Verifying Probabilistic Properties with Probabilistic Couplings

Justin Hsu UW-Madison Computer Sciences

Work with brilliant collaborators

What Are Probabilistic "Relational Properties"?

Today's target properties

Probabilistic

- Programs can take random samples (flip coins)
- ► Map (single) input value to a distribution over outputs

Relational

- Compare two executions of a program (or: two programs)
- Describe outputs (distributions) from two related inputs
- ► Also known as 2-properties, or hyperproperties

Examples throughout computer science...

Security and privacy

- Indistinguishability
- Differential privacy

Machine learning

Uniform stability

... and beyond

- Incentive properties (game theory/mechanism design)
- Convergence and mixing (probability theory)

Challenges for formal verification

Reason about two sources of randomness

- ► Two executions may behave very differently
- Completely different control flow (even for same program!)

Quantitative reasoning

- Target properties describe distributions
- Probabilities, expected values, etc.
- Very messy for formal reasoning

Today: Combine two ingredients

Probabilistic Couplings

Relational Program Logics

Probabilistic Couplings and "Proof by Coupling"

Given: programs c_1 and c_2 , each taking 10 coin flips

Experiment #1

Given: programs c_1 and c_2 , each taking 10 coin flips

Experiment #1

Experiment #2

Given: programs c_1 and c_2 , each taking 10 coin flips

Experiment #1

Experiment #2

Distributions equal in Experiment #1 Distributions equal in Experiment #2

Given: programs c_1 and c_2 , each taking 10 coin flips Experiment #1

Given: programs c_1 and c_2 , each taking 10 coin flips Experiment #1 Experiment #2

Given: programs c_1 and c_2 , each taking 10 coin flips Experiment #1 Experiment #2

Distributions equal in Experiment #1 Distributions equal in Experiment #2

Why "pretend" two executions share randomness?

Easier to reason about one source of randomness

- ► Fewer possible executions
- ► Pairs of coordinated executions follow similar control flow

Reduce quantitative reasoning

- ▶ Reason on (non-probabilistic) relations between samples
- Don't need to work with raw probabilities (messy)

A bit more precisely...

A coupling of two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$ is a joint distribution $\mu \in \text{Distr}(A \times A)$ with $\pi_1(\mu) = \mu_1$ and $\pi_2(\mu) = \mu_2$.

A bit more precisely...

A coupling of two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$ is a joint distribution $\mu \in \text{Distr}(A \times A)$ with $\pi_1(\mu) = \mu_1$ and $\pi_2(\mu) = \mu_2$.

A coupling models two distributions sharing one source of randomness

For example

For example

Why are couplings interesting for verification?

Existence of a coupling* can imply a property of two distributions

If there exists a coupling of (μ_1, μ_2) where:

then:

Two coupled samples differ with small probability

 μ_1 is "close" to μ_2

If there exists a coupling of (μ_1, μ_2) where:

Two coupled samples differ with small probability

Two coupled samples are always equal

then:

 μ_1 is "close" to μ_2

 μ_1 is "equal" to μ_2

If there exists a coupling of (μ_1, μ_2) where:

Two coupled samples differ with small probability

Two coupled samples are always equal

First coupled sample is always larger than second sample

 μ_1 is "equal" to μ_2

 μ_1 "dominates" μ_2

 μ_1 is "close" to μ_2

Our plan to verify these properties Three easy steps

- 1. Start from two given programs
- 2. Show that for two related inputs, there exists a coupling of the output distributions with certain properties
- 3. Conclude relational property of program(s)

Our plan to verify these properties Three easy steps

- 1. Start from two given programs
- 2. Show that for two related inputs, there exists a coupling of the output distributions with certain properties
- 3. Conclude relational property of program(s)

Our plan to verify these properties Three easy steps

- 1. Start from two given programs
- 2. Show that for two related inputs, there exists a coupling of the output distributions with certain properties
- 3. Conclude relational property of program(s)

Show existence of a coupling by constructing it

A coupling proof is a recipe for constructing a coupling

Show existence of a coupling by constructing it

A coupling proof is a recipe for constructing a coupling

- 1. Specify: How to couple pairs of intermediate samples
- 2. Deduce: Relation between final coupled samples
- 3. Conclude: Property about two original distributions

Probabilistic Relational Program Logics

Make statements about imperative programs

Imperative language WHILE

 $c ::= \mathsf{skip} \mid x \leftarrow e \mid \mathsf{if} \ b \ \mathsf{then} \ c \ \mathsf{else} \ c' \mid c; \ c' \mid \mathsf{while} \ b \ \mathsf{do} \ c$

Make statements about imperative programs

Imperative language WHILE

 $c ::= \mathsf{skip} \mid x \leftarrow e \mid \mathsf{if} \ b \ \mathsf{then} \ c \ \mathsf{else} \ c' \mid c; \ c' \mid \mathsf{while} \ b \ \mathsf{do} \ c$

Semantics: WHILE programs transform memories

- ▶ Variables: Fixed set X of program variable names
- Memories \mathcal{M} : functions from \mathcal{X} to values \mathcal{V} (e.g., 42)
- ► Interpret each command *c* as a memory transformer:

 $\llbracket c \rrbracket : \mathcal{M} \to \mathcal{M}$

Program logics (Floyd-Hoare logics)

Logical judgments look like this

$$\{P\} \ c \ \{Q\}$$

Interpretation

- Program c, WHILE program (e.g., $x \leftarrow y; y \leftarrow y+1$)
- ▶ Precondition P, formula over \mathcal{X} (e.g., $y \ge 0$)
- ▶ Postcondition Q, formula over \mathcal{X} (e.g., $x \ge 0 \land y \ge 0$)

If ${\cal P}$ holds before running c , then ${\cal Q}$ holds after running c

Probabilistic Relational Hoare Logic (PRHL) [BGZ-B]

Previously

- ► Inspired by Benton's Relational Hoare Logic
- Foundation of the EasyCrypt system
- Verified security of many cryptographic schemes

Probabilistic Relational Hoare Logic (PRHL) [BGZ-B]

Previously

- ► Inspired by Benton's Relational Hoare Logic
- Foundation of the EasyCrypt system
- Verified security of many cryptographic schemes

New interpretation

PRHL is a logic for formal proofs by coupling

Language and judgments

The PWHILE imperative language

 $c ::= \mathsf{skip} \mid x \leftarrow e \mid \ x \overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} d \hspace{0.1em} \mid \mathsf{if} \hspace{0.1em} e \hspace{0.1em}\mathsf{then} \hspace{0.1em} c \hspace{0.1em}\mathsf{else} \hspace{0.1em} c \mid c; \hspace{0.1em} c \mid \mathsf{while} \hspace{0.1em} e \hspace{0.1em}\mathsf{do} \hspace{0.1em} c$

Language and judgments

The PWHILE imperative language

 $c ::= \mathsf{skip} \mid x \leftarrow e \mid x \overset{\texttt{s}}{\leftarrow} d \mid \mathsf{if} \; e \; \mathsf{then} \; c \; \mathsf{else} \; c \mid c; \; c \mid \mathsf{while} \; e \; \mathsf{do} \; c$

Semantics of PWHILE programs

- Input: a single memory (assignment to variables)
- Output: a distribution over memories
- ► Interpret each command *c* as:

 $[\![c]\!]:\mathcal{M}\to\mathsf{Distr}(\mathcal{M})$
Basic PRHL judgments

$$\{P\}\ c_1 \sim c_2\ \{Q\}$$

- \blacktriangleright *P* and *Q* are formulas over program variables
- Labeled program variables: x_1 , x_2
- \blacktriangleright *P* is precondition, *Q* is postcondition

Interpreting the judgment

Logical judgments in PRHL look like this

 $\{P\}\ c_1 \sim c_2\ \{Q\}$

Interpreting the judgment

Logical judgments in PRHL look like this

$$\{P\}\ c_1 \sim c_2\ \{Q\}$$

Interpreting pre- and post-conditions

- ► As usual, *P* is a relation on two memories
- Q interpreted as a relation $\langle Q \rangle$ on memory distributions

Interpreting the judgment

Logical judgments in PRHL look like this

$$\{P\}\ c_1 \sim c_2\ \{Q\}$$

Interpreting pre- and post-conditions

- ► As usual, *P* is a relation on two memories
- Q interpreted as a relation $\langle Q \rangle$ on memory distributions

Definition (Valid PRHL judgment)

For any pair of related inputs $(m_1, m_2) \in \llbracket P \rrbracket$, there exists a coupling $\mu \in \text{Distr}(\mathcal{M} \times \mathcal{M})$ of the output distributions $(\llbracket c_1 \rrbracket m_1, \llbracket c_2 \rrbracket m_2)$ such that $\text{supp}(\mu) \subseteq \llbracket Q \rrbracket$.

Encoding couplings with PRHL theorems

 $\{P\}\ c_1 \sim c_2\ \{o_1 = o_2\}$

Interpretation

If two inputs satisfy *P*, there exists a coupling of the output distributions where the coupled samples have equal *o*

Encoding couplings with PRHL theorems

 $\{P\}\ c_1 \sim c_2\ \{o_1 = o_2\}$

Interpretation

If two inputs satisfy *P*, there exists a coupling of the output distributions where the coupled samples have equal *o*

This implies:

If two inputs satisfy P, the distributions of o are equal

Encoding couplings with PRHL theorems

 $\{P\} \ c_1 \sim c_2 \ \{o_1 \ge o_2\}$

This implies:

If two inputs satisfy *P*, then the first distribution of *o* stochastically dominates the second distribution of *o*

Proving Judgments: The Proof System of PRHL

More convenient way to prove judgments

Inference rules describe:

- Judgments that are always true (axioms)
- How to prove judgment for a program by combining judgments for components

More convenient way to prove judgments

Inference rules describe:

- Judgments that are always true (axioms)
- How to prove judgment for a program by combining judgments for components

Example: sequential composition rule

Given: $\{P\} c_1 \{Q\}$ and $\{Q\} c_2 \{R\}$

More convenient way to prove judgments

Inference rules describe:

- Judgments that are always true (axioms)
- How to prove judgment for a program by combining judgments for components

Example: sequential composition rule

Given: $\{P\} c_1 \{Q\}$ and $\{Q\} c_2 \{R\}$

Conclude: $\{P\} c_1 ; c_2 \{R\}$

$$\vdash \{ \} x_1 \stackrel{\text{s}}{\leftarrow} flip \sim x_2 \stackrel{\text{s}}{\leftarrow} flip \ \{x_1 = x_2\}$$

$$\vdash \{ \} x_1 \stackrel{\text{s}}{\leftarrow} flip \sim x_2 \stackrel{\text{s}}{\leftarrow} flip \{x_1 = x_2\}$$

 $\vdash \{ \} x_1 \notin flip \sim x_2 \notin flip \ \{x_1 \neq x_2\}$

$$\vdash \{ \} x_1 \stackrel{\text{s}}{\leftarrow} flip \sim x_2 \stackrel{\text{s}}{\leftarrow} flip \ \{x_1 \neq x_2\}$$

 $\vdash \{P\} \ c_1 \sim c_2 \ \{Q\}$ $\vdash \{Q\} \ c'_1 \sim c'_2 \ \{R\}$ $\vdash \{ P \} \ c_1; c'_1 \sim c_2; c'_2 \ \{ R \}$

 $\vdash \{P\} \ c_1 \sim c_2 \ \{Q\}$ $\vdash \{Q\} \ c_1' \sim c_2' \ \{R\}$ $\vdash \{P\} \ c_1; c'_1 \sim c_2; c'_2 \ \{R\}$

Sequence couplings

 $\vdash \{P \land S\} \ c_1 \sim c_2 \ \{Q\}$ $\vdash \{P \land \neg S\} \ c_1 \sim c_2 \ \{Q\}$ $\vdash \{P\} \ c_1 \sim c_2 \ \{Q\}$

 $\vdash \{P \land \overline{S} \mid c_1 \sim \overline{c_2} \mid \{Q\}$ $\vdash \{P \land \neg S\} \ c_1 \sim c_2 \ \{Q\}$ $\vdash \{P\} \ \overline{c_1} \sim \overline{c_2} \ \{Q\}$

Select couplings

$$\frac{\vdash \{P \land e_1 \land e_2\} \ c_1 \sim c_2 \ \{P\}}{\vdash \{P\} \text{ while } e_1 \text{ do } c_1 \sim \text{ while } e_2 \text{ do } c_2 \ \{P \land (\neg e_1 \land \neg e_2)\}}$$

$$\frac{\vdash \{P \land e_1 \land e_2\} \ c_1 \sim c_2 \ \{P\}}{\vdash \{P\} \text{ while } e_1 \text{ do } c_1 \sim \text{ while } e_2 \text{ do } c_2 \ \{P \land (\neg e_1 \land \neg e_2)\}}$$

Repeat couplings

$$\frac{\vdash \{P \land e_1 \land e_2\} \ c_1 \sim c_2 \ \{P\} \quad \models P \to e_1 = e_2}{\vdash \{P\} \text{ while } e_1 \text{ do } c_1 \sim \text{ while } e_2 \text{ do } c_2 \ \{P \land (\neg e_1 \land \neg e_2)\}}$$

Repeat couplings

Not a rule: conjunction

 $\vdash \{P\}$ $c_1 \sim c_2 \{Q\}$ $\vdash \{P\} \ c_1 \sim c_2 \ \{R\}$ $\vdash \{P\} \ c_1 \sim c_2 \ \{Q \land R\}$

Not a rule: conjunction

 $\vdash \{P\}$ $c_1 \sim c_2 \{Q\}$ $\vdash \{P\} \ c_1 \sim c_2 \ \{R\}$ $\vdash \{P\} \ c_1 \sim c_2 \ \{Q \land R\}$

Can't compose this way

Formal Proofs by Coupling Ex. 1: Equivalence

Target property: equivalence

P's output distribution is the same for any two inputs

- Shows: output distribution is the same for any input
- Security: input is secret, output is encrypted

Warmup example: secrecy of one-time-pad (OTP)

The program

- Program input: a secret boolean sec
- Program output: an encrypted version of the secret

 $\begin{array}{l} key \mathrel{\stackrel{\hspace{0.1em} \circledast}{\leftarrow}} flip;\\ enc \leftarrow sec \oplus key;\\ \mathsf{return}(enc) \end{array}$

// draw random key
// exclusive or
// return encrypted

Proof by coupling

- Either sec_1, sec_2 are equal, or unequal
 - 1. If equal: couple sampling for key to be equal in both runs
 - 2. If unequal: couple sampling for key to be unequal in both runs
- Coupling ensures $enc_1 = enc_2$, hence distributions equal

Case 1: $sec_1 = sec_2$

By applying identity coupling rule (general version):

$$\{sec_1 = sec_2\}\ key \stackrel{\hspace{0.1em} \circledast}{\hspace{0.1em}} flip;\ \{key_1 = key_2\}\ enc \leftarrow sec \oplus key\ \{enc_1 = enc_2\}$$

$$\{sec_1 = sec_2\}$$
 of $p \sim of p$ $\{enc_1 = enc_2\}$

Case 2: $sec_1 \neq sec_2$

By applying negation coupling rule (general version):

$$\{ sec_1 \neq sec_2 \} \\ key \notin flip; \\ \{ key_1 \neq key_2 \} \\ enc \leftarrow sec \oplus key \\ \{ enc_1 = enc_2 \}$$

► Hence:

 $\{sec_1 \neq sec_2\}$ ot $p \sim ot p$ $\{enc_1 = enc_2\}$

Combining the cases:

and we are done!

Formal Proofs by Coupling Ex. 2: Stochastic Domination

Target property: stochastic domination

Order relation on distributions

- Given: ordered set (A, \leq_A)
- Lift to ordering on distributions $(Distr(A), \leq_{sd})$

For naturals (\mathbb{N}, \leq) ...

Two distributions $\mu_1, \mu_2 \in \mathsf{Distr}(\mathbb{N})$ satisfy $\mu_1 \leq_{sd} \mu_2$ if

for all $k \in \mathbb{N}$, $\mu_1(\{n \mid k \le n\}) \le \mu_2(\{n \mid k \le n\})$

Proof by coupling

$$\begin{array}{l} ct \leftarrow 0;\\ \mathsf{for} \ \mathbf{i} = 1, \dots, T_1 \ \mathsf{do} \\ r \overset{\$}{=} flip;\\ \mathsf{if} \ r = \mathsf{heads} \ \mathsf{then} \\ ct \leftarrow ct + 1;\\ \mathsf{return}(ct) \end{array}$$

 $\begin{array}{l} ct \leftarrow 0;\\ \mathsf{for} \ \mathsf{i} = 1, \dots, T_2 \ \mathsf{do} \\ r \overset{\$}{\leftarrow} flip;\\ \mathsf{if} \ r = \mathsf{heads} \ \mathsf{then} \\ ct \leftarrow ct + 1;\\ \mathsf{return}(ct) \end{array}$

Proof by coupling

 $\begin{array}{l} ct \leftarrow 0;\\ \mathsf{for} \ \mathbf{i} = 1, \dots, T_1 \ \mathsf{do} \\ r \overset{\$}{=} flip;\\ \mathsf{if} \ r = \mathsf{heads} \ \mathsf{then} \\ ct \leftarrow ct + 1;\\ \mathsf{return}(ct) \end{array}$

 $\begin{array}{l} ct \leftarrow 0;\\ \mathsf{for} \ \mathsf{i}{=} \ 1, \ldots, T_2 \ \mathsf{do}\\ r \overset{\$}{\leftarrow} flip;\\ \mathsf{if} \ r = \mathsf{heads} \ \mathsf{then}\\ ct \leftarrow ct + 1;\\ \mathsf{return}(ct) \end{array}$

Suppose $T_1 \ge T_2$: first loop runs more

• Want to prove $\mu_1 \geq_{sd} \mu_2$

Proof by coupling

 $\begin{array}{l} ct \leftarrow 0;\\ \mathsf{for} \ \mathbf{i} = 1, \dots, T_1 \ \mathsf{do} \\ r \overset{\$}{=} flip;\\ \mathsf{if} \ r = \mathsf{heads} \ \mathsf{then} \\ ct \leftarrow ct + 1;\\ \mathsf{return}(ct) \end{array}$

 $\begin{array}{l} ct \leftarrow 0;\\ \mathsf{for} \ \mathsf{i} = 1, \dots, T_2 \ \mathsf{do} \\ r \overset{\$}{\leftarrow} flip;\\ \mathsf{if} \ r = \mathsf{heads} \ \mathsf{then} \\ ct \leftarrow ct + 1;\\ \mathsf{return}(ct) \end{array}$

Suppose $T_1 \ge T_2$: first loop runs more

• Want to prove $\mu_1 \geq_{sd} \mu_2$

Suffices to construct a coupling where $ct_1 \ge ct_2$

- ► Couple the first T₂ samples to be equal across both runs; establishes ct₁ = ct₂
- ► Take the remaining $T_1 T_2$ samples (in the first run) to be arbitrary; preserves $ct_1 \ge ct_2$

$$\begin{array}{l} ct \leftarrow 0;\\ \mathsf{for} \ \mathbf{i} = 1, \dots, T_1 \ \mathsf{do} \\ r \overset{\$}{=} flip;\\ \mathsf{if} \ r = \mathsf{heads} \ \mathsf{then} \\ ct \leftarrow ct + 1;\\ \mathsf{return}(ct) \end{array}$$

 $\begin{array}{l} ct \leftarrow 0;\\ \mathsf{for} \ \mathbf{i} = 1, \dots, T_2 \ \mathsf{do}\\ r \overset{\$}{\leftarrow} flip;\\ \mathsf{if} \ r = \mathsf{heads} \ \mathsf{then}\\ ct \leftarrow ct + 1;\\ \mathsf{return}(ct) \end{array}$

Goal: prove

$$\vdash \{T_1 \ge T_2\} \ c_1 \sim c_2 \ \{ct_1 \ge ct_2\}$$
Step 1: Rewrite

$$\begin{array}{l} ct \leftarrow 0;\\ \text{for } \mathbf{i} = 1, \dots, T_2 \text{ do}\\ r \overset{\$}{\leftarrow} flip;\\ \text{if } r = \mathbf{heads} \text{ then}\\ ct \leftarrow ct+1;\\ \text{for } \mathbf{i} = T_2+1, \dots, T_1 \text{ do}\\ r \overset{\$}{\leftarrow} flip;\\ \text{if } r = \mathbf{heads} \text{ then}\\ ct \leftarrow ct+1;\\ \text{return}(ct) \end{array}$$

 $\begin{array}{l} ct \leftarrow 0;\\ \mathsf{for} \ \mathbf{i} = 1, \dots, T_2 \ \mathsf{do} \\ r \overset{\$}{\leftarrow} flip;\\ \mathsf{if} \ r = \mathsf{heads} \ \mathsf{then} \\ ct \leftarrow ct + 1; \end{array}$

return(ct)

$$\begin{array}{l} ct \leftarrow 0;\\ \text{for } \mathbf{i} = 1, \dots, T_2 \text{ do} \\ r \notin flip;\\ \text{if } r = \textbf{heads then} \\ ct \leftarrow ct + 1 \end{array}$$

 $ct \leftarrow 0;$ for $\mathbf{i} = 1, \dots, T_2$ do $r \stackrel{\hspace{0.1em} \leftarrow \hspace{0.1em} flip;}{=}$ if $r = \mathbf{heads}$ then $ct \leftarrow ct + 1$

$$\begin{array}{l} ct \leftarrow 0; \\ {
m for } {
m i} = 1, \ldots, T_2 \ {
m do} \\ r \overset{{
m s}}{\leftarrow} flip; \\ {
m if } r = {
m heads \ then} \\ ct \leftarrow ct+1 \end{array}$$

 $\begin{array}{l} ct \leftarrow 0; \\ \text{for } \mathbf{i} = 1, \dots, T_2 \text{ do} \\ r \overset{\$}{\leftarrow} flip; \\ \text{if } r = \mathbf{heads then} \\ ct \leftarrow ct + 1 \end{array}$

Step 2: First loop

• Use sampling rule with identity coupling: $r_1 = r_2$

$$\begin{array}{l} ct \leftarrow 0;\\ \text{for } \mathbf{i} = 1, \dots, T_2 \text{ do}\\ r \overset{\$}{\leftarrow} flip;\\ \text{if } r = \mathbf{heads then}\\ ct \leftarrow ct+1 \end{array}$$

 $\begin{array}{l} ct \leftarrow 0;\\ \text{for } \mathbf{i} = 1, \dots, T_2 \text{ do}\\ r \overset{\$}{\leftarrow} flip;\\ \text{if } r = \text{heads then}\\ ct \leftarrow ct + 1 \end{array}$

Step 2: First loop

• Use sampling rule with identity coupling: $r_1 = r_2$

$$ct \leftarrow 0;$$

for $\mathbf{i} = 1, \dots, T_2$ do
 $r \notin flip;$
if $r = \mathbf{heads}$ then
 $ct \leftarrow ct + 1$

 $\begin{array}{l} ct \leftarrow 0;\\ \text{for } \mathbf{i} = 1, \dots, T_2 \text{ do}\\ r \overset{\$}{\leftarrow} flip;\\ \text{if } r = \text{heads then}\\ ct \leftarrow ct + 1 \end{array}$

Step 2: First loop

• Use sampling rule with identity coupling: $r_1 = r_2$

$$\begin{array}{l} ct \leftarrow 0;\\ \mathsf{for} \ \mathbf{i} = 1, \dots, T_2 \ \mathsf{do} \\ r \overset{\$}{=} flip;\\ \mathsf{if} \ r = \mathsf{heads} \ \mathsf{then} \\ ct \leftarrow ct + 1 \end{array}$$

 $\begin{array}{l} ct \leftarrow 0;\\ \text{for } \mathbf{i} = 1, \dots, T_2 \text{ do}\\ r \overset{\$}{\leftarrow} flip;\\ \text{if } r = \text{heads then}\\ ct \leftarrow ct + 1 \end{array}$

Step 2: First loop

- Use sampling rule with identity coupling: $r_1 = r_2$
- Establish loop invariant $ct_1 = ct_2$

for $\mathbf{i} = T_2 + 1, \dots, T_1$ do $r \notin flip;$ if $r = \mathbf{heads}$ then $ct \leftarrow ct + 1;$ return(ct)

return(ct)

Step 3: Second loop

- Use "one-sided" sampling rule
- Apply "one-sided" loop rule to show invariant $ct_1 \ge ct_2$

Formal Proofs by Coupling Ex. 3: Uniformity

Simulating a fair coin flip from a biased coin Problem setting

- Given: ability to draw biased coin flips flip(p), $p \neq 1/2$
- Goal: simulate a fair coin flip flip(1/2)

Simulating a fair coin flip from a biased coin Problem setting

- Given: ability to draw biased coin flips flip(p), $p \neq 1/2$
- Goal: simulate a fair coin flip flip(1/2)

Algorithm ("von Neumann's trick")

$$\begin{array}{l} x \leftarrow true; y \leftarrow true\\ \text{while } x = y \text{ do} \\ x \overset{\$}{\Rightarrow} flip(p); \\ y \overset{\$}{\Rightarrow} flip(p); \\ \text{return}(x) \end{array}$$

// initialize x = y
// if equal, repeat
// flip biased coin
// flip biased coin
// if not equal, return x

Simulating a fair coin flip from a biased coin Problem setting

- Given: ability to draw biased coin flips flip(p), $p \neq 1/2$
- Goal: simulate a fair coin flip flip(1/2)

Algorithm ("von Neumann's trick")

$$\begin{array}{l} x \leftarrow true; y \leftarrow true;\\ \text{while } x = y \text{ do} \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$$

// initialize x = y
// if equal, repeat
// flip biased coin
// flip biased coin
// if not equal, return x

How to prove that the result x is unbiased (uniform)?

From existence of coupling, to uniformity

Suppose that we know there exist two couplings:

- **1.** Under first coupling, $x_1 = true$ implies $x_2 = false$
- 2. Under second coupling, $x_1 = false$ implies $x_2 = true$

From existence of coupling, to uniformity

Suppose that we know there exist two couplings:

- **1.** Under first coupling, $x_1 = true$ implies $x_2 = false$
- 2. Under second coupling, $x_1 = false$ implies $x_2 = true$

As a consequence:

- ▶ By (1), $\Pr[x_1 = true] \leq \Pr[x_2 = false]$
- ▶ By (2), $\Pr[x_1 = false] \leq \Pr[x_2 = true]$

From existence of coupling, to uniformity

Suppose that we know there exist two couplings:

- 1. Under first coupling, $x_1 = true$ implies $x_2 = false$
- 2. Under second coupling, $x_1 = false$ implies $x_2 = true$

As a consequence:

• By (1),
$$\Pr[x_1 = true] \leq \Pr[x_2 = false]$$

▶ By (2), $\Pr[x_1 = false] \leq \Pr[x_2 = true]$

But x_1 and x_2 have same distribution

- By (1), $\Pr[x_1 = true] \le \Pr[x_1 = false]$
- ▶ By (2), $\Pr[x_1 = false] \le \Pr[x_1 = true]$
- Hence uniform: $\Pr[x_1 = true] = \Pr[x_1 = false]$

Proof by coupling

Algorithm ("von Neumann's trick")

$$\begin{array}{l} x \leftarrow true; y \leftarrow true; \\ \text{while } x = y \text{ do} \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$$

// initialize x = y
// if equal, repeat
// flip biased coin
// flip biased coin
// if not equal, return x

Construct couplings such that:

- **1.** Under first coupling, $x_1 = true$ implies $x_2 = false$
- 2. Under second coupling, $x_1 = false$ implies $x_2 = true$

Consider the following coupling:

- Couple sampling of x_1 to be equal to sampling of y_2
- Couple sampling of x_2 to be equal to sampling of y_1
- Resulting coupling satisfies both (1) and (2)!

 $\begin{array}{l} x \leftarrow true; y \leftarrow true;\\ \text{while } x = y \text{ do} \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true; \\ \text{while } x = y \text{ do} \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true;\\ \text{while } x = y \text{ do} \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true; \\ \text{while } x = y \text{ do} \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$

Build coupling for loop bodies, then loops

• Use sampling rule with identity coupling: $x_1 = y_2$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true;\\ \text{while } x = y \text{ do} \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true; \\ \text{while } x = y \text{ do} \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$

Build coupling for loop bodies, then loops

• Use sampling rule with identity coupling: $x_1 = y_2$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true;\\ \text{while } x = y \text{ do} \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true; \\ \text{while } x = y \text{ do} \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$

- Use sampling rule with identity coupling: $x_1 = y_2$
- Use sampling rule with identity coupling: $y_1 = x_2$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true;\\ \text{while } x = y \text{ do} \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true;\\ \text{while } x = y \text{ do} \\ y & \text{flip}(p); \\ x & \text{flip}(p); \\ return(x) \end{array}$

- Use sampling rule with identity coupling: $x_1 = y_2$
- Use sampling rule with identity coupling: $y_1 = x_2$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true; \\ \text{while } x = y \text{ do} \\ x \notin flip(p); \\ y \notin flip(p); \\ \text{return}(x) \end{array}$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true; \\ \text{while } x = y \text{ do} \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$

- Use sampling rule with identity coupling: $x_1 = y_2$
- Use sampling rule with identity coupling: $y_1 = x_2$
- Use loop rule with invariant:

$$(x_1 = y_1 \to x_1 = y_2) \land (x_1 \neq y_1 \to x_1 \neq x_2)$$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true;\\ \text{while } x = y \text{ do} \\ x \notin flip(p); \\ y \notin flip(p); \\ \text{return}(x) \end{array}$

 $\begin{array}{l} x \leftarrow true; y \leftarrow true; \\ \text{while } x = y \text{ do} \\ y \overset{\text{s}}{\leftarrow} flip(p); \\ x \overset{\text{s}}{\leftarrow} flip(p); \\ \text{return}(x) \end{array}$

- Use sampling rule with identity coupling: $x_1 = y_2$
- Use sampling rule with identity coupling: $y_1 = x_2$
- Use loop rule with invariant:

$$(x_1 = y_1 \to x_1 = y_2) \land (x_1 \neq y_1 \to x_1 \neq x_2)$$

Variations on a Theme: Approximate Couplings

A new approach to formulating privacy goals: the risk to one's privacy, or in general, any type of risk ...should not substantially increase as a result of participating in a statistical database.

This is captured by differential privacy.

— Cynthia Dwork

Increasing interest in differential privacy In research...

Increasing interest in differential privacy In research...

...and in the "real world"

Differential privacy, pictorially

Differential privacy, formally

Dwork, McSherry, Nissim, and Smith

Let $\varepsilon \ge 0$ be a parameter, and suppose that Adj is a binary "adjacency" relation on D. A randomized program $M: D \to \text{Distr}(R)$ is ε -differentially private if for every set of outputs $S \subseteq R$ and every pair of adjacent inputs d_1, d_2 , we have

$\Pr_{x \sim M(d_1)}[x \in S] \le \exp(\varepsilon) \cdot \Pr_{x \sim M(d_2)}[x \in S].$

Approximate couplings

Definition

An ε -coupling of two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$ is a joint distribution $\mu \in \text{Distr}(A \times A)$ with

$$\Delta_arepsilon(\mu_1,\pi_1(\mu))\leq 0$$
 and $\Delta_arepsilon(\mu_2,\pi_2(\mu))\leq 0$

When $\varepsilon = 0$, recover regular (exact) couplings.

Approximate couplings

Definition

An ε -coupling of two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$ is a joint distribution $\mu \in \text{Distr}(A \times A)$ with

$$\Delta_arepsilon(\mu_1,\pi_1(\mu))\leq 0$$
 and $\Delta_arepsilon(\mu_2,\pi_2(\mu))\leq 0$

When $\varepsilon = 0$, recover regular (exact) couplings.

Approximate couplings

Definition

An ε -coupling of two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$ is a joint distribution $\mu \in \text{Distr}(A \times A)$ with

 $\Delta_arepsilon(\mu_1,\pi_1(\mu))\leq 0$ and $\Delta_arepsilon(\mu_2,\pi_2(\mu))\leq 0$

When $\varepsilon = 0$, recover regular (exact) couplings.

Approximate couplings imply differential privacy

If exists coupling of μ_1, μ_2 that returns equal elements:

Program produces equal output distr. on related inputs

If exists arepsilon-coupling of μ_1, μ_2 that returns equal elements:

Program satisfies ε -differential privacy

Constructing approximate couplings

The program logic APRHL [BKOZ-B, BO]

Compositional and formalized proofs of privacy

Judgments indexed by ε

 $\{P\}$ $c_1 \sim_{\varepsilon} c_2 \{Q\}$

Differential privacy in APRHL

$\{Adj(d_1, d_2)\} \ c \sim_{\varepsilon} c \ \{res_1 = res_2\}$

Differential privacy in APRHL

$\{Adj(d_1, d_2)\}\ c \sim_{\varepsilon} c\ \{res_1 = res_2\}$ Exactly ε -differential privacy

Proof system

 $\vdash \{\Psi\{e_1(1), e_2(2)/x_1(1), x_2(2)\}\} \ x_1 \leftarrow e_1 \sim_0 x_2 \leftarrow e_2 \ \{\Psi\}[\text{ASSN}]$ $\overline{\left| + \{ |e_1 - e_2| \le k \} \ x_1 \not \in \mathcal{L}_{\epsilon}(e_1) \sim_{k \cdot \epsilon} x_2 \not \in \mathcal{L}_{\epsilon}(e_2) \ \{ x_1 = x_2 \}} \right| [\mathsf{LAP}]}$ $\frac{\vdash \{\Phi\} \ c_1 \sim_{\epsilon} c_2 \ \{\Psi'\} \ \vdash \{\Psi'\} \ c'_1 \sim_{\epsilon'} c'_2 \ \{\Psi\}}{\vdash \{\Phi\} \ c_1; c'_1 \sim_{\epsilon+\epsilon'} c_2; c'_2 \ \{\Psi\}} [Seq]$ $\begin{array}{c|c} \vdash \{\Phi \land b_1(1)\} & c_1 \sim_{\epsilon} c_2 & \{\Psi\} & \vdash \{\Phi \land \neg b_1(1)\} & d_1 \sim_{\epsilon} d_2 & \{\Psi\} \\ \hline \vdash \{\Phi \land b_1(1) = b_2(2)\} & \text{if } b_1 \text{ then } c_1 \text{ else } d_1 \sim_{\epsilon} \text{if } b_2 \text{ then } c_2 \text{ else } d_2 & \{\Psi\} \end{array} [\begin{array}{c} \text{COND} \end{array}]$ $\Theta \wedge e\langle 1 \rangle < 0 \Rightarrow \neg b_1 \langle 1 \rangle$ $\vdash \{\Theta \land b_1\langle 1 \rangle \land b_2\langle 2 \rangle \land k = e\langle 1 \rangle \land e\langle 1 \rangle \le n\} \ c_1 \sim_{\epsilon_k} c_2 \ \{\Theta \land b_1\langle 1 \rangle = b_2\langle 2 \rangle \land k < e\langle 1 \rangle\}$ $\vdash \{\overline{\Theta \land b_1}\langle \overline{1} \rangle = b_2 \langle 2 \rangle \land e \langle 1 \rangle \leq n\} \text{ while } b_1 \text{ do } c_1 \sim_{\sum_{k=1}^n \epsilon_k} \text{ while } b_2 \text{ do } c_2 \{\Theta \land \neg b_1 \langle 1 \rangle \land \neg b_2 \langle 2 \rangle\}^{[WHILE]}$ $\vdash \{\Phi'\} \ c_1 \sim_{\epsilon'} c_2 \ \{\Psi'\} \qquad \Phi \Rightarrow \Phi' \qquad \Psi' \Rightarrow \Psi \qquad \epsilon' \le \epsilon \qquad \delta' \le \delta$ [Conseo] $\vdash \{\Phi\} \ c_1 \sim_{\epsilon} c_2 \ \{\Psi\}$
Proof system

 $\vdash \{\Psi \{e_1 \langle 1 \rangle, e_2 \langle 2 \rangle / x_1 \langle 1 \rangle, x_2 \langle 2 \rangle \}\} \ x_1 \leftarrow e_1 \sim_0 x_2 \leftarrow e_2 \ \{\Psi\}[\mathsf{ASSN}]$

$$\begin{split} & \frac{\left[\left\{ e_{1}-e_{2}\right] \leq k \right\} x_{1} \notin \mathcal{L}_{\epsilon}(e_{1}) \sim_{k \cdot \epsilon} x_{2} \notin \mathcal{L}_{\epsilon}(e_{2}) \left\{ x_{1}=x_{2} \right\}^{\left[\text{LAP} \right]}}{\left\{ x_{1}-x_{2} \in c_{2} \left\{ \Psi \right\} + \left\{ \Psi \right\} c_{1}' \sim_{\epsilon'} c_{2}' \left\{ \Psi \right\}} \\ & \frac{\left\{ \Phi \right\} c_{1} \sim_{\epsilon} c_{2} \left\{ \Psi \right\} + \left\{ \Psi \right\} c_{1}' \sim_{\epsilon'} c_{2}' \left\{ \Psi \right\}}{\left\{ \Phi \right\} c_{1}' (\gamma_{\epsilon'} c_{2}' c_{2}' \left\{ \Psi \right\}} \\ & \frac{\left\{ \Phi \land b_{1}(1) \right\} c_{1} \sim_{\epsilon} c_{2} \left\{ \Psi \right\} + \left\{ \Phi \land \neg b_{1}(1) \right\} d_{1} \sim_{\epsilon} d_{2} \left\{ \Psi \right\}}{\left\{ \Phi \land b_{1}(1) = b_{2}(2) \right\}} \text{ if } b_{1} \text{ then } c_{1} \text{ else } d_{1} \sim_{\epsilon} \text{ if } b_{2} \text{ then } c_{2} \text{ else } d_{2} \left\{ \Psi \right\}} \\ & \frac{\left\{ \Theta \land b_{1}(1) \land b_{2}(2) \land k = e(1) \land e(1) \leq n \right\} c_{1} \sim_{\epsilon_{k}} c_{2} \left\{ \Theta \land b_{1}(1) = b_{2}(2) \land k < e(1) \right\}}{\left\{ \Theta \land b_{1}(1) = b_{2}(2) \land e(1) \leq n \right\}} \text{ while } b_{1} \text{ do } c_{1} \sim_{\sum_{k=1}^{n} \epsilon_{k}} \text{ while } b_{2} \text{ do } c_{2} \left\{ \Theta \land \neg b_{1}(1) \land \neg b_{2}(2) \right\}} \\ & \frac{\left\{ \Phi' \right\} c_{1} \sim_{\epsilon'} c_{2} \left\{ \Psi' \right\} \Phi \Rightarrow \Phi' \qquad \Psi' \Rightarrow \Psi \qquad \epsilon' \leq \epsilon \qquad \delta' \leq \delta}{\left\{ \Theta \land b_{1}(1) \sim e_{\epsilon'} c_{2} \left\{ \Psi \right\}} \\ \\ \hline \end{array}$$
[Conseq]

(Laplace) Sampling rule

$$\frac{1}{\{|e_1 - e_2| \le k\}} x_1 \notin \mathcal{L}_{\varepsilon}(e_1) \sim_{k \cdot \varepsilon} x_2 \notin \mathcal{L}_{\varepsilon}(e_2) \{x_1 = x_2\}} LAP$$

(Laplace) Sampling rule

$$\frac{1}{\{|e_1 - e_2| \le k\}} x_1 \not \in \mathcal{L}_{\varepsilon}(e_1) \sim_{k \cdot \varepsilon} x_2 \not \in \mathcal{L}_{\varepsilon}(e_2) \{x_1 = x_2\}} LAP$$

"Pay" distance b/t centers ↓ Assume samples are equal

Composition properties, pictorially

Whole program is 2ε -private

Reading: "Pay" ε cost for each step, add up costs

Composition properties, formally

Formally ...

Consider randomized algorithms $M: D \to \text{Distr}(R)$ and $M: R \to D \to \text{Distr}(R')$. If M is ε -private and for every $r \in R$, M'(r) is ε' -private, then the composition is $(\varepsilon + \varepsilon')$ -private:

$$r \not \leftarrow M(d); res \not \leftarrow M(r,d); \mathsf{return}(res)$$

Composing approximate couplings

 $\vdash \{P\} \ c_1 \sim_{\varepsilon} c_2 \ \{Q\}$ $\vdash \{Q\} \ c'_1 \sim_{\varepsilon'} c'_2 \ \{\overline{R}\}$ $\vdash \{P\} \ \overline{c_1; c'_1 \sim_{\varepsilon + \varepsilon'} c_2; c'_2} \ \{R\}$

Composing approximate couplings

 $\vdash \{P\} \ c_1 \sim_{\varepsilon} c_2 \ \{Q\}$ $\vdash \{Q\} \ c'_1 \sim_{\varepsilon'} c'_2 \ \{\overline{R}\}$ $\vdash \{P\} \ \overline{c_1; c'_1 \sim_{\varepsilon + \varepsilon'} c_2; c'_2} \ \{R\}$

Composing approximate couplings

$$\begin{array}{ccccccccc}
\vdash \{P\} & c_1 \sim_{\varepsilon} c_2 & \{Q\} \\
\vdash \{Q\} & c'_1 \sim_{\varepsilon'} c'_2 & \{R\} \\
\hline
\vdash \{P\} & c_1; c'_1 \sim_{\varepsilon + \varepsilon'} c_2; c'_2 & \{R\} \\
\end{array}$$

Generalizes privacy composition

Q, R don't need to be equality assertions!

New sampling rule: [LAPNULL]

 $\frac{x_1 \notin FV(e_1), x_2 \notin FV(e_2)}{\{\top\} \ x_1 \notin \mathcal{L}_{\varepsilon}(e_1) \sim_0 x_2 \notin \mathcal{L}_{\varepsilon}(e_2) \ \{x_1 - x_2 = e_1 - e_2\}}$

New sampling rule: [LAPNULL]

 $\frac{x_1 \notin FV(e_1), x_2 \notin FV(e_2)}{\{\top\} \ x_1 \stackrel{\text{\tiny (1)}}{\leftarrow} \mathcal{L}_{\varepsilon}(e_1) \sim_0 x_2 \stackrel{\text{\tiny (1)}}{\leftarrow} \mathcal{L}_{\varepsilon}(e_2) \ \{x_1 - x_2 = e_1 - e_2\}}$

"Pay" nothing (cost zero) Distance between samples Distance between centers

New sampling rule: [LAPGEN]

 $x_1 \notin FV(e_1), x_2 \notin FV(e_2)$

 $\overline{\{|e_1 - (e_2 + s)| \le k\}} \quad x_1 \notin \mathcal{L}_{\varepsilon}(e_1) \sim_{k \cdot \varepsilon} x_2 \notin \mathcal{L}_{\varepsilon}(e_2) \quad \{x_1 = x_2 + s\}$

New sampling rule: [LAPGEN]

 $\frac{x_1 \notin FV(e_1), x_2 \notin FV(e_2)}{\{|e_1 - (e_2 + s)| \le k\} \ x_1 \notin \mathcal{L}_{\varepsilon}(e_1) \sim_{k \cdot \varepsilon} x_2 \notin \mathcal{L}_{\varepsilon}(e_2) \ \{x_1 = x_2 + s\}}$

"Pay" to shift centers ↓ Assume shifted samples

$\frac{\forall j, \vdash \{P\} \ c_1 \sim_{\varepsilon} c_2 \ \{e_1 = j \rightarrow e_2 = j\}}{\vdash \{P\} \ c_1 \sim_{\varepsilon} c_2 \ \{e_1 = e_2\}}$

$\frac{\forall j, \vdash \{P\} \ c_1 \sim_{\varepsilon} c_2 \ \{e_1 = j \rightarrow e_2 = j\}}{\vdash \{P\} \ c_1 \sim_{\varepsilon} c_2 \ \{e_1 = e_2\}}$

$\frac{\forall j, \vdash \{P\} \ c_1 \sim_{\varepsilon} c_2 \ \{e_1 = j \rightarrow e_2 = j\}}{\vdash \{P\} \ c_1 \sim_{\varepsilon} c_2 \ \{e_1 = e_2\}}$

$$\frac{\forall j, \vdash \{P\} \ c_1 \sim_{\varepsilon} c_2 \ \{e_1 = j \rightarrow e_2 = j\}}{\vdash \{P\} \ c_1 \sim_{\varepsilon} c_2 \ \{e_1 = e_2\}}$$

Prove differential privacy, focusing on one output at a time

Leibniz equality

$$(\forall j, (e_1 = j) \to (e_2 = j)) \to e_1 = e_2$$

Internalizing a universal quantifier

- Not sound in general for approximate couplings
- But: sound for certain equality predicates

\forall values, \exists a coupling such that ... $\downarrow \downarrow$ \exists a coupling such that \forall values, ...

\forall values, \exists a coupling such that ... $\downarrow \downarrow$ \exists a coupling such that \forall values, ...

∀ values, ∃ a coupling such that ... ↓ ∃ a coupling such that ∀ values, ...

Applications of approximate couplings

Support more proof principles

- More sophisticated composition theorems
- General, (ϵ, δ) form of differential privacy

Formalize interesting examples

- Sparse Vector Technique (4 buggy versions)
- Auction mechanisms based on privacy

Enable new verification tools

Automatic proofs via Horn clause encoding [AH]

Variations on a Theme: Expectation Couplings

Expectation couplings

Target: bound distance between expected values

- Captured by coupling refined with Kantorovich metric
- Build a logic around composition of optimal transport

Expectation couplings

Target: bound distance between expected values

- Captured by coupling refined with Kantorovich metric
- Build a logic around composition of optimal transport

Kantorovich metric: lift distance to distributions

- Given: Two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$
- Given: "Base" distance $d : A \times A \rightarrow \mathbb{R}^+$
- ► Define: distance on distributions

$$d^{\#}(\mu_1, \mu_2) \triangleq \min_{\substack{\mu \in C(\mu_1, \mu_2)}} \mathbb{E}_{\mu}[d]$$

Expectation couplings

Target: bound distance between expected values

- Captured by coupling refined with Kantorovich metric
- Build a logic around composition of optimal transport

Kantorovich metric: lift distance to distributions

- Given: Two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$
- Given: "Base" distance $d : A \times A \rightarrow \mathbb{R}^+$
- Define: distance on distributions

$$d^{\#}(\mu_1,\mu_2) riangleq \min_{\mu \in C(\mu_1,\mu_2)} \mathbb{E}_{\mu}[d]$$

set of all couplings

Constructing expectation couplings

Build these couplings with the program logic $\mathbb{E}\mathsf{PRHL}$

- Verify uniform stability (machine learning)
- Verify convergence/mixing (statistical physics)

Judgments model probabilistic sensitivity/contraction

$$\{P; d\} \ c_1 \sim c_2 \ \{Q; d'\}$$

Constructing expectation couplings

Build these couplings with the program logic $\mathbb{E}\mathsf{PRHL}$

- Verify uniform stability (machine learning)
- Verify convergence/mixing (statistical physics)

Judgments model probabilistic sensitivity/contraction

$$\{P; d\} \ c_1 \sim c_2 \ \{Q; d'\}$$

Wrapping up

Don't reinvent the wheel

- Leverage mental tools used by algorithms researchers
- Simpler formal proofs, closer to existing proofs
- More opportunities for automation

Study human proof techniques from a logical perspective