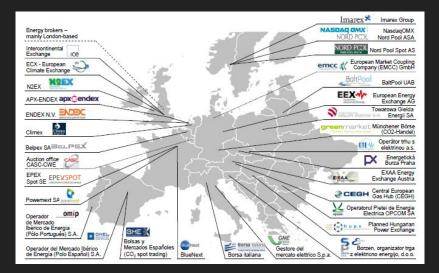
Differentially Private Optimal Power Flow

Justin Hsu* Alisha Zachariah

University of Wisconsin-Madison

Power generation is decentralized

Continental scale



Complex markets, complex constraints

Physical

- ► Laws: Ohm's law, Kirchoff circuit laws
- ► Limits: Line capacity, flow rates, generation

Spatial

- Power sources in different regions
- Network structure of transmission lines

Temporal

- ► Time needed to ramp up/ramp down
- Respond to changing loads and demands

Optimal Power Flow: Background and Motivation

Coordination via optimization

Minimize the cost

► No two power plants are exactly alike (efficiency, cost, ...)

Optimize power delivery

► Set parameters: system voltages, "bus angles", ...

Full problem: AC OPF

Faithful model of physics behind power network

- Objective: minimize total generation cost
- Constraints: voltage, current, and generation limits

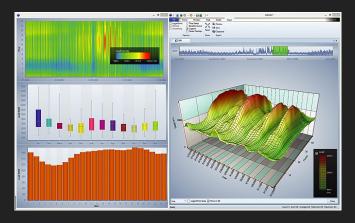
A very thorny problem

- ► Non-convex, discrete and continuous
- Complex valued: formulations involve sine, cosine, etc.

OPF problem is subject of a lot of research Faster solutions enable faster grid response

Convex SDP relaxations, investigate duality gap

Modeling tools for simulation and forecasting



Linearized version: DC OPF LP version of AC OPF

- Simplify problem (remove current limits, voltages)
- Make small-angle approximations ($sin(\theta) \approx \theta$)

Network model

- Generators located at nodes ("buses")
- Power can flow between neighboring nodes

Linearized version: DC OPF LP version of AC OPF

- Simplify problem (remove current limits, voltages)
- Make small-angle approximations ($sin(\theta) \approx \theta$)

Network model

- Generators located at nodes ("buses")
- Power can flow between neighboring nodes

Generated power + net flow equals demand at each node

More formally

Constants

- Generation costs c_i , limits m_i , demands d_i ("loads")
- ► Network matrix *B* ("bus susceptances")

Variables

• Generation amount g_i and flow control θ_i ("bus angle")

More formally: DC OPF linear program

minimize:
$$\sum_i c_i g_i$$

subject to: $g + B\theta = d$
 $-m \le g \le m$
 $-1/3 \le \theta \le 1/3$

What about privacy?

Nodes have data

- ► Loads: how much power is being demanded at each node?
- Costs: how much does power generation cost?

Solution naturally split between nodes

- Tell each power plant how much to generate
- Protect agent's data from joint view of other agents

What about privacy?

Nodes have data

- Loads: how much power is being demanded at each node?
- Costs: how much does power generation cost?

Solution naturally split between nodes

- Tell each power plant how much to generate
- Protect agent's data from joint view of other agents

More formally, this calls for...

Joint Differential Privacy

Solving the DC OPF Problem under Joint Differential Privacy

Idea: net flow at each node is low sensitivity Net flow: Flow out minus flow in

- Vector $B\theta$ gives the (signed) net flow at each node
- ▶ Potential: flow $\approx \theta_i \theta_j$ for neighboring (i, j)

Idea: net flow at each node is low sensitivity Net flow: Flow out minus flow in

- Vector $B\theta$ gives the (signed) net flow at each node
- ▶ Potential: flow $\approx \theta_i \theta_j$ for neighboring (i, j)

What happens if one node's load changes by Δ ?

- Generate more power at cheapest nodes with capacity
- Total absolute change in net flows at most 2Δ

Idea: net flow at each node is low sensitivity Net flow: Flow out minus flow in

- Vector $B\theta$ gives the (signed) net flow at each node
- ▶ Potential: flow $\approx \theta_i \theta_j$ for neighboring (i, j)

What happens if one node's load changes by Δ ?

- Generate more power at cheapest nodes with capacity
- Total absolute change in net flows at most 2Δ

DC OPF constraints: conservation of flow

Compute generation P_g from noisy net flows

Three step process:

- 1. Solve original DC OPF problem exactly, get θ^*
- 2. Compute noisy flows:

$$\hat{f} = B\theta^* + \mathsf{Lap}_{\epsilon/2\Delta}$$

3. Compute generation:

$$g_i + \hat{f} = d_i$$

What about the bus angles θ ?

OK to publish noisy flows, but not bus angles

► Need this info to induce noisy flow:

 $\hat{\theta}$ such that $\hat{f}=B\hat{\theta}$

Possible problems

- Out of range: $\hat{\theta}$ too big/too small?
- No consistent solution for $\hat{\theta}$?

More refined: Projected Laplace mechanism

Add noise and project

- Polytope of noisy flows realizable by valid bus angles
- Add Laplace noise to get noisy net flows \hat{f}
- Project to polytope, solve for $\hat{\theta}$ and publish

Wrapping Up: Three Takeaways

JDP is a good fit for graph problems

Data associated with each node

- Local pieces of solution can be distributed to nodes
- Handy link parts of inputs and parts of solutions

Relaxations of JDP possible

- Graph structure gives relation between agents
- Protect data against just the joint view of neighbors?

More to do for private optimization

Plenty of past work on private optimization

- Linear programs
- ► (Separable) convex programs

"Minor" assumptions are not always minor

- Know optimal value
- Only inequality (one-sided) constraints
- Can violate constraints "a little bit"

Many other uses for privacy in power flow problems

Further directions

- Protect more data (network structure?)
- Improve accuracy for specific network topologies
- ► Handle richer problems, towards AC OPF

Possible game theory and mechanism design angles

- Achieve approximate truthfulness
- Make it harder for agents to signal through costs
- Compute market clearing prices

Differentially Private Optimal Power Flow

Justin Hsu* Alisha Zachariah

University of Wisconsin-Madison