶ 𝜏

Γ ⊢ ⟨𝑒1, 𝑒2⟩ ∶ 𝜎 & 𝜏
(&𝐼)

Γ ⊢ 𝑒 ∶ 𝜎1 & 𝜎2
Γ ⊢ 𝜋u� 𝑒 ∶ 𝜎u�

(&𝐸)

Γ ⊢ 𝑒 ∶ 𝜎
𝑟Γ ⊢ 𝑒 ∶ !u� 𝜎

(! 𝐼)
Γ ⊢ 𝑒1 ∶ !u� 𝜎 Δ, 𝑥 ∶u�u� 𝜎 ⊢ 𝑒2 ∶ 𝜏

𝑟Γ + Δ ⊢ let ! 𝑥 = 𝑒1 in 𝑒2 ∶ 𝜏
(! 𝐸)

Γ ⊢ 𝑒 ∶ 𝜎
Γ ⊢ inl 𝑒 ∶ 𝜎 + 𝜏

(+𝐼u�)
Γ ⊢ 𝑒 ∶ 𝜏

Γ ⊢ inr 𝑒 ∶ 𝜎 + 𝜏
(+𝐼u�)

Γ ⊢ 𝑒 ∶ 𝜎1 + 𝜎2 Δ, 𝑥 ∶u� 𝜎1 ⊢ 𝑒u� ∶ 𝜏 Δ, 𝑦 ∶u� 𝜎2 ⊢ 𝑒u� ∶ 𝜏
𝑟Γ + Δ ⊢ case 𝑒 of inl 𝑥 ⇒ 𝑒u� ∣ inr 𝑦 ⇒ 𝑒u� ∶ 𝜏

(+𝐸)

Figure 3. Core Fuzz Typing Rules

(Const) ⟦𝑘⟧ = 𝑘.
(Plus) ⟦𝑒1 + 𝑒2⟧ = (+) ∘ (⟦𝑒1⟧ ⊗ ⟦𝑒2⟧) ∘ 𝛿.
(1𝐼) ⟦()⟧ = ⋆, where ⋆ is the unique element of the singleton

𝟏.
(⊸ 𝐼) ⟦𝜆𝑥. 𝑒⟧ = 𝜆⟦𝑒⟧.
(⊸ 𝐸) ⟦𝑒1 𝑒2⟧ = 𝜀 ∘ (⟦𝑒1⟧ ⊗ ⟦𝑒2⟧) ∘ 𝛿.
(⊗𝐼) ⟦(𝑒1, 𝑒2)⟧ = (⟦𝑒1⟧ ⊗ ⟦𝑒2⟧) ∘ 𝛿.
(⊗𝐸) ⟦let  (𝑥, 𝑦) = 𝑒1 in 𝑒2⟧ = ⟦𝑒2⟧ ∘ (𝑖𝑑 ⊗ (𝑟 · ⟦𝑒1⟧)) ∘ 𝛿, where

𝑟 is the sensitivity of 𝑥 and 𝑦 in 𝑒2.
(&𝐼) ⟦⟨𝑒1, 𝑒2⟩⟧ = ⟨⟦𝑒1⟧, ⟦𝑒2⟧⟩.
(&𝐸) ⟦𝜋u�𝑒⟧ = 𝜋u�⟦𝑒⟧.
(! 𝐼) ⟦! 𝑒⟧ = 𝑟·⟦𝑒⟧, where 𝑟 is the corresponding scaling factor.
(! 𝐸) ⟦let  ! 𝑥 = 𝑒1 in 𝑒2⟧ = ⟦𝑒2⟧ ∘ (𝑖𝑑 ⊗ (𝑟 · ⟦𝑒1⟧)) ∘ 𝛿.
(+𝐼u�) ⟦inl 𝑒⟧ = 𝜄1 ∘ ⟦𝑒⟧.
(+𝐼u�) ⟦inr 𝑒⟧ = 𝜄2 ∘ ⟦𝑒⟧.
(+𝐸) ⟦case 𝑒 of inl 𝑥 ⇒ 𝑒u� ∣ inr 𝑦 ⇒ 𝑒u�⟧ = [⟦𝑒u�⟧, ⟦𝑒u�⟧]∘(𝑟·⟦𝑒⟧),

where 𝑟 is the sensitivity of 𝑥 and 𝑦.

We’ll tacitly identify the denotation of typed closed terms
⊢ 𝑒 ∶ 𝜎 with elements ⟦𝑒⟧ ∈ ⟦𝜎⟧ in what follows. This
interpretation is compatible with the operational semantics.
We begin with the following standard lemma, showing that
the denotational semantics behaves well with respect to
weakening. As usual, the proof follow by simple induction
on the typing derivation.
Lemma 3.2 (Weakening). Let 𝑒 be a typed term Γ1, Γ2 ⊢
𝑒 ∶ 𝜎. For any other environment Δ, we have a derivation
Γ1, Δ, Γ2 ⊢ 𝑒 ∶ 𝜎, whose semantics is equal to ⟦𝑒⟧ ∘ 𝜋Γ,
where 𝜋Γ ∶ ⟦Γ1, Δ, Γ2⟧ → ⟦Γ1, Γ2⟧ discards all components
corresponding to Δ.

To state a substitution lemma, we introduce some ter-
minology and notation. We define a substitution as a finite
partial map from variables to values, and use ⃗𝑣 to range
over them. We write 𝑒[⃗𝑣] for the simultaneous substitution

of the values ⃗𝑣(𝑥) for the variables 𝑥 in 𝑒. We say that a
substitution ⃗𝑣 is well-typed under Γ, written ⃗𝑣 ∶ Γ, if for all
types 𝜎, ⊢ ⃗𝑣(𝑥) ∶ 𝜎 if and only if there exists 𝑟 such that
(𝑥 ∶u� 𝜎) ∈ Γ. We can readily lift the semantics of terms to
substitutions, by assigning well-typed substitutions to deno-
tations ⟦ ⃗𝑣⟧ ∈ ⟦Γ⟧ in the obvious way. Then:
Lemma 3.3 (Substitution). Let 𝑒 be a well-typed term

Γ, Δ ⊢ 𝑒 ∶ 𝜎,
and ⃗𝑣 ∶ Γ a well-typed substitution. Then, there is a deriva-
tion of

Δ ⊢ 𝑒[⃗𝑣] ∶ 𝜎,
Furthermore, the semantics of this derivation ⟦𝑒[⃗𝑣]⟧ is such
that

⟦𝑒[⃗𝑣]⟧ = ⟦𝑒⟧(⟦ ⃗𝑣⟧, −).
(A similar result holds for the substitution of arbitrary

expressions, but we don’t need the extra generality.) With
this lemma, we can show:
Lemma 3.4 (Preservation). If ⊢ 𝑒 ∶ 𝜎 and 𝑒 ↪ 𝑣, then
⊢ 𝑣 ∶ 𝜎, and the semantics of both typing judgments are
equal.

Combined, the lemmas provide a short proof of metric
preservation for this simple fragment of Fuzz.
Theorem 3.5 (Metric Preservation). Suppose that we have
a well-typed program

Γ ⊢ 𝑒 ∶ 𝜎,
and well-typed substitutions ⃗𝑣 ∶ Γ and ⃗𝑣′ ∶ Γ. Then, there are
well-typed values 𝑣 and 𝑣′ such that

𝑒[⃗𝑣] ↪ 𝑣 and 𝑒[⃗𝑣′] ↪ 𝑣′.
Furthermore,

𝑑⟦u�⟧(⟦𝑣⟧, ⟦𝑣′⟧) ≤ 𝑑⟦Γ⟧(⟦ ⃗𝑣⟧, ⟦ ⃗𝑣′⟧).

Proof. By Lemma 3.3, both 𝑒[⃗𝑣] and 𝑒[⃗𝑣] have type 𝜎 under
the empty environment, and their denotations are equal to

⟦𝑒⟧(⟦ ⃗𝑣⟧) and ⟦𝑒⟧(⟦ ⃗𝑣′⟧).

4 2016/7/8

By non-expansiveness of ⟦𝑒⟧,
𝑑⟦u�⟧(⟦𝑒⟧(⟦ ⃗𝑣⟧), ⟦𝑒⟧(⟦ ⃗𝑣′⟧)) ≤ 𝑑⟦Γ⟧(⟦ ⃗𝑣⟧, ⟦ ⃗𝑣′⟧). (1)

We can show by standard techniques that well-typed terms
normalize, and thus we find values 𝑣 and 𝑣′ such that

𝑒[⃗𝑣] ↪ 𝑣 and 𝑒[⃗𝑣′] ↪ 𝑣′.
By Lemma 3.4, both 𝑣 and 𝑣′ have type 𝜎 under the empty
environment, and their denotations are equal to those of 𝑒[⃗𝑣]
and 𝑒[⃗𝑣′]. Thus, (1) yields the desired result.

4. Metric CPOs
So far, we have considered a core version of Fuzz where
all expressions are terminating. We need to handle non-
termination to model all of Fuzz, which includes non-
terminating expressions arising from recursive types. Our
main tool will be metric CPOs, which blend the basic prin-
ciples of sensitivity analysis with the domain-theoretic no-
tion of complete partial orders. We first review the basic
theory of these structures, and then show how to extend
them with metrics—our main contribution. We will discuss
in the next section how to use metric CPOs to interpret
Fuzz with recursive types.

4.1 Preliminaries
Let (𝑋, ⊑) be a poset (that is, a set endowed with a reflexive,
transitive, and anti-symmetric relation). We say that 𝑋 is
complete (or a CPO, for short) if every 𝜔-chain of elements
of 𝑋

𝑥0 ⊑ 𝑥1 ⊑ 𝑥2 ⊑ ⋯
has a least upper bound, denoted ⨆u� 𝑥u�. If 𝑋 possesses a
least element ⊥, we say that 𝑋 is pointed.

A function 𝑓 ∶ 𝑋 → 𝑌 between CPOs is monotone if
𝑥 ⊑ 𝑥′ implies 𝑓(𝑥) ⊑ 𝑓(𝑥′); in particular, 𝑓 maps 𝜔-chains to
𝜔-chains. It is continuous if it preserves least upper bounds:
𝑓 (⨆u� 𝑥u�) = ⨆u� 𝑓(𝑥u�). Continuous functions between CPOs
are the morphisms of a category, 𝖢𝖯𝖮. Note that continuous
functions also form a CPO under the point-wise order

𝑓 ⊑ 𝑔 ⇔ ∀𝑥. 𝑓(𝑥) ⊑ 𝑔(𝑥),
with least upper bounds of chains given by

(⨆
u�

𝑓u�) (𝑥) = ⨆
u�

𝑓u�(𝑥).

If the codomain is pointed, then the CPO is pointed as
well, with the constant function that returns ⊥ as the least
element.

Continuous functions are useful because they allow us to
interpret recursive definitions as fixed points.
Theorem 4.1 (Kleene). Let 𝑋 be a pointed CPO. Every
continuous function 𝑓 ∶ 𝑋 → 𝑋 has a least fixed point, given
by

fix(𝑓) = ⨆
u�

𝑓u�(⊥).

That is, fix(𝑓) = 𝑓(fix(𝑓)), and fix(𝑓) ⊑ 𝑥 for every 𝑥 such
that 𝑥 = 𝑓(𝑥). The fixed point induces a continuous function
fix ∶ 𝖢𝖯𝖮(𝑋, 𝑋) → 𝑋.

We use CPOs to represent outcomes of a computation.
Any set 𝑋 can be regarded as a CPO under the trivial
discrete order

𝑥 ⊑ 𝑥′ ⇔ 𝑥 = 𝑥′.

We use this order for sets of first-order values, such as ℝ or
𝔹. If 𝑋 and 𝑌 are CPOs then so is 𝑋 × 𝑌, with ordering

(𝑥, 𝑦) ⊑ (𝑥′, 𝑦′) ⇔ 𝑥 ⊑ 𝑥′ ∧ 𝑦 ⊑ 𝑦′,
and the disjoint union 𝑋 + 𝑌, with ordering

𝜄u�(𝑥) ⊑ 𝜄u�(𝑥′) ⇔ 𝑖 = 𝑗 ∧ 𝑥 ⊑ 𝑥′.
These constructions, with the obvious projections and in-
jections, yield categorical products and sums in 𝖢𝖯𝖮. The
singleton set 𝟏 is a terminal object in this category. Currying
and uncurrying continuous functions yields an adjunction

(−) × 𝑋 ⊣ 𝖢𝖯𝖮(𝑋, −),
making 𝖢𝖯𝖮 into a cartesian-closed category.

We represent computations that may run forever with
pointed CPOs of the form 𝑋⊥, constructed by adjoining a
distinguished least element ⊥ to a CPO 𝑋. The copy of 𝑋
in 𝑋⊥ represents computations that terminate successfully,
whereas ⊥ represents diverging ones. This construction ex-
tends to a functor on 𝖢𝖯𝖮 in the obvious way. This functor
has the structure of a monad, where the unit 𝜂 ∶ 𝑋 → 𝑋⊥
injects 𝑋 into 𝑋⊥, and the multiplication 𝑋⊥⊥ → 𝑋⊥ col-
lapses the two bottom elements into a single one. We write
𝖢𝖯𝖮⊥ for the Kleisli category of this monad. Its morphisms
are continuous functions 𝑋 → 𝑌⊥, and composition of two
arrows 𝑔 ∶ 𝑌 → 𝑍⊥ and 𝑓 ∶ 𝑋 → 𝑌⊥ is given by 𝑔†𝑓, where
𝑔† ∶ 𝑌⊥ → 𝑍⊥ is the Kleisli lifting of 𝑔:

𝑔†(⊥) = ⊥
𝑔†(𝑦) = 𝑔(𝑦) if 𝑦 ≠ ⊥.

Note that there is a natural transformation 𝑡 ∶ 𝑋⊥ × 𝑌⊥ →
(𝑋 × 𝑌)⊥, corresponding to forcing a pair of computations:

𝑡(𝑥, 𝑦) = {(𝑥, 𝑦) if 𝑥 ≠ ⊥ and 𝑦 ≠ ⊥
⊥ otherwise.

(2)

This, along with the unit 𝜂u� ∶ 𝟏 → 𝟏⊥, makes (−)⊥ into a
lax symmetric monoidal functor. We use arrows in 𝖢𝖯𝖮⊥
to model programs in a call-by-value discipline, which take
fully computed values as inputs and may either terminate
or run forever.

4.2 Adding Metrics
If we want to mimic the sensitivity analysis of Section 2 on
CPOs, we need to find a category of CPOs with metrics
that is similar to 𝖬𝖾𝗍 in structure. In particular, we would
like non-expansive functions to correspond to objects in this
category, and to be closed under least upper bounds so that
they can form a CPO.

Let’s think about how this might hold. Suppose that
we have an 𝜔-chain (𝑓u�)u�∈ℕ of non-expansive continuous
functions 𝑋 → 𝑌, where both 𝑋 and 𝑌 are CPOs endowed
with metrics. To show that the limit ⨆u� 𝑓u� is non-expansive,
we must show that for any pair of inputs 𝑥 and 𝑥′,

𝑑 (⨆
u�

𝑓u�(𝑥), ⨆
u�

𝑓u�(𝑥′)) ≤ 𝑑(𝑥, 𝑥′),

assuming that 𝑑(𝑓u�(𝑥), 𝑓u�(𝑥′)) ≤ 𝑑(𝑥, 𝑥′) for every 𝑖 ∈ ℕ.
Unfortunately, this does not hold in general. For instance, let
ℕ∞ be the CPO of natural numbers extended with infinity,
ordered in the usual way. We can define a metric on the
disjoint union 𝑋 = ℕ∞ + ℕ∞ by setting

𝑑(𝜄1(𝑛), 𝜄2(𝑛)) = {1 if 𝑛 = ∞
0 otherwise,

5 2016/7/8

and stipulating that all other pairs of distinct points are
infinitely apart. Then, the functions 𝑓u� ∶ 𝑋 → 𝑋 (𝑛 ∈ ℕ),
defined by

𝑓u�(𝜄u�(𝑚)) ≜ 𝜄u�(𝑛),
are non-expansive and form an 𝜔-chain, but do not satisfy
the above properties, since at the limit we have

𝑑 (⨆
u�

𝑓u�(𝜄1(0)), ⨆
u�

𝑓u�(𝜄2(0))) = 𝑑(𝜄1(∞), 𝜄2(∞))

= 1 ≰ 𝑑(𝜄1(0), 𝜄2(0)).

These pathological cases force us to impose additional re-
strictions on the metrics we consider:

Definition 4.2. A pre-metric CPO is a CPO 𝑋 endowed
with a metric. We say that 𝑋 is a metric CPO if its
metric is compatible with the underlying partial order, in
the following sense. Let 𝑟 ∈ ℝ∞

≥0, and (𝑥u�)u�∈ℕ and (𝑥′
u�)u�∈ℕ be

two 𝜔-chains on 𝑋, such that 𝑑(𝑥u�, 𝑥′
u�) ≤ 𝑟 for all 𝑖. Then

𝑑 (⨆
u�

𝑥u�, ⨆
u�

𝑥′
u�) ≤ 𝑟.

Metric CPOs and continuous, non-expansive functions be-
tween them form a category 𝖬𝖾𝗍𝖢𝖯𝖮.

All CPO constructions from the last section can be lifted
to metric CPOs.4 For instance, any discrete CPO with a
metric is a metric CPO. Another simple case is sums.

Lemma 4.3. If 𝑋 and 𝑌 are metric CPOs, then so are 𝑋+𝑌
and 𝑋⊥, under the sum metric of Section 2. Furthermore,
𝑋 + 𝑌 and the canonical injections give a coproduct on
𝖬𝖾𝗍𝖢𝖯𝖮.

Since ⊥ is infinitely apart from every other point, any
morphism 𝑓 ∶ 𝑋 → 𝑌⊥ has the same termination behavior
for any pair of inputs that are at finite distance. Just as
in the previous section, we can extend (−)⊥ to a monad on
𝖬𝖾𝗍𝖢𝖯𝖮, yielding a corresponding Kleisli category 𝖬𝖾𝗍𝖢𝖯𝖮⊥
representing potentially non-terminating computations.

We can also lift the cartesian product on 𝖬𝖾𝗍 to 𝖬𝖾𝗍𝖢𝖯𝖮.

Lemma 4.4. Let 𝑋 and 𝑌 be metric CPOs. The product
metric 𝑋 & 𝑌, with the standard CPO structure over 𝑋 × 𝑌,
is a metric CPO. The projections 𝜋1 ∶ 𝑋 & 𝑌 → 𝑋 and
𝜋2 ∶ 𝑋 & 𝑌 → 𝑌 are non-expansive continuous functions, and
make 𝑋 & 𝑌 a cartesian product in 𝖬𝖾𝗍𝖢𝖯𝖮.

Dealing with the tensor product and its additive metric
requires more care. The following characterization of metric
CPOs comes in handy.

Lemma 4.5. A pre-metric CPO 𝑋 is a metric CPO if and
only if for every pair of 𝜔-chains on 𝑋, (𝑥u�)u�∈ℕ and (𝑥′

u�)u�∈ℕ,
we have

𝑑 (⨆
u�

𝑥u�, ⨆
u�

𝑥′
u�) ≤ lim inf

u�
𝑑(𝑥u�, 𝑥′

u�).

Proof. (⇒) Consider an arbitrary 𝑟 > lim infu� 𝑑(𝑥u�, 𝑥′
u�). There

exists an infinite set 𝐼 ⊆ ℕ such that

∀𝑖 ∈ 𝐼. 𝑑(𝑥u�, 𝑥′
u�) ≤ 𝑟.

4 We will later see in Section 4.3 how to lift much of the structure
of 𝖢𝖯𝖮 to 𝖬𝖾𝗍𝖢𝖯𝖮 in a principled way, via a general fibrational
construction.

Since 𝐼 is infinite, we get 𝜔-chains (𝑥u�)u�∈u� and (𝑥′
u�)u�∈u�, and

because 𝑋 is a metric CPO, we find

𝑑 (⨆
u�∈ℕ

𝑥u�, ⨆
u�∈ℕ

𝑥′
u�) = 𝑑 (⨆

u�∈u�
𝑥u�, ⨆

u�∈u�
𝑥′

u�) ≤ 𝑟.

Since 𝑟 can be arbitrarily close to lim infu� 𝑑(𝑥u�, 𝑥′
u�), we con-

clude

𝑑 (⨆
u�∈ℕ

𝑥u�, ⨆
u�∈ℕ

𝑥′
u�) ≤ lim inf

u�∈ℕ
𝑑(𝑥u�, 𝑥′

u�).

(⇐) Suppose that

𝑑 (⨆
u�∈ℕ

𝑥u�, ⨆
u�∈ℕ

𝑥′
u�) ≤ lim inf

u�∈ℕ
𝑑(𝑥u�, 𝑥′

u�).

Suppose furthermore that there exists 𝑟 such that
∀𝑖. 𝑑(𝑥u�, 𝑥′

u�) ≤ 𝑟.
This implies lim infu� 𝑑(𝑥u�, 𝑥′

u�) ≤ 𝑟, from which we conclude.

Lemma 4.6. Let 𝑋 and 𝑌 be metric CPOs. The space 𝑋⊗𝑌
is a metric CPO over the standard product CPO.

Proof. We have to show that the above metric is compatible
with the order on 𝑋 × 𝑌. By Lemma 4.5, it suffices to show
that for every pair of 𝜔-chains (𝑝u�)u�∈ℕ and (𝑝′

u�)u�∈ℕ,

𝑑 (⨆
u�

𝑝u�, ⨆
u�

𝑝′
u�) ≤ lim inf

u�
𝑑(𝑝u�, 𝑝′

u�).

By definition, this is equivalent to

𝑑 (⨆
u�

𝑥u�, ⨆
u�

𝑥′
u�) + 𝑑 (⨆

u�
𝑦u�, ⨆

u�
𝑦′

u�)

≤ lim inf
u�

(𝑑(𝑥u�, 𝑥′
u�) + 𝑑(𝑦u�, 𝑦′

u�)) ,

where 𝑝u� = (𝑥u�, 𝑦u�) and 𝑝′
u� = (𝑥′

u�, 𝑦′
u�). Since 𝑋 and 𝑌 are metric

CPOs, it suffices to show that
lim inf

u�
𝑑(𝑥u�, 𝑥′

u�) + lim inf
u�

𝑑(𝑦u�, 𝑦′
u�)

≤ lim inf
u�

(𝑑(𝑥u�, 𝑥′
u�) + 𝑑(𝑦u�, 𝑦′

u�)) ,

which always holds.

As previously, this metric yields a symmetric monoidal
category (𝖬𝖾𝗍𝖢𝖯𝖮, ⊗, 𝟏) whose tensor unit is the terminal
object. Note that the forcing natural transformation 𝑡 ∶
𝑋⊥ × 𝑌⊥ → (𝑋 × 𝑌)⊥ of (2) is compatible with this metric,
as well as the metric from Lemma 4.4:

𝑡 ∶ 𝑋⊥ ⊗ 𝑌⊥ → (𝑋 ⊗ 𝑌)⊥

𝑡 ∶ 𝑋⊥ & 𝑌⊥ → (𝑋 & 𝑌)⊥.
Morphisms of metric CPOs form a metric CPO.

Lemma 4.7. Let 𝑋 and 𝑌 be metric CPOs. The set of
morphisms 𝖬𝖾𝗍𝖢𝖯𝖮(𝑋, 𝑌) forms a metric CPO, inheriting
its partial order from 𝖢𝖯𝖮(𝑋, 𝑌) and its metric structure
from 𝖬𝖾𝗍(𝑋, 𝑌).

Proof. First, we must show that 𝖬𝖾𝗍𝖢𝖯𝖮(𝑋, 𝑌) is a pre-
metric CPO, for which it suffices to show that it is closed
under least upper bounds. We can then conclude by showing
that this structure satisfies the metric CPO axiom.

We prove both properties with the following auxil-
iary result. Consider two chains (𝑓u�)u�∈ℕ and (𝑔u�)u�∈ℕ in
𝖬𝖾𝗍𝖢𝖯𝖮(𝑋, 𝑌), and two elements 𝑥1, 𝑥2 ∈ 𝑋. Pose 𝑓 = ⨆u� 𝑓u�

6 2016/7/8

and 𝑔 = ⨆u� 𝑔u�. Suppose that there exists 𝑟 such that
𝑑(𝑓u�, 𝑔u�) ≤ 𝑟 for every 𝑖 ∈ ℕ. Since each 𝑓u� and 𝑔u� is non-
expansive, we get 𝑑(𝑓u�(𝑥1), 𝑔u�(𝑥2)) ≤ 𝑟 + 𝑑(𝑥1, 𝑥2) for every
𝑖 ∈ ℕ. We then conclude

𝑑(𝑓(𝑥1), 𝑔(𝑥2)) = 𝑑 (⨆
u�

𝑓u�(𝑥1), ⨆
u�

𝑔u�(𝑥2)) ≤ 𝑟 + 𝑑(𝑥1, 𝑥2).

Now, we can see that 𝖬𝖾𝗍𝖢𝖯𝖮(𝑋, 𝑌) is closed under least
upper bounds by taking 𝑔u� = 𝑓u� and 𝑟 = 0, since then
𝑑(𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝑑(𝑥1, 𝑥2). Furthermore, by taking 𝑥2 = 𝑥1,
we find 𝑑(𝑓(𝑥1), 𝑔(𝑥1)) ≤ 𝑟 + 0 and, since 𝑥1 is arbitrary,
we conclude 𝑑(𝑓, 𝑔) ≤ 𝑟 and that 𝖬𝖾𝗍𝖢𝖯𝖮(𝑋, 𝑌) is indeed a
metric CPO.

As expected, this allows us to curry and apply functions:
Lemma 4.8. Let 𝑋 be a metric CPO. The cartesian-closed
structure of 𝖢𝖯𝖮 induces an adjunction in 𝖬𝖾𝗍𝖢𝖯𝖮:

(−) ⊗ 𝑋 ⊣ 𝖬𝖾𝗍𝖢𝖯𝖮(𝑋, −),
making it a symmetric monoidal closed category.

Metric CPOs also support scaling.
Lemma 4.9. Let 𝑋 be a metric CPO and 𝑟 ∈ ℝ∞

≥0. Then
𝑟 · 𝑋 is also a metric domain, under the same order as 𝑋.

Proof. We just need to show that the new metric is com-
patible with the domain order. Suppose that we are given
two chains on 𝑋, (𝑥u�) and (𝑥′

u�), and that there is 𝑟′ ∈ ℝ∞
≥0

such that 𝑟 ⋅ 𝑑(𝑥u�, 𝑥′
u�) ≤ 𝑟′ for every 𝑖; we must show that

𝑟 · 𝑑 (⨆u� 𝑥u�, ⨆u� 𝑥′
u�) ≤ 𝑟′. If 𝑟 = 0 or 𝑟′ = ∞, the inequal-

ity becomes trivial and we’re done. If 𝑟 ∉ {0, ∞}, then
𝑑(𝑥u�, 𝑥′

u�) ≤ 𝑟′/𝑟 for every 𝑖, hence 𝑑 (⨆u� 𝑥u�, ⨆u� 𝑥′
u�) ≤ 𝑟′/𝑟

and we’re done. The remaining case is when 𝑟 = ∞ and
𝑟′ < ∞. It must be the case that 𝑑(𝑥u�, 𝑥′

u�) = 0 for every 𝑖, so
𝑑 (⨆u� 𝑥u�, ⨆u� 𝑥′

u�) = 0 and we are done.

All the scaling identities of Section 2 remain valid, with
the addition of

𝑟 · 𝑋⊥ = (𝑟 · 𝑋)⊥.
Similarly to Section 2, we have inclusions

𝖬𝖾𝗍𝖢𝖯𝖮(𝑋, 𝑌) ⊆ 𝖬𝖾𝗍𝖢𝖯𝖮(𝑟 · 𝑋, 𝑠 · 𝑌)
𝖬𝖾𝗍𝖢𝖯𝖮⊥(𝑋, 𝑌) ⊆ 𝖬𝖾𝗍𝖢𝖯𝖮⊥(𝑟 · 𝑋, 𝑠 · 𝑌)

whenever 𝑟 ≥ 𝑠. Thus, scaling extends once again to a
functor on both categories.

Finally, we interpret recursion by adding sensitivity infor-
mation to the Kleene fixed-point combinator of Theorem 4.1:
Lemma 4.10. Let 𝑋 be a pointed metric CPO, and 𝑟 ∈ ℝ∞

≥0.
The fix combinator is a morphism 𝑠 ·𝖬𝖾𝗍𝖢𝖯𝖮(𝑟 ·𝑋, 𝑋) → 𝑋,
where

𝑠 = {
1

1−u� if 𝑟 < 1
∞ otherwise.

Proof. Let 𝑓 and 𝑔 be two morphisms 𝑟 · 𝑋 → 𝑋. We can
show by induction that

𝑑(𝑓u�(⊥), 𝑔u�(⊥)) ≤ (∑
u�<u�

𝑟u�) · 𝑑(𝑓, 𝑔). (3)

Furthermore, when 𝑟 < 1, we have

∑
u�<u�

𝑟u� = 1 − 𝑟u�

1 − 𝑟
.

Therefore, the right-hand side of (3) is bounded by 𝑠 ·
𝑑(𝑓, 𝑔) for every 𝑖. Since 𝑋 is a metric CPO, we find that
𝑑(fix(𝑓), fix(𝑔)) ≤ 𝑠 · 𝑑(𝑓, 𝑔) and conclude.

4.3 Domain Equations
Many languages allow users to define data types with recur-
sive structure. When giving a semantics to such languages,
we are then led to solve the following problem: given an op-
erator 𝐹 that maps types to types, find a type 𝜇𝐹 such that
𝐹(𝜇𝐹) = 𝜇𝐹. In domain-theoretic semantics, these are usu-
ally known as domain equations, and are elegantly described
by the framework of algebraic compactness [24, 25]. After
a short review of this framework, we show how it applies
to 𝖬𝖾𝗍𝖢𝖯𝖮⊥, allowing us to solve many domain equations
in that category and preparing the way to model recursive
types in Fuzz in the next section.

Solutions to domain equations usually exploit existing
𝖢𝖯𝖮 structure on the arrows of a category—a special case
of enriched category theory. A 𝖢𝖯𝖮-category is a category
whose hom-sets are CPOs and whose composition is con-
tinuous. There are many examples of such categories, in-
cluding 𝖢𝖯𝖮 and 𝖢𝖯𝖮⊥, but also 𝖬𝖾𝗍𝖢𝖯𝖮 and 𝖬𝖾𝗍𝖢𝖯𝖮⊥ by
Lemma 4.7. Additionally, 𝖢𝖯𝖮-categories are closed under
products and opposites: in the first case, the order on ar-
rows is just the product order, while in the second it is the
same as the original category.

We are interested in solving domain equations for type
operators 𝐹 that can be extended to 𝖢𝖯𝖮-functors: these
are functors between 𝖢𝖯𝖮-categories whose action on mor-
phisms is continuous. This includes identity functors, con-
stant functors, and all type operators that we have consid-
ered in this section, such as &, ⊗, etc. Since 𝖢𝖯𝖮-functors
are closed under composition, they can model many recur-
sive data types. For instance, the operator

𝐹(𝑋) = 𝟏 +ℝ ⊗ 𝑋 (4)
is a 𝖢𝖯𝖮-functor 𝖬𝖾𝗍𝖢𝖯𝖮 → 𝖬𝖾𝗍𝖢𝖯𝖮 describing lists of real
numbers. By construction, the distance between two lists of
same length is the sum of the distances of corresponding
pairs of numbers, and lists of different length are infinitely
apart.

We say that a 𝖢𝖯𝖮-category 𝒞 is algebraically compact if,
for every 𝖢𝖯𝖮-functor 𝐹 ∶ 𝒞 → 𝒞, there exists an object 𝜇𝐹
and an isomorphism

𝑖 ∶ 𝐹(𝜇𝐹) ≅ 𝜇𝐹 (5)

such that 𝑖 is an initial algebra and 𝑖−1 is a final coalgebra.
This means that 𝜇𝐹 is a valid solution for our domain
equation, while the initiality and finality properties of 𝑖
imply that 𝜇𝐹 is a canonical solution, characterized up to
isomorphism. It turns out that algebraic compactness also
provides canonical solutions to a larger class of domain
equations on 𝒞, given in terms of mixed-variance 𝖢𝖯𝖮-
functors

𝐹 ∶ 𝒞⋆ → 𝒞,
where 𝒞⋆ ≜ 𝒞u�u� × 𝒞. More precisely, when 𝒞 is algebraically
compact, we can find an isomorphism

𝑖 ∶ 𝐹(𝜇𝐹, 𝜇𝐹) ≅ 𝜇𝐹 (6)
for some object 𝜇𝐹 ∈ 𝒞. This solution is also characterized
by a universal property [35, Theorem 3.4], although we won’t
need this fact. Solving domain equations for mixed-variance
functors allows us to consider type operators involving ex-
ponentials 𝒞(−, −), which cannot be modeled directly as co-
variant functors as was done for (4).

7 2016/7/8

Our first goal is to show that 𝖬𝖾𝗍𝖢𝖯𝖮⊥ is algebraically
compact. We will use the following result.
Theorem 4.11 (Smyth and Plotkin [39]). Let 𝒞 be a 𝖢𝖯𝖮-
category with a terminal object. Suppose that 𝒞(𝑋, 𝑌) is
pointed for every 𝑋 and 𝑌, and that 𝑓 ∘ ⊥ = ⊥ for every
𝑓. Suppose furthermore that 𝒞 has colimits of 𝜔-chains of
embeddings; that is, of diagrams of the form

𝑋0 𝑋1 𝑋2 ⋯,

where every arrow 𝑒 has an arrow 𝑒# such that 𝑒#𝑒 = 𝑖𝑑
and 𝑒𝑒# ⊑ 𝑖𝑑. Then, 𝒞 is algebraically compact.

All of these conditions hold of 𝖬𝖾𝗍𝖢𝖯𝖮⊥. (Its terminal ob-
ject is the empty metric CPO 𝟎.) The only thing remaining
to check is that 𝖬𝖾𝗍𝖢𝖯𝖮⊥ has colimits of 𝜔-chains of embed-
dings. For this purpose, we introduce a fibrational construc-
tion that will let us lift colimits in 𝖢𝖯𝖮 to 𝖬𝖾𝗍𝖢𝖯𝖮, where it
is easy to transfer colimits to 𝖬𝖾𝗍𝖢𝖯𝖮⊥. Later, we will reuse
the fibrational machinery to show that the denotational se-
mantics of Fuzz is adequate.

Let 𝐹 ∶ ℰ → 𝒟 be a functor. The fiber category over
an object 𝑋 ∈ 𝒟 is the subcategory ℰu� of ℰ consisting of
objects and morphisms that are mapped to 𝑋 and idu� by 𝐹,
respectively. We say that 𝐹 is a 𝖢𝖫𝖺𝗍∧-fibration5 over 𝒟 if it
is a posetal fibration with fibered limits, or, more explicitly,
if it satisfies the following properties.
1. For each 𝑋 ∈ 𝒟, the fiber category ℰu� is a poset. This

property and the next one imply the faithfulness of 𝐹.
We think of elements of ℰu� as abstract predicates or
relations over 𝑋. For 𝐴, 𝐵 ∈ ℰ, by 𝑓 ∶ 𝐴 ⊃ 𝐵 we mean that
𝑓 ∈ 𝒟(𝐹𝐴, 𝐹𝐵), and there exists a (necessarily unique)
morphism 𝑓′ ∶ 𝐴 → 𝐵 in ℰ such that 𝑓 = 𝐹𝑓′. We think
such 𝑓 as taking elements related by 𝐴 to elements related
by 𝐵.

2. For each arrow 𝑓 ∶ 𝑋 → 𝑌 in 𝒟 and 𝐵 ∈ ℰu�, there is a
(necessarily unique) element 𝑓∗𝐵 ∈ ℰu� (called the inverse
image of 𝐵 by 𝑓) such that

𝑔 ∶ 𝐴 ⊃ 𝑓∗𝐵 iff 𝑓𝑔 ∶ 𝐴 ⊃ 𝐵.

3. Each fibre poset ℰu� has arbitrary meets (denoted by
⋂ 𝑆), and each inverse image functor 𝐴 ↦ 𝑓∗𝐴 preserves
these meets.
If 𝒟 is also a 𝖢𝖯𝖮-category, it is useful to require more

structure of 𝐹. An object 𝐵 ∈ ℰ is called admissible [35,
Definition 4.3] if ℰ(𝐴, 𝐵) is closed under limits of 𝜔-chains
for every 𝐴. We say that 𝐹 itself is admissible if every
object in ℰ is admissible. The terminology is reminiscent of
Pitts’ work on relational properties of domains [35]. In fact,
𝖢𝖫𝖺𝗍∧-fibrations correspond exactly to his notion of normal
relational structure with inverse images and intersections.

One example of 𝖢𝖫𝖺𝗍∧-fibration is the canonical forgetful
functor 𝑝 ∶ 𝖬𝖾𝗍 → 𝖲𝖾𝗍. Each fiber 𝖬𝖾𝗍u� corresponds to the
poset of metrics on 𝑋, ordered by

𝑑 ≤ 𝑑′ ⇔ ∀𝑥, 𝑥′ ∈ 𝑋. 𝑑(𝑥, 𝑥′) ≥ 𝑑′(𝑥, 𝑥′).
Thus, the intersection of a family of metrics {𝑑u�}u�∈u� on
a set is just their point-wise supremum (supu� 𝑑u�)(𝑥, 𝑦) =

5 The name 𝖢𝖫𝖺𝗍∧-fibration stems from the fact that these struc-
tures correspond uniquely (via the Grothendieck construction) to
a functor u�u�u� → 𝖢𝖫𝖺𝗍∧, where the codomain is the category of
complete lattices and meet-preserving functions between them.

supu� 𝑑u�(𝑥, 𝑦), and the inverse image of a metric 𝑑 by a
function 𝑓 is given by 𝑓∗𝑑(𝑥, 𝑦) = 𝑑(𝑓(𝑥), 𝑓(𝑦)).

Besides allowing us to lift structure across categories, as
alluded to earlier, 𝖢𝖫𝖺𝗍∧-fibrations are stable under various
category-theoretical constructions:
Lemma 4.12.
1. 𝖢𝖫𝖺𝗍∧-fibrations preserve and create limits and colimits.
2. 𝖢𝖫𝖺𝗍∧-fibrations are closed under products, opposites,

and pullbacks along any functor. The same conclusions
hold for admissible 𝖢𝖫𝖺𝗍∧-fibrations over 𝖢𝖯𝖮-categories,
restricting pullbacks along 𝖢𝖯𝖮-functors.

3. Let 𝒟 be a 𝖢𝖯𝖮-category. Admissible objects in a 𝖢𝖫𝖺𝗍∧-
fibration 𝐹 ∶ ℰ → 𝒟 are closed under inverse images and
intersections [35, Lemma 4.14]. In particular, restricting
𝐹 to the full subcategory ℰu�u�u� of admissible objects of ℰ
yields an admissible 𝖢𝖫𝖺𝗍∧-fibration.
To apply this result to 𝖬𝖾𝗍𝖢𝖯𝖮, we characterize it as the

full subcategory of admissible objects of 𝖢𝖯𝖮 ×𝖲𝖾𝗍 𝖬𝖾𝗍, the
category of premetric CPOs and non-expansive, continuous
functions. The latter arises as the following pullback of
functors, and 𝑟 below is a 𝖢𝖫𝖺𝗍∧-fibration:

𝖢𝖯𝖮 ×𝖲𝖾𝗍 𝖬𝖾𝗍 𝖬𝖾𝗍

𝖢𝖯𝖮 𝖲𝖾𝗍

u� u�

u�

Proposition 4.13. (𝖢𝖯𝖮 ×𝖲𝖾𝗍 𝖬𝖾𝗍)u�u�u� = 𝖬𝖾𝗍𝖢𝖯𝖮.

Proof. That every metric CPO is admissible follows by an
argument analogous to Lemma 4.7. To see the converse,
we can observe that a pre-metric CPO is a metric CPO
if and only if the set of continuous, non-expansive functions
𝔹u� → 𝑋 is closed under least upper bounds for every 𝑟 ∈ ℝ∞

≥0,
where 𝔹u� is the discrete metric CPO consisting of two points
at distance 𝑟.

Corollary 4.14. The forgetful functor 𝑞 ∶ 𝖬𝖾𝗍𝖢𝖯𝖮 → 𝖢𝖯𝖮
is an admissible 𝖢𝖫𝖺𝗍∧-fibration, and 𝖬𝖾𝗍𝖢𝖯𝖮 is cocomplete.

Proof. Appeal to Lemma 4.12.

To conclude, we just need to show that 𝜔-colimits of
embeddings in 𝖬𝖾𝗍𝖢𝖯𝖮⊥ can be transferred from 𝖬𝖾𝗍𝖢𝖯𝖮.
The key observation is that every embedding is the image
of a morphism by the left adjoint 𝐽 ∶ 𝖬𝖾𝗍𝖢𝖯𝖮 → 𝖬𝖾𝗍𝖢𝖯𝖮⊥
associated to the Kleisli category.
Lemma 4.15. For any embedding 𝑒 ∈ 𝖬𝖾𝗍𝖢𝖯𝖮⊥(𝑋, 𝑌),
there exists a unique morphism 𝑚 ∈ 𝖬𝖾𝗍𝖢𝖯𝖮(𝑋, 𝑌) such
that 𝑒 = 𝐽𝑚.

Proof. We write 𝐾 for a right adjoint of 𝐽. Let 𝑒 ∈
𝖬𝖾𝗍𝖢𝖯𝖮⊥(𝑋, 𝑌) be an embedding. Since it is a split monomor-
phism, 𝐾𝑒 = 𝑒† ∈ 𝖬𝖾𝗍𝖢𝖯𝖮(𝑋⊥, 𝑌⊥) is also a (split) monomor-
phism. Moreover, 𝐾𝑒(⊥) = ⊥; therefore, there exists a
unique 𝑚 ∈ 𝖬𝖾𝗍𝖢𝖯𝖮(𝑋, 𝑌) such that 𝑒† = (𝑚)⊥. By
composing the unit 𝜂 of the lifting monad, we conclude
𝑒 = 𝜂u� ∘ 𝑚 = 𝐽𝑚.

Theorem 4.16. The colimits of 𝜔-chains of embeddings in
𝖬𝖾𝗍𝖢𝖯𝖮⊥ exist.

Proof. From Lemma 4.15, every 𝜔-chain (𝑋u�, 𝑒u�) of embed-
dings in 𝖬𝖾𝗍𝖢𝖯𝖮⊥ is the 𝐽-image of an 𝜔-chain (𝑋u�, 𝑚u�) in
𝖬𝖾𝗍𝖢𝖯𝖮. Moreover, 𝐽 preserves any colimits. Therefore the

8 2016/7/8

𝜎, 𝜏 ∶∶= ⋯ ∣ 𝛼 ∈ 𝑇 𝑒 ∶∶= ⋯ ∣ fold 𝑒 ∣ unfold 𝑒
Φ ∶∶= (𝛼 ↦ Φ(𝛼))u�∈u� 𝑣 ∶∶= ⋯ ∣ fold 𝑣

Γ ⊢ 𝑒 ∶ Φ(𝛼)
Γ ⊢ fold 𝑒 ∶ 𝛼

(𝜇𝐼)
Γ ⊢ 𝑒 ∶ 𝛼

Γ ⊢ unfold 𝑒 ∶ Φ(𝛼)
(𝜇𝐸)

Figure 4. Fuzz Recursive Types

𝐽-image of a colimiting cone over (𝑋u�, 𝑚u�), which exists by
Corollary 4.14, gives a colimiting cone over (𝑋u�, 𝑒u�).

This result was the only condition missing for us to apply
Theorem 4.11, and we have thus shown that 𝖬𝖾𝗍𝖢𝖯𝖮⊥ is
algebraically compact.

5. Modeling Recursive Types
Now that we have shown algebraic compactness of 𝖬𝖾𝗍𝖢𝖯𝖮⊥,
we are ready to model full Fuzz with recursive types (Fig-
ure 4). We will extend the basic setup of Section 3 and prove
a metric preservation property, analogous to Theorem 3.5.

The full Fuzz language is parameterized by a finite set 𝑇
of type identifiers, and a definition environment Φ mapping
identifiers 𝛼 to type expressions Φ(𝛼), which may themselves
contain identifiers.6 Identifiers behave as iso-recursive types:
programs can freely cast between 𝛼 and Φ(𝛼) by using the
fold and unfold constructors (cf. (𝜇𝐸) and (𝜇𝐼)).

To interpret types, we first define a family of mixed-
variance 𝖢𝖯𝖮-functors

𝐹u� ∶ (𝖬𝖾𝗍𝖢𝖯𝖮u�
⊥)⋆ → 𝖬𝖾𝗍𝖢𝖯𝖮⊥

by induction on 𝜎. The definition essentially follows that
of ⟦𝜎⟧ in Section 3, but interpreting type identifiers as
projections, and by switching the variance when traversing
an arrow to the left:

𝐹u�(𝑋, 𝑌) ≜ 𝑌(𝛼)
𝐹u�⊸u�(𝑋, 𝑌) ≜ 𝖬𝖾𝗍𝖢𝖯𝖮⊥(𝐹u�(𝑌, 𝑋), 𝐹u�(𝑋, 𝑌))

Finally, following Section 4.3, we use 𝐹 to interpret a type
𝜎 as the metric CPO

⟦𝜎⟧ = 𝐹u�(𝜇𝐹Φ, 𝜇𝐹Φ),
where 𝐹Φ is the lifting of 𝐹 to Φ:

𝐹Φ ∶ (𝖬𝖾𝗍𝖢𝖯𝖮u�
⊥)⋆ → 𝖬𝖾𝗍𝖢𝖯𝖮u�

⊥

𝐹Φ(𝑋, 𝑌)(𝛼) ≜ 𝐹Φ(u�)(𝑋, 𝑌).
With this definition, all the equations describing the inter-
pretation of types for Core Fuzz carry over to 𝖬𝖾𝗍𝖢𝖯𝖮⊥. We
think of 𝜇𝐹Φ as mapping each identifier 𝛼 to its interpreta-
tion ⟦𝛼⟧ = 𝜇𝐹Φ(𝛼). By unfolding definitions, the universal
property of 𝜇𝐹Φ corresponds to a family of isomorphisms

𝑖u� ∶ ⟦Φ(𝛼)⟧ ≅ ⟦𝛼⟧,
which give recursive types their intended semantics.

The interpretation of environments Γ remains the same:
an iterated tensor product of scaled metric CPOs. As be-
fore, we scale and split environments with an analog of
Lemma 3.1:

⟦𝑟Γ⟧ = 𝑟 · ⟦Γ⟧ 𝛿 ∶ ⟦Γ + Δ⟧ → ⟦Γ⟧ ⊗ ⟦Δ⟧.

6 This is slightly different from the original presentation of Fuzz,
which has anonymous recursive types u�u�. u� instead of globally
defined ones.

The biggest difference with respect to Core Fuzz is that
the new semantics is monadic, in order to accommodate
the presence of non-termination in a call-by-value discipline.
Judgments Γ ⊢ 𝑒 ∶ 𝜎 now correspond to Kleisli arrows
⟦𝑒⟧ ∶ ⟦Γ⟧ → ⟦𝜎⟧⊥ in 𝖬𝖾𝗍𝖢𝖯𝖮, defined by adapting the
semantics of Section 3. More concretely:
• we embed terminating computations from 𝖬𝖾𝗍𝖢𝖯𝖮 (e.g.

real number constants) into 𝖬𝖾𝗍𝖢𝖯𝖮⊥ with the canonical
embedding 𝐽 ∶ 𝖬𝖾𝗍𝖢𝖯𝖮 → 𝖬𝖾𝗍𝖢𝖯𝖮⊥; and

• we replace composition in 𝖬𝖾𝗍𝖢𝖯𝖮 with its Kleisli coun-
terpart.
For instance, consider the rule (&𝐼): we want to interpret

a typed term
Γ ⊢ ⟨𝑒1, 𝑒2⟩ ∶ 𝜎 & 𝜏,

where
Γ ⊢ 𝑒1 ∶ 𝜎 Γ ⊢ 𝑒2 ∶ 𝜏.

Since ⟦𝑒1⟧ ∶ ⟦Γ⟧ → ⟦𝜎⟧⊥ and ⟦𝑒2⟧ ∶ ⟦Γ⟧ → ⟦𝜏⟧⊥, we must
define ⟦⟨𝑒1, 𝑒2⟩⟧ as the composition

⟦Γ⟧ ⟦𝜎⟧⊥ & ⟦𝜏⟧⊥ (⟦𝜎⟧ & ⟦𝜏⟧)⊥,⟨⟦u�1⟧,⟦u�2⟧⟩ u�

where 𝑡 is the forcing morphism from (2). Additionally,
we interpret the fold and unfold using the isomorphisms
provided by algebraic compactness:
(𝜇𝐼) ⟦fold 𝑒⟧ = 𝑖u� ∘ ⟦𝑒⟧
(𝜇𝐸) ⟦unfold 𝑒⟧ = 𝑖−1

u� ∘ ⟦𝑒⟧
The basic semantic properties of Core Fuzz (Lemmas 3.2

to 3.4) generalize accordingly. As in other call-by-value lan-
guages, we also obtain:
Lemma 5.1. Let ⊢ 𝑣 ∶ 𝜎 be a value. Then ⟦𝑣⟧ = 𝜂(𝑥) for
some 𝑥 ∈ ⟦𝜎⟧.

Thanks to this result, we can treat the denotation of a
value ⊢ 𝑣 ∶ 𝜎 as an element ⟦𝑣⟧ ∈ ⟦𝜎⟧. Once again, these
properties lead to our main soundness result:
Theorem 5.2 (Metric Preservation). Suppose that we have
a well-typed program

Γ ⊢ 𝑒 ∶ 𝜎,
and well-typed substitutions ⃗𝑣 ∶ Γ and ⃗𝑣′ ∶ Γ. Then

𝑑⟦u�⟧⊥
(⟦𝑒[⃗𝑣]⟧, ⟦𝑒[⃗𝑣′]⟧) ≤ 𝑑⟦Γ⟧(⟦ ⃗𝑣⟧, ⟦ ⃗𝑣′⟧).

Unlike the previous statement of metric preservation,
this result doesn’t allow us to conclude anything about the
termination behavior of the programs 𝑒[⃗𝑣] and 𝑒[⃗𝑣′]. To do
so, we need the following property to connect the domain-
theoretic and operational views of termination:
Lemma 5.3 (Adequacy). Let ⊢ 𝑒 ∶ 𝜎 be a well-typed term.
If ⟦𝑒⟧ ≠ ⊥, there exists a value ⊢ 𝑣 ∶ 𝜎 such that 𝑒 ↪ 𝑣.

Then, we can recover that programs 𝑒[⃗𝑣] and 𝑒[⃗𝑣′] from
metric preservation indeed have the same termination be-
havior if 𝑑⟦Γ⟧(⃗𝑣, ⃗𝑣′) < ∞. By metric preservation, we find
that

𝑑⟦u�⟧⊥
(⟦𝑒[⃗𝑣]⟧, ⟦𝑒[⃗𝑣′]⟧) < ∞.

Now, imagine that 𝑒[⃗𝑣] terminates in a value 𝑣. By preserva-
tion, ⟦𝑒[⃗𝑣]⟧ = ⟦𝑣⟧ ≠ ⊥. This implies that ⟦𝑒[⃗𝑣′]⟧ ≠ ⊥, because
𝑑(⟦𝑣⟧, ⊥) = ∞. Finally, by adequacy, we are able to find 𝑣′

such that 𝑒[⃗𝑣′] ↪ 𝑣′.
Thus, we just need to prove adequacy (Lemma 5.3).

Following an approach due to Plotkin [36], we generalize the

9 2016/7/8

̂𝐹ℝ(𝐴, 𝐵) = {(𝑘, 𝑘) ∣ 𝑘 ∈ ℝ}
̂𝐹1(𝐴, 𝐵) = {(⋆, ())}

̂𝐹u�⊗u�(𝐴, 𝐵) = {((𝑥, 𝑦), (𝑣u�, 𝑣u�)) ∣ (𝑥, 𝑣u�) ∈ ̂𝐹u�(𝐴, 𝐵), (𝑦, 𝑣u�) ∈ ̂𝐹u�(𝐴, 𝐵)}
̂𝐹u�&u�(𝐴, 𝐵) = {((𝑥, 𝑦), ⟨𝑣u�, 𝑣u�⟩) ∣ (𝑥, 𝑣u�) ∈ ̂𝐹u�(𝐴, 𝐵), (𝑦, 𝑣u�) ∈ ̂𝐹u�(𝐴, 𝐵)}
̂𝐹u�+u�(𝐴, 𝐵) = {(𝜄1(𝑥), inl 𝑣) ∣ (𝑥, 𝑣) ∈ ̂𝐹u�(𝐴, 𝐵)} ∪ {(𝜄2(𝑦), inl 𝑣) ∣ (𝑦, 𝑣) ∈ ̂𝐹u�(𝐴, 𝐵)}
̂𝐹u�⊸u�(𝐴, 𝐵) = {(𝑓, 𝜆𝑥. 𝑒) ∣ ∀(𝑥, 𝑣) ∈ ̂𝐹u�(𝐵, 𝐴). (𝑓(𝑥), 𝑒[𝑥 ↦ 𝑣]) ∈ ̂𝐹u�(𝐴, 𝐵)⊥} ((−)⊥ is as in (8))

̂𝐹!u�(𝐴, 𝐵) = {(𝑥, ! 𝑣) ∣ (𝑥, 𝑣) ∈ ̂𝐹u�(𝐴, 𝐵)}
̂𝐹u�(𝐴, 𝐵) = {(𝑥, fold 𝑣) ∣ (𝑥, 𝑣) ∈ 𝐵(𝛼)}

̂𝐹Φ(𝐴, 𝐵)(𝛼) = ̂𝐹Φ(u�)(𝐴, 𝐵)

Figure 5. Definition of logical relations for adequacy

adequacy lemma by constructing, for each type 𝜎, a logical
relation 𝑆u� ⊆ ⟦𝜎⟧ × 𝑉 satisfying the following property: if
Γ ⊢ 𝑒 ∶ 𝜎, 𝑎 ∈ ⟦Γ⟧, and ⃗𝑣 ∶ Γ, then

(∀(𝑥 ∶u� 𝜏) ∈ Γ. (𝑎(𝑥), ⃗𝑣(𝑥)) ∈ 𝑆u�) ⇒ (⟦𝑒⟧(𝑎), 𝑒[⃗𝑣]) ∈ 𝑆⊥
u� , (7)

where 𝑆⊥
u� is a relation between ⟦𝜎⟧⊥ and expressions 𝐸,

defined as
𝑆⊥

u� ≜ {(𝑥, 𝑒) ∣ 𝑥 ≠ ⊥ ⇒ ∃𝑣. 𝑒 ↪ 𝑣 ∧ (𝑥, 𝑣) ∈ 𝑆u�}. (8)

Adequacy follows from (7) by instantiating Γ with the empty
environment. Our goal is to define 𝑆u� so that (7) is strong
enough to be established by a simple induction on the typing
derivation. This property almost completely determines how
𝑆u� should be defined; it must satisfy equations including

𝑆ℝ = {(𝑘, 𝑘) ∣ 𝑘 ∈ ℝ} (9)
𝑆u�&u� = {((𝑥, 𝑦), ⟨𝑣u�, 𝑣u�⟩) ∣ (𝑥, 𝑣u�) ∈ 𝑆u�, (𝑦, 𝑣u�) ∈ 𝑆u�} (10)

𝑆u� = {(𝑖u�(𝑥), fold 𝑣) ∣ (𝑥, 𝑣) ∈ 𝑆Φ(u�)}. (11)

However, the last equation points to an obstacle: this logical
relation cannot be defined by induction on 𝜎 since the defin-
ing equation for 𝑆u� mentions 𝑆Φ(u�), and Φ(𝛼) is not smaller
than 𝛼. To overcome this circularity, we use a method due
to Pitts [35, Theorem 4.16], originally stated in terms of his
relational structures and adapted here to 𝖢𝖫𝖺𝗍∧-fibrations.
Theorem 5.4. Let 𝒟 be a 𝖢𝖯𝖮-category that is algebraically
compact, 𝐹 ∶ 𝒟⋆ → 𝒟 be a 𝖢𝖯𝖮-functor, and 𝐺 ∶ ℰ → 𝒟 be
an admissible 𝖢𝖫𝖺𝗍∧-fibration. Suppose we can lift 𝐹 to ℰ, in
the sense that there exists a functor ̂𝐹 ∶ ℰ⋆ → ℰ such that the
following diagram commutes:

ℰ⋆ ℰ

𝒟⋆ 𝒟

u�⋆

̂u�

u�

u�

Then, we can construct 𝜇 ̂𝐹 ∈ ℰu�u� such that

𝜇 ̂𝐹 = (𝑖−1)∗ ̂𝐹(𝜇 ̂𝐹, 𝜇 ̂𝐹),
where 𝑖 ∶ 𝐹(𝜇𝐹, 𝜇𝐹) ≅ 𝜇𝐹 is the isomorphism given by
algebraic compactness, as in (6).

By unpacking definitions, the lifted functor ̂𝐹 simply
maps a pair of relations 𝐴 ∈ ℰu� and 𝐵 ∈ ℰu� to a rela-
tion ̂𝐹(𝐴, 𝐵) ∈ ℰu�(u�,u�), in a way that depends covariantly
on 𝑌 and contravariantly on 𝑋. Intuitively, we’ll use ̂𝐹 to

express the logical relations 𝑆u� as the solution of fixed point
equations, similarly to how we interpret recursive functions
and types.

To apply Theorem 5.4, we must first find an admissible
𝖢𝖫𝖺𝗍∧-fibration over 𝖬𝖾𝗍𝖢𝖯𝖮⊥ whose fibers are relations
between metric CPOs and values. This is given by the
following category 𝖱𝖾𝗅u�.
1. Objects are pairs (𝑋, 𝑃), where 𝑋 is a metric CPO, and

𝑃 ⊆ 𝑋 × 𝑉 is a relation such that

(∀𝑖. (𝑥u�, 𝑣) ∈ 𝑃) ⇒ (⨆
u�

𝑥u�, 𝑣) ∈ 𝑃,

for all 𝜔-chains (𝑥u�) in 𝑋 and 𝑣 ∈ 𝑉.
2. Morphisms (𝑋, 𝑃) → (𝑌, 𝑄) are continuous, non-expansive

functions 𝑓 ∶ 𝑋 → 𝑌⊥ such that, whenever (𝑥, 𝑣) ∈ 𝑃 and
𝑓(𝑥) ≠ ⊥, we have (𝑓(𝑥), 𝑣) ∈ 𝑄.

We let 𝑅 denote the forgetful functor 𝖱𝖾𝗅u� → 𝖬𝖾𝗍𝖢𝖯𝖮⊥;
this results in an admissible 𝖢𝖫𝖺𝗍∧-fibration. Intersections
are given by intersections of relations, and the inverse image
of (𝑋, 𝑃) ∈ 𝖱𝖾𝗅u� along 𝑓 ∈ 𝖬𝖾𝗍𝖢𝖯𝖮⊥(𝑌, 𝑋) is given by

𝑓∗(𝑋, 𝑃) ≜ (𝑌, {(𝑥, 𝑣) ∣ (𝑓(𝑥), 𝑣) ∈ 𝑃 ∨ 𝑓(𝑥) = ⊥}).
Now that we have an appropriate 𝖢𝖫𝖺𝗍∧-fibration, we just

need to lift 𝐹u� and 𝐹Φ across 𝑅; the complete definition
is given in Figure 5. We have all the ingredients to apply
Theorem 5.4 and compute the fixed point 𝜇 ̂𝐹Φ. We then
pose 𝑆u� ≜ ̂𝐹u�(𝜇 ̂𝐹Φ, 𝜇 ̂𝐹Φ). By folding this definition, and
using the characterization of 𝜇 ̂𝐹Φ in Theorem 5.4, we can
read off simple recursive equations describing each relation
𝑆u�, including (9) to (11). With these equations, proving (7)
(and thus Lemma 5.3) is a simple argument by induction on
the typing derivation.
Remark 5.5. Alternatively, we could have also characterized
𝖱𝖾𝗅u� reusing the machinery of Lemma 4.12, specifically by
pulling back 𝖲𝗎𝖻𝖢𝖯𝖮⊥, the category of admissible subobjects
of 𝖢𝖯𝖮⊥, as depicted below.

𝖱𝖾𝗅u� 𝖲𝗎𝖻𝖢𝖯𝖮⊥

𝖬𝖾𝗍𝖢𝖯𝖮⊥ 𝖢𝖯𝖮⊥ 𝖢𝖯𝖮⊥

u�
u�⊥ (−)×u�

In this diagram, by 𝐼 × 𝑉 we mean the coproduct of 𝑉-many
copies of 𝐼 in 𝖢𝖯𝖮⊥, which can be automatically lifted from
𝖢𝖯𝖮 via the Kleisli adjunction.

10 2016/7/8

6. Related works
Since the seminal works of Arnold and Nivat [5], and
de Bakker and Zucker [18], several authors have used metric
spaces as a foundation for denotational semantics. The tech-
nical motivations are often similar to those for order-based
structures, such as CPOs, since the well-known Banach
fixed-point theorem yields a natural tool for interpreting
recursive definitions of functions and types.

A recurrent theme in these approaches is the use of
ultrametric spaces, where the triangle inequality is replaced
with the stronger variant

𝑑(𝑥, 𝑧) ≤ max(𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧)).

Typically, ultrametrics express that two objects (e.g., exe-
cution traces, sets of terms, etc.) are equal up to a finite
approximation: the bigger the approximation, the closer the
two objects are. For instance, we can define an ultramet-
ric on the set of sequences of program states by posing
𝑑(⃗𝑠1, ⃗𝑠2) = 2−u�(⃗u�1, ⃗u�2), where 𝑐(⃗𝑠1, ⃗𝑠2) is the length of the
largest common prefix of ⃗𝑠1 and ⃗𝑠2.

Ultrametrics on traces and trees appear in much of the
earlier work on the subject, where they provide a natu-
ral setting for discussing language features such as non-
determinism and concurrency [4, 18, 31, 32]. See van Breugel
[40] for a good introduction to the subject, and Baier and
Majster-Cederbaum [7], Majster-Cederbaum and Zetzsche
[33] for a comparison between the metric approaches and
their order-based counterparts, discussing the relative pros
and cons. A similar use of ultrametric spaces appears in a
denotational model of PCF given by Escardó [23]. In this
model, the metric structure describes intensional temporal
aspects of PCF programs, and its extensional collapse allows
us to recover the standard Scott model. Such intensional uses
contrast with our metric CPOs, where the metrics describe
mostly extensional aspects of programs.

A different use of ultrametrics emerged for modeling re-
cursive types in functional languages, starting with Mac-
Queen et al. [30], and continuing with Abadi and Plotkin
[1], Abadi et al. [2], Amadio [3]; see also Chroboczek [16]
for a similar approach based on game semantics. An in-
teresting aspect of these models is that the metric struc-
ture is often used in conjunction with the CPO structure.
These approaches have been extended recently to model
more advanced language features (e.g. references), providing
a semantic framework for investigating guardedness, step-
indexing and Kripke’s world semantics. Works in this direc-
tion include those by Birkedal et al. [10, 11, 12], Schwing-
hammer et al. [38]. In the model presented in these works the
metric structure is used to express the convergence proper-
ties that are behind some of the syntactic structures that are
used in languages with guarded definitions, e.g. Nakano’s
recursion modality [34]. A similar approach has also been
used by Krishnaswami and Benton [29] in the context of
reactive and event-based programming, which models inter-
active programs as operating on streams; stream functions
are contractive maps in their model. Our model differs from
the ones used in this context, i.e. contractivity plays a differ-
ent role and again the requirement we have on the domain
structure is a sort of compatibility. However we plan to ex-
plore whether our model can be used for similar goals in
future works.

Another line of work, this time not based on ultrametrics,
is given by Kozen [28], who uses Banach lattices—a special
kind of metric space—and non-expansive linear operators
between them to model probabilistic programs. Spaces of

subprobability distributions over a set of values are modeled
as Banach lattices. Although this is closer in spirit to our
use of metrics, there is still a crucial conceptual difference:
Kozen uses non-expansiveness to model the loss of mass of a
distribution as a program executes, due to the possibility of
non-termination. Indeed, he shows how non-expansiveness
in this setting corresponds to the usual monotonicity of
domain-theoretic functions.

7. Conclusion
In this work we have studied a semantical structure suitable
to describe the notion of program sensitivity in higher-order
languages with recursive types and non-termination. We
have shown the effectiveness of our approach by interpreting
the deterministic fragment of Fuzz [37].

As future work, we plan to extend our approach to cover
the probability monad of Fuzz. While metric interpretation
of probabilities are widespread, e.g. [6, 19–21, 28], these use
a different metric on distributions than the one proposed
by Reed and Pierce [37], a non-standard metric directly
inspired by the definition of differential privacy. Interpreting
this metric could also hint at how to interpret a larger class
of metrics called 𝑓-divergences [17]. An orthogonal direction
is to study an interpretation of DFuzz [26], a dependently
typed version of Fuzz that allows proving differential privacy
for programs whose privacy depends on values provided at
runtime. This may require an extension of our framework to
accommodate their use of sized types.

The semantical structure we consider could also give
meaning to the program analysis studied by Chaudhuri
et al. [14, 15]. Their notion of robustness is analogous to
the notion of sensitivity we consider in this paper. However,
their program analysis is based on previous work by the same
authors for analyzing program continuity [13]. Considering
restrictions or relaxations of metric CPOs that would enable
describing these notions of continuity and robustness is also
an interesting avenue for future work.

References
[1] M. Abadi and G. D. Plotkin. A per model of polymorphism

and recursive types. In Proceedings of the Fifth Annual Sym-
posium on Logic in Computer Science (LICS ’90), Philadel-
phia, Pennsylvania, USA, June 4-7, 1990, pages 355–365,
1990.

[2] M. Abadi, B. C. Pierce, and G. D. Plotkin. Faithful ideal
models for recursive polymorphic types. In Proceedings of
the Fourth Annual Symposium on Logic in Computer Science
(LICS ’89), Pacific Grove, California, USA, June 5-8, 1989,
pages 216–225, 1989.

[3] R. M. Amadio. Recursion over realizability structures. Inf.
Comput., 91(1):55–85, 1991.

[4] P. America and J. J. M. M. Rutten. Solving reflexive domain
equations in a category of complete metric spaces. In Math-
ematical Foundations of Programming Language Semantics,
3rd Workshop, Tulane University, New Orleans, Louisiana,
USA, April 8-10, 1987, Proceedings, pages 254–288, 1987.

[5] A. Arnold and M. Nivat. Metric interpretations of infinite
trees and semantics of non deterministic recursive programs.
Theor. Comput. Sci., 11:181–205, 1980.

[6] C. Baier and M. Z. Kwiatkowska. Domain equations for
probabilistic processes. Electr. Notes Theor. Comput. Sci.,
7:34–54, 1997.

[7] C. Baier and M. E. Majster-Cederbaum. Denotational se-
mantics in the cpo and metric approach. Theoretical Com-
puter Science, 135(2):171 – 220, 1994.

11 2016/7/8

http://dx.doi.org/10.1109/LICS.1990.113761
http://dx.doi.org/10.1109/LICS.1990.113761
http://dx.doi.org/10.1109/LICS.1989.39176
http://dx.doi.org/10.1109/LICS.1989.39176
http://dx.doi.org/10.1016/0890-5401(91)90074-C
http://dx.doi.org/10.1007/3-540-19020-1_13
http://dx.doi.org/10.1007/3-540-19020-1_13
http://dx.doi.org/10.1016/0304-3975(80)90045-6
http://dx.doi.org/10.1016/0304-3975(80)90045-6
http://dx.doi.org/10.1016/S1571-0661(05)80465-7
http://dx.doi.org/10.1016/S1571-0661(05)80465-7
http://dx.doi.org/10.1016/0304-3975(94)00046-8
http://dx.doi.org/10.1016/0304-3975(94)00046-8

[8] G. Barthe, B. Köpf, F. Olmedo, and S. Z. Béguelin. Proba-
bilistic relational reasoning for differential privacy. In Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2012,
Philadelphia, Pennsylvania, USA, January 22-28, 2012,
pages 97–110, 2012.

[9] G. Barthe, M. Gaboardi, E. J. Gallego Arias, J. Hsu, A. Roth,
and P.-Y. Strub. Higher-order approximate relational refine-
ment types for mechanism design and differential privacy. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015, pages 55–68.
ACM, 2015.

[10] L. Birkedal, K. Støvring, and J. Thamsborg. Realizability
semantics of parametric polymorphism, general references,
and recursive types. In Foundations of Software Science and
Computational Structures, 12th International Conference,
FOSSACS 2009, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings, pages 456–470,
2009.

[11] L. Birkedal, K. Støvring, and J. Thamsborg. The category-
theoretic solution of recursive metric-space equations. Theor.
Comput. Sci., 411(47):4102–4122, 2010.

[12] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and
K. Støvring. First steps in synthetic guarded domain the-
ory: Step-indexing in the topos of trees. In Proceedings of
the 26th Annual IEEE Symposium on Logic in Computer
Science, LICS 2011, June 21-24, 2011, Toronto, Ontario,
Canada, pages 55–64, 2011.

[13] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continu-
ity analysis of programs. In Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2010, Madrid, Spain, January 17-
23, 2010, pages 57–70, 2010.

[14] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navid-
Pour. Proving programs robust. In SIGSOFT/FSE’11 19th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-19) and ESEC’11: 13rd European Soft-
ware Engineering Conference (ESEC-13), Szeged, Hungary,
September 5-9, 2011, pages 102–112, 2011.

[15] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity
and robustness of programs. Commun. ACM, 55(8):107–115,
2012.

[16] J. Chroboczek. Subtyping recursive games. In TLCA, pages
61–75, 2001.

[17] I. Csiszár and P. Shields. Information theory and statistics:
A tutorial. Foundations and Trends® in Communications
and Information Theory, 1(4):417–528, 2004.

[18] J. W. de Bakker and J. I. Zucker. Denotational semantics
of concurrency. In Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, May 5-7, 1982, San
Francisco, California, USA, pages 153–158, 1982.

[19] E. P. de Vink and J. J. M. M. Rutten. Bisimulation for prob-
abilistic transition systems: A coalgebraic approach. Theor.
Comput. Sci., 221(1-2):271–293, 1999.

[20] J. den Hartog, E. P. de Vink, and J. W. de Bakker. Metric
semantics and full abstractness for action refinement and
probabilistic choice. Electr. Notes Theor. Comput. Sci., 40:
72–99, 2000.

[21] J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden.
The metric analogue of weak bisimulation for probabilistic
processes. In 17th IEEE Symposium on Logic in Computer
Science (LICS 2002), 22-25 July 2002, Copenhagen, Den-
mark, Proceedings, pages 413–422, 2002.

[22] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith. Cali-
brating noise to sensitivity in private data analysis. In Theory
of Cryptography, Third Theory of Cryptography Conference,

TCC 2006, New York, NY, USA, March 4-7, 2006, Proceed-
ings, pages 265–284, 2006.

[23] M. H. Escardó. A metric model of PCF, 1999. Presented at
the Workshop on Realizability Semantics and Applications
associated to the Federated Logic Conference, held in Trento,
June 29-July 12, 1999.

[24] M. P. Fiore and G. D. Plotkin. An axiomatization of com-
putationally adequate domain theoretic models of FPC. In
LICS, pages 92–102. IEEE Computer Society, 1994.

[25] P. Freyd. Algebraically complete categories. pages 95–104.
[26] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C.

Pierce. Linear dependent types for differential privacy. In
The 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013, pages 357–370, 2013.

[27] D. Hofmann, G. J. Seal, and W. Tholen, editors. Monoidal
Topology. Cambridge University Press, 2014.

[28] D. Kozen. Semantics of probabilistic programs. Journal of
Computer and System Sciences, 22(3):328 – 350, 1981.

[29] N. R. Krishnaswami and N. Benton. Ultrametric semantics
of reactive programs. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011,
June 21-24, 2011, Toronto, Ontario, Canada, pages 257–266,
2011.

[30] D. B. MacQueen, G. D. Plotkin, and R. Sethi. An ideal
model for recursive polymorphic types. In Conference Record
of the Eleventh Annual ACM Symposium on Principles
of Programming Languages, Salt Lake City, Utah, USA,
January 1984, pages 165–174, 1984.

[31] M. E. Majster-Cederbaum. On the uniqueness of fixed points
of endofunctors in a category of complete metric spaces. Inf.
Process. Lett., 29(6):277–281, 1988.

[32] M. E. Majster-Cederbaum and F. Zetzsche. Towards a
foundation for semantics in complete metric spaces. Inf.
Comput., 90(2):217–243, 1991.

[33] M. E. Majster-Cederbaum and F. Zetzsche. The comparison
of a cpo-based semantics with a cms-based semantics for
CSP. Theor. Comput. Sci., 124(1):1–40, 1994.

[34] H. Nakano. A modality for recursion. In 15th Annual IEEE
Symposium on Logic in Computer Science, Santa Barbara,
California, USA, June 26-29, 2000, pages 255–266, 2000.

[35] A. Pitts. Relational Properties of Domains. Computer Lab-
oratory Cambridge: Technical report. University of Cam-
bridge, Computer Laboratory, 1993.

[36] G. Plotkin. Lectures on predomains and partial functions.
Notes for a course given at the Center for the Study of
Language and Information, Stanford, 1985.

[37] J. Reed and B. C. Pierce. Distance makes the types grow
stronger: A calculus for differential privacy. In Proceedings
of the 15th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’10, pages 157–168, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-794-3.

[38] J. Schwinghammer, L. Birkedal, and K. Støvring. A step-
indexed kripke model of hidden state via recursive proper-
ties on recursively defined metric spaces. In Foundations of
Software Science and Computational Structures - 14th In-
ternational Conference, FOSSACS 2011, Held as Part of the
Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2011, Saarbrücken, Germany, March 26-April
3, 2011. Proceedings, pages 305–319, 2011.

[39] M. B. Smyth and G. D. Plotkin. The category-theoretic
solution of recursive domain equations. SIAM J. Comput.,
11(4):761–783, 1982.

[40] F. van Breugel. An introduction to metric semantics: opera-
tional and denotational models for programming and specifi-
cation languages. Theor. Comput. Sci., 258(1-2):1–98, 2001.

12 2016/7/8

http://doi.acm.org/10.1145/2103656.2103670
http://doi.acm.org/10.1145/2103656.2103670
http://dx.doi.org/10.1007/978-3-642-00596-1_32
http://dx.doi.org/10.1007/978-3-642-00596-1_32
http://dx.doi.org/10.1007/978-3-642-00596-1_32
http://dx.doi.org/10.1016/j.tcs.2010.07.010
http://dx.doi.org/10.1016/j.tcs.2010.07.010
http://dx.doi.org/10.1109/LICS.2011.16
http://dx.doi.org/10.1109/LICS.2011.16
http://doi.acm.org/10.1145/1706299.1706308
http://doi.acm.org/10.1145/1706299.1706308
http://doi.acm.org/10.1145/2025113.2025131
http://doi.acm.org/10.1145/2240236.2240262
http://doi.acm.org/10.1145/2240236.2240262
http://dx.doi.org/10.1007/3-540-45413-6_9
http://dx.doi.org/10.1561/0100000004
http://dx.doi.org/10.1561/0100000004
http://doi.acm.org/10.1145/800070.802188
http://doi.acm.org/10.1145/800070.802188
http://dx.doi.org/10.1016/S0304-3975(99)00035-3
http://dx.doi.org/10.1016/S0304-3975(99)00035-3
http://dx.doi.org/10.1016/S1571-0661(05)80038-6
http://dx.doi.org/10.1016/S1571-0661(05)80038-6
http://dx.doi.org/10.1016/S1571-0661(05)80038-6
http://dx.doi.org/10.1109/LICS.2002.1029849
http://dx.doi.org/10.1109/LICS.2002.1029849
http://dx.doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/11681878_14
http://www.cs.bham.ac.uk/~mhe/papers/metricpcf.pdf
http://doi.acm.org/10.1145/2429069.2429113
http://www.sciencedirect.com/science/article/pii/0022000081900362
http://dx.doi.org/10.1109/LICS.2011.38
http://dx.doi.org/10.1109/LICS.2011.38
http://doi.acm.org/10.1145/800017.800528
http://doi.acm.org/10.1145/800017.800528
http://dx.doi.org/10.1016/0020-0190(88)90224-4
http://dx.doi.org/10.1016/0020-0190(88)90224-4
http://dx.doi.org/10.1016/0890-5401(91)90005-M
http://dx.doi.org/10.1016/0890-5401(91)90005-M
http://dx.doi.org/10.1016/0304-3975(94)90052-3
http://dx.doi.org/10.1016/0304-3975(94)90052-3
http://dx.doi.org/10.1016/0304-3975(94)90052-3
http://dx.doi.org/10.1109/LICS.2000.855774
http://doi.acm.org/10.1145/1863543.1863568
http://doi.acm.org/10.1145/1863543.1863568
http://dx.doi.org/10.1007/978-3-642-19805-2_21
http://dx.doi.org/10.1007/978-3-642-19805-2_21
http://dx.doi.org/10.1007/978-3-642-19805-2_21
http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp11.html#SmythP82
http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp11.html#SmythP82
http://dx.doi.org/10.1016/S0304-3975(00)00403-5
http://dx.doi.org/10.1016/S0304-3975(00)00403-5
http://dx.doi.org/10.1016/S0304-3975(00)00403-5

	Introduction
	Metric Spaces
	Core Fuzz
	Metric CPOs
	Preliminaries
	Adding Metrics
	Domain Equations

	Modeling Recursive Types
	Related works
	Conclusion

