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Abstract—Differential privacy is a rigorous, worst-case notion
of privacy-preserving computation. Informally, a probabilistic
program is differentially private if the participation of a single
individual in the input database has a limited effect on the
program’s distribution on outputs. More technically, differential
privacy is a quantitative 2-safety property that bounds the
distance between the output distributions of a probabilistic
program on adjacent inputs. Like many 2-safety properties, dif-
ferential privacy lies outside the scope of traditional verification
techniques. Existing approaches to enforce privacy are based on
intricate, non-conventional type systems, or customized relational
logics. These approaches are difficult to implement and often
cumbersome to use.

We present an alternative approach that verifies differen-
tial privacy by standard, non-relational reasoning on non-
probabilistic programs. Our approach is based on transform-
ing a probabilistic program into a non-probabilistic program
which simulates two executions of the original program. We
prove that if the target program is correct with respect to a
Hoare specification, then the original probabilistic program is
differentially private. We provide a variety of examples from
the differential privacy literature to demonstrate the utility of
our approach. Finally, we compare our approach with existing
verification techniques for privacy.

I. INTRODUCTION

Program verification provides a rich array of techniques
and tools for analyzing program properties. However, pro-
gram verification is largely confined to reasoning about single
program executions, or trace properties. In contrast, many
security properties—such as non-interference in information
flow systems—require reasoning about multiple program ex-
ecutions. These hyperproperties [16] encompass many stan-
dard security analyses, and lie outside the scope of standard
verification tools—to date, there is no generally applicable
method or tool for verifying hyperproperties. Instead, ad
hoc enforcement methods based on type systems, customized
program logics, and finite state automata analyses have been
applied to specific hyperproperties. While these approaches
can be effective, their design and implementation often require
significant effort.

A promising alternative is to reduce verification of a hy-
perproperty of a program c to verification of a standard
property of a transformed program T (c). For instance, self-
composition [7], [17] is a general method for reducing 2-safety
properties of a program c—which reason about two runs of c—
to safety properties of the sequential composition c; c′, where
c′ is a renaming of c. Self-composition is a sound and complete
method that applies to many programming languages and
verification settings, and has been used to verify information

flow properties using standard deductive methods like Hoare
logic.

A close relative of self-composition is the synchronized
product construction. Again, this transformation produces
a program which emulates two executions of the original
program. While self-composition performs the executions in
sequence, synchronized products perform the executions in
lockstep, dramatically simplifying the verification task for
certain properties. This transformation is an instance of the
more general class of product transformations, as studied by
Zaks and Pnueli [40], and later by Barthe et al. [4], [5].

While there has been much research on combining prod-
uct constructions and deductive verification to reason about
2-safety for deterministic programs, this approach remains
largely unexplored for probabilistic programs. This is not for
lack of interesting use-cases—similar to the case for non-
probabilistic computations, many security notions of proba-
bilistic computation are naturally 2-safety properties.

Verifying differential privacy: In this paper, we con-
sider on one such property: differential privacy, which pro-
vides strong guarantees for privacy-preserving probabilistic
computation. Formally, a probabilistic program c is (ε, δ)-
differentially private with respect to ε > 0, δ ≥ 0, and a
relation1 Φ on the initial memories of c if for every two initial
memories m1 and m2 related by Φ, and every subset A of
output memories,

Pr [c,m1 : A] ≤ exp(ε) Pr [c,m2 : A] + δ.

Here Pr [c,m : A] denotes the probability of the output mem-
ory landing in A according to distribution JcK m, where JcK
maps an initial memory m to a distribution JcK m of output
memories. Since this definition concerns two runs of the same
probabilistic program, differential privacy is a probabilistic 2-
safety property.

Differentially private algorithms are typically built from two
constructions: private mechanisms, which add probabilistic
noise to their input, and composition, which combines dif-
ferentially private operations into a single one. This composi-
tional behavior makes differential privacy an attractive target
for program verification efforts.

Existing methods for proving differential privacy have been
based on type systems, automata analyses, and customized
program logics. For instance, Fuzz [34], DFuzz [24] and

1We are here taking a generalization of Differential Privacy with respect
to an arbitrary relation Φ. The usual definition is obtained by considering an
adjacency relation between databases.



related systems [23] enforce differential privacy using linear
type systems. This approach is expressive enough to type many
examples, but it is currently limited to pure differential privacy
(where δ = 0), and cannot handle more advanced examples.
Alternatively, Tschantz et al. [39] consider a verification tech-
nique based on I/O automata; again, this approach is limited
to pure differential privacy. Finally, CertiPriv [11] and Easy-
Crypt [6] use an approximate relational Hoare logic for proba-
bilistic programs to verify differential privacy. This approach is
very expressive and can accommodate approximate differential
privacy (when δ 6= 0), but relies on a customized and complex
logic. Moreover, ad hoc rules for loops are required for many
advanced examples. Each of these approaches also requires
non-trivial design and implementation effort.

Self-products for differential privacy: To avoid these
drawbacks, we investigate a new approach where proving
(ε, δ)-differential privacy of a program c is reduced to proving
a safety property of a transformed program T (c). In view of
previous work verifying 2-safety properties, a natural choice
for T is some notion of product program. However, the trans-
formed programs would then be probabilistic, and there are
few tools for deductive verification of probabilistic programs.
Targeting a non-probabilistic language is more appealing in
this regard, as there are many established tools for deductive
verification of non-probabilistic programs. Since the original
program is a probabilistic program, the key part of our
approach is to remove the probabilistic behavior in the target.

To define a transformation T targeting non-probabilistic
programs, we proceed in two steps. Starting from a proba-
bilistic program c, we first construct the synchronized product
of c with itself. Using the synchronized product instead of
self-composition is essential for our second step, in which
the probabilistic product program is transformed into a non-
probabilistic program.

For this step, we rely on the specific features of differential
privacy. First, we observe that differential privacy bounds
the ratio—hereafter called the privacy cost—between the
probabilities of producing the same output on two executions
on nearby databases. Second, we recall that there are two
main tools for building differentially private computations:
private mechanisms, and composition. Private mechanisms and
composition interact with the privacy cost in different ways;
we consider each in turn.

A private mechanism run over two different inputs returns
two closely related distributions, at the cost of consuming
some privacy budget. The privacy cost depends on the distance
between the inputs: as the two inputs become farther apart,
the privacy cost also grows. One fundamental insight (due to
Barthe et al. [10]) we use is that the property of being “closely
related” can be understood as being at distance 0 for a suitable
notion of distance on distributions.

Composition takes a set of differentially private operations
and returns the sequential composition of the operations, which
is also differentially private. By a property of differential
privacy, the privacy cost of the composition is upper bounded
by the sum of the privacy costs of the individual operations.

We can now build this reasoning into our verification
system. First, we apply the synchronized product construction.
Then, we replace two corresponding calls to a mechanism with
a call to an abstract procedure that returns equal outputs, at
the cost of consuming some privacy budget—roughly, being
at distance 0 in the probabilistic setting is collapsed to being
equal in the non-probabilistic setting. The second step takes
advantage of the synchronized product construction: since the
two executions are simulated in lockstep, corresponding calls
to a mechanism are next to each other in the product program.
Since mechanisms are the only probabilistic parts of our source
program, our output program is now non-probabilistic.

To keep track of the privacy cost, we use ghost variables
vε and vδ which are incremented after each mechanism is
executed, in terms of the distance between their two inputs.

To illustrate our approach, consider the following simple
program c:

s; x← Lapε(e); return x

where s is a deterministic computation and Lap is the Laplace
mechanism—a probabilistic operator that achieves differential
privacy by adding noise to its input. The synchronized product
T (c) of the program c is

T (s); x1 ← Lapε(e1); x2 ← Lapε(e2); return (x1, x2)

where T (s) is the synchronized product of s. Then, we make
the program non-probabilistic by replacing the two calls to the
Laplace mechanism with a call to an abstract procedure Lap�,
giving the following transformed program T (c).

T (s); (x1, x2)← Lap�(e1, e2); return (x1, x2)

Roughly, the specification of the procedure invocation Lap�

states that the same value is assigned to x1 and x2. Also, as
side effect, the variable vε is updated to increment the privacy
cost, which depends on the distance between the inputs (e1, e2)
to the Laplace mechanism.

Our main result (Theorem 5 in §III) states that once we
perform this transformation, we can use plain Hoare logic to
complete the verification. More concretely, for the example
above, c is (ε, 0)-differentially private if the following Hoare
specification is valid.

` T (c) : Φ ∧ vε = 0 =⇒ x1 = x2 ∧ vε ≤ ε0
Contributions: The main contribution of the paper (§III)

is a program transformation that operates on programs built
from sequential, non-probabilistic constructs and differentially
private, probabilistic primitives—such as the Laplace and
Exponential mechanisms. The transformed program is non-
probabilistic, and the differential privacy of the original pro-
gram can be reduced to a safety property of the transformed
program. Then we show in §IV that our approach subsumes
the core apRHL logic of Barthe et al. [11], in the sense that
every algorithm provable with core apRHL is also provable
with our approach

We illustrate the expressiveness of our approach in §V
by verifying differential privacy of several probabilistic algo-
rithms, including a recent algorithm that produces synthetic



datasets using a combination of the multiplicative weights
update rule and of the exponential mechanism [28], [27], and
the Propose-Test-Release (PTR) framework [20], [38], which
achieves approximate differential privacy without relying on
output perturbation. Finally, we discuss the example of vertex
cover, which is provable with an ad hoc extension of core
apRHL, but cannot be handled directly by our approach.

II. A PRIMER ON DIFFERENTIAL PRIVACY

Let us begin by recalling the basic definitions of differential
privacy.

Definition 1: Let ε, δ ≥ 0, and let Φ ⊆ S×S be a relation on
S . A randomized algorithm K taking inputs in S and returning
outputs in R is (ε, δ)-differentially private with respect to Φ
if for every two inputs s1, s2 ∈ S such that s1 Φ s2 and every
subset of outputs A ⊆ R,

Pr [K(s1) : A] ≤ exp(ε) Pr [K(s2) : A] + δ.

When δ = 0, we will call this ε-differentially privacy.
Our definition is a variant of the standard definition [21]

where input memories are considered to be databases, and
Φ relates databases that differ in a single individual’s data.
We explain the intuition of differential privacy in this. Recall
that differential privacy aims to conceal the participation of
individuals in a study. To distinguish between the participation
or non-participation of an individual, we say that two databases
D and D′ are adjacent or neighboring if they differ only in the
presence or absence of a single record; note that the adjacency
relation is necessarily symmetric.

Differential privacy then states that the distributions output
by K on adjacent databases are close. In the simple case where
δ = 0, the definition above requires that the probability of any
output changes by at most a exp(ε) factor when moving from
one input to an adjacent input. When δ > 0 these bounds are
still valid except with probability δ. In other words, δ is a
probability of failure in ensuring a privacy bound.

Building private programs: Let F be a deterministic
computation with inputs in T and outputs in R. Suppose that
we want to make the computation of F (ε, δ)-differentially
private with respect to some relation Φ. A natural way to
achieve this goal is to add random noise to the evaluation
of F on an input. In general, the noise that we need to add
depends not only on the ε and δ parameters (which control the
strength of the privacy guarantee), but also on the sensitivity
of F , a quantity that is closely related to Lipschitz continuity
for functions.

Definition 2: Assume that F is real-valued, i.e. R = R, and
let k > 0. We say that F is k-sensitive with respect to Φ if
|F (t1)− F (t2)| ≤ k for all t1, t2 ∈ T such that t1 Φ t2.

The canonical mechanism for privately releasing a k-
sensitive function is the Laplace mechanism.

Theorem 1 ([18]): Suppose ε > 0. The Laplace mechanism
is defined by

Lapε(t) = t+ v,

where v is drawn from the Laplace distribution L(1/ε), i.e.
with probability density function

P (v) = exp(−ε|v|).

If F is k-sensitive with respect to Φ, then the probabilistic
function that maps t to Lapε(F (t)) is (kε, 0)-differentially
private with respect to Φ.

Additionally, the Laplace mechanism satisfies a simple
accuracy bound.

Lemma 1: Let ε, δ > 0 and let T = log(2/δ)/(2ε). Then
for every x, Lapε(x) ∈ (x−T, x+T ) with probability at least
1− δ.

Another mechanism that is fundamental for differential
privacy is the Exponential mechanism [32]. Let T be the set of
inputs, typically thought of as the private information. Let R
be a set of outputs, and consider a function F : T ×R → R,
typically called the score function. We first extend the defini-
tion of sensitivity to this function.

Definition 3: Assume F : T × R → R and let c > 0. We
say that F is k-sensitive on T with respect to Φ if |F (t1, r)−
F (t2, r)| ≤ k for all t1, t2 ∈ T such that t1 Φ t2 and r ∈ R.

Then, the Exponential mechanism can be used to output
an element of R that approximately maximizes the score
function, if the score function is k-sensitive.

Theorem 2 ([32]): Let ε, c > 0. Suppose that F is k-
sensitive in T with respect to Φ. The Exponential mechanism2

Expε(F, t) takes as input t ∈ T , and returns r ∈ R with
probability equal to

exp(εF (t, r)/2)∑
r′∈R exp(εF (t, r′)/2)

.

This mechanism is (kε, 0)-differentially private with respect
to Φ.

A powerful feature of differential privacy is that by com-
posing differentially private mechanisms, we can construct
new mechanisms that satisfy differential privacy. However, the
privacy guarantee will degrade: more operations on a database
will lead to more privacy loss. This is formalized by the
following composition theorem.

Theorem 3 ([31]): Let q1 be a (ε1, δ1)-differentially private
query and let q2 be a (ε2, δ2)-differentially private query. Then,
their composition q(t) = (q1(t), q2(t)) is (ε1 + ε2, δ1 + δ2)-
differentially private.

In light of this composition property, we will often think
of the privacy parameters ε and δ of a program as privacy
budgets that are consumed by sub-operations. Finally, differ-
ential privacy is closed under post-processing—an output of
a private algorithm can be arbitrarily transformed, so long as
this processing does not involve the private database.

Theorem 4: Let q be (ε, δ)-differentially private mapping
databases to some output range R, and let f : R → R′ be
an arbitrary function. Then, the post-processing f ◦ q is also
(ε, δ)-differentially private.

2The Exponential mechanism as first introduced by McSherry and Tal-
war [32] is parameterized by a prior distribution µ on R. We consider the
special case where µ is uniform; this suffices for typical applications.



III. SELF-PRODUCTS

In this section, we formalize the verification of differential-
privacy using traditional Hoare logic. We start with some
preliminary definitions and the pWHILE programming lan-
guage, which will serve as our source language. Then, given a
probabilistic pWHILE program c, we show how to build a non-
probabilistic program T (c) that simulates two executions of c
on different inputs and tracks the privacy cost via two ghost
variables vε and vδ . We show that the verification of T (c)
with respect to a Hoare logic specification ensures differential
privacy of the original program c.

A. Distributions

We define the set D(A) of sub-distributions over a set A as
the set of functions µ : A→ [0, 1] with discrete support(µ) =
{x | µx 6= 0}, such that

∑
x∈A µx ≤ 1; when equality holds,

µ is a true distribution. (We will often refer to sub-distributions
as distributions when there is no confusion.) Sub-distributions
can be given the structure of a complete partial order: for all
µ1, µ2 ∈ D(A),

µ1 v µ2
def
= ∀a ∈ A. µ1 a ≤ µ2 a.

Moreover, sub-distributions can be given the structure of
a monad: for any function g : A → D(B) and distribution
µ : D(A), we define g? µ : D(B) to be the following sub-
distribution:

g? µ (b) def
=

∑
a∈A

(g a b)(µa),

for every b ∈ B. Given an element a ∈ A we denote by 1a
the probability distribution returning a with probability one.

In the following we will use a normalization construction
(·)# that takes as input a function f : B → R≥0 over a discrete
set B and returns (f)# : D(B) such that the probability mass
of f# at b is given by

(f)# b def
=

f b∑
b′∈B f b

′ .

Intuitively, sampling from the distribution (f)# is equivalent
to sampling “with probability proportional to” f .

B. pWHILE Language

pWHILE programs will serve as our source language, and
are defined by the following grammar:

C ::= skip
| C; C sequencing
| V ← E deterministic assignment
| V $← Lapε(E) Laplace assignment
| V $← Expε(E , E) Exponential assignment
| if E then C else C conditional
| while E do C while loop
| return E return expression

Here, V is a set of variables and E is a set of expressions.
We consider expressions including simply typed lambda terms

and basic operations on booleans, lists and integers. The prob-
abilistic assignments involving Lapε(E) and Expε(E , E) inter-
nalize the (discrete version of the) mechanisms of Theorem 1
and Theorem 2 respectively. For simplicity, we only consider
commands of the form c; return e in the rest of this paper.
pWHILE is equipped with a standard type system; we omit the
typing rules. Note that for examples based on the exponential
mechanism we allow function types for representing the score
functions; alternatively these score functions can be modeled
as finite maps if their domain is finite (as will be the case in
our examples).

The semantics of a well-typed pWHILE program is defined
by its (probabilistic) action on memories; we denote the set
of memories by M. A program memory m ∈ M is a partial
assignment of values to variables. Formally, the semantics of
a return-free pWHILE program c is a function JcK : M →
D(M) mapping a memory m ∈M to a distribution JcKm ∈
D(M), as defined in Fig. 1. Then, the semantics of a program
c; return e is simply defined as

Jc; return eK m def
= 1?JeK (JcKm).

C. Target Language
To define the target language of our transformation, we

remove probabilistic assignments, and add assert and havoc
instructions to pWHILE, giving the following grammar:

C ::= skip
| C; C sequencing
| V ← E deterministic assignment
| assert (ϕ) assert
| (V,V)← Lap�ε (E , E) Laplace invocation
| (V,V)← Exp�ε (E , E , E , E) Exponential invocation
| if E then C else C conditional
| while E do C while loop
| return E return expression

The semantics of most of the constructions of this language
is standard, except for a few parts. The assert (ϕ) statement
checks at runtime whether the predicate ϕ is valid, and stops
the execution otherwise. We defer the presentation of the
abstract procedures Lap� and Exp� until the definition of the
self-product construction, in §III-E.

The enforcement of safety properties over this target lan-
guage is formalized by a standard Hoare logic, with judgments
of the form

` c : Ψ =⇒ Φ.

Here the pre- and post-conditions Ψ and Φ are standard
unary predicates over memories. Hoare logic judgments can
be derived using the rules in Fig. 2; by the standard soundness
of Hoare logic, the derivability of a judgment ` c : Ψ =⇒ Φ
entails the correctness of c with respect to its specification
Ψ,Φ.

D. Product Construction
Before we define the product transformation from pWHILE

to our target language, let us first review some preliminaries
about product programs.



JskipK m = 1m

Jc1; c2K m = Jc2K? (Jc1Km)

Jx← eK m = 1m{JeKE m/x}

Jx $← Lapε(e)K m =
(
λv. 1m{v/x}

)? (
λr.exp

(
− ε|r−JeKm|

2

))#
Jx $← Expε(s, e)K m =

(
λv. 1m{v/x}

)? (
λr.exp

(
εJsKm(JeKm,r)

2

))#
Jif e then c1 else c2K m = if (JeKE m = true) then (Jc1Km) else (Jc2Km)

Jwhile e do cK m =
⊔
wim

where w0m = ⊥
wi+1m = if (JeKE m = true) then w?i (JcKm) else unitm

Fig. 1: pWHILE semantics

` skip : Ψ =⇒ Ψ ` x← e : Φ {e/x} =⇒ Φ ` assert (ϕ) : Φ ∧ ϕ =⇒ Φ

` c1 : Ψ =⇒ ϕ ` c2 : ϕ =⇒ Φ

` c1; c2 : Ψ =⇒ Φ

` c1 : Ψ ∧ b =⇒ Φ ` c2 : Ψ ∧ ¬b =⇒ Φ

` if b then c1 else c2 : Ψ =⇒ Φ

Ψ ∧ v ≤ 0⇒ ¬b ` c : Ψ ∧ b ∧ v = k =⇒ Ψ ∧ v < k

` while b do c : Ψ =⇒ Ψ ∧ ¬b
` c : Ψ′ =⇒ Φ′ Ψ⇒ Ψ′ Φ′ ⇒ Φ

` c : Ψ =⇒ Φ

Fig. 2: Hoare logic for non-probabilistic programs

Product programs have been successfully used to verify 2-
safety properties like information-flow, program equivalence,
and program robustness. As mentioned above, a synchronized
product program can be used to simulate two runs of the same
program, interleaving the two executions and often simplifying
the verification effort. This technique, however, has been
mostly used in the verification of non-probabilistic programs.
In the rest of this section we provide a brief introduction
to relational verification by product construction and then
extend this approach to handle quantitative reasoning over
probabilistic programs.

A simple but necessary concept for the product construction
is memory separability: we say that two programs are sepa-
rable if they manipulate disjoint sets of program variables. In
order to achieve separability in the construction of the product
of a program with itself, program variables are renamed with
a left (−1) or right (−2) tag. For any program expression e or
predicate ϕ, we let ei and ϕi stand for the result of renaming
every program variable with the tag −i.

Similarly, we say that two memories are disjoint when their
domains (the sets of variables on which they are defined) are
disjoint. Notice that given two disjoint memories m1 and m2,
we can build a memory m = m1⊕m2 representing their union.
In the following, we exploit separability and use predicates
to represent binary relations over disjoint memories m1 and
m2. We will suggestively write m1 Φm2 to denote the unary
predicate Φ(m1⊕m2) over the combined memory m1⊕m2.

Given two deterministic programs c1 and c2, a general
product program c1×c2 is a syntactic construction that merges
the executions of c1 and c2; this construction is required to
correctly represent every pair of executions of c1 and c2.
Traditional program verification techniques can then be used
to enforce a relational property over c1 and c2.

In self-composition [7], [17], the product construction c1×
c2 is defined simply by the sequential composition c1; c2.
An inconvenience of self-composition is that the verification
of c1; c2 usually requires independent functional reasoning
over c1 and c2. The synchronized product construction solves
this problem by interleaving execution of two runs of the
same program—by placing corresponding pieces of the two
executions of a program close together, synchronized product
programs can more easily maintain inductive invariants relat-
ing the two runs. Not only does synchronization reduce the
verification effort, we will soon see that synchronization is
the key feature that makes our verification approach possible.

E. Building the Product
We embed the quantitative reasoning on probabilistic pro-

grams by introducing the special program variables vε and
vδ , which serve to accumulate the privacy cost. For every
statement c, the self-product dce is formally defined by the
rules shown in Fig. 4. In a nutshell, the deterministic fragment
of the code is duplicated with appropriate variable renaming
with the flags −1 and −2, and the control flow is fully
synchronized, i.e., the two executions of the same program
must take all the same branches. We use the assert statements



dskipe = skip

dc1; c2e = dc1e; dc2e
dx← ee = x1 ← e1; x2 ← e2

dx $← Lapε(e)e = (x1, x2)← Lap�(e1, e2)

dx $← Expε(s, e)e = (x1, x2)← Exp�(s1, e1, s2, e2)

dif b then c else de= assert (b1 = b2);
if b1 then dce else dde

dwhile b do ce = assert (b1 = b2);
while b1 do
dce; assert (b1 = b2)

Fig. 4: Self-product construction

to enforce this property. Moreover, for the self-product of a
program c to correctly represent two executions of itself, we
require that loop guards do not depend on probabilistically
sampled values; we assume in the remainder of this work
that the programs under verification satisfy this condition.
Similarly, we assume that programs under verification contain
only terminating while loops.

The probabilistic constructions are mapped to invocations
to the abstract procedures Lap� and Exp�. The semantics of
these procedures is non-deterministic, in order to simulate
an assignment for every value that can be sampled from the
probability distribution. We axiomatize these abstract proce-
dures with Hoare specifications. Figure 3 extends the set of
Hoare logic rules with a specification for the invocation of
Lap� and Exp�. Notice that both abstract procedures have an
incremental side effect over the privacy budget variable vε. In
Section V-C, we introduce a modified specification for Lap�

that also increments the budget variable vδ .

F. An alternative characterization of privacy

For the proof of soundness, we will use an alternative char-
acterization of (ε, δ)-differential privacy based on the notion of
ε-distance. This notion is adapted from the asymmetric notion
of distance used by Barthe et al. [11].

Definition 4 (ε-distance): The ε-distance ∆ε is defined as

∆ε(µ1, µ2) def
= max

S⊆A
(µ1 S − exp(ε)µ2 S),

where µS def
=
∑
a∈S µa. Note that we define max over an

empty set to be 0, so ∆ε(µ1, µ2) ≥ 0.
By the definition of ε-distance, a probabilistic program c

is (ε, δ)-differentially private with respect to ε > 0, δ ≥ 0,
and a relation Φ on the initial memories of c if for every two
memories m1 and m2 related by Φ, we have

∆ε(JcK m1, JcK m2) ≤ δ.

The proof of our main theorem relies on a lifting oper-
ator that turns a relation on memories into a relation on
distributions over memory. Given a relation on memories Φ,
and real values ε, δ we define the lifted relation on memory
distributions Φ〈ε,δ〉 as follows.

Definition 5: For all memory distributions µ1, µ2,
µ1 Φ〈ε,δ〉 µ2 if there exists µ such that:

1) πi µ ≤ µi,
2) ∀m,µm 6= 0⇒ Φm, and
3) ∆ε(µi, πi µ) ≤ δ,

where
• (π1 µ)m1 =

∑
m2∈M µ (m1,m2), and

• (π2 µ)m2 =
∑
m1∈M µ (m1,m2).

Notice that ε-distance between distributions is closely related
to the lifting of the equality relation, i.e.,

µ1 =〈ε,δ〉 µ2 ⇐⇒ ∆ε(µ1, µ2) ≤ δ. (1)

Note that the second equation is precisely the condition on
output distributions needed for (ε, δ)-differential privacy.

G. Soundness of the self-product technique

The following result states the soundness of our approach.
Theorem 5: If the following Hoare judgment is valid

` dce : Ψ ∧ vε=0 ∧ vδ=0 =⇒ out1 =out2 ∧ vε≤ε ∧ vδ≤δ

then c satisfies (ε, δ)-differential privacy.
Proof: We prove a generalization. Let Φ be a relation on

memories, and suppose

` dce : Ψ ∧ vε = 0 ∧ vδ = 0 =⇒ Φ ∧ vε ≤ ε ∧ vδ ≤ δ.

Then, for all memories m1,m2 such that m1 Ψm2, we have

(JcKm1) Φ〈ε,δ〉 (JcKm2).

The proof follows by structural induction on c; we provide
technical details in the appendix.

IV. COMPARISON WITH apRHL
Now that we have defined our transformation, we com-

pare our approach to a custom logic for verifying privacy.
apRHL [11] is a quantitative, probabilistic and relational
program logic for reasoning about differential privacy, with
judgments of the form3

` c1 ∼〈α,δ〉 c2 : Ψ =⇒ Φ,

where c1 and c2 are probabilistic programs, Ψ and Φ are
memory relations, and ε, δ are real values. The main result of
apRHL states that if ` c1 ∼〈ε,δ〉 c2 : Ψ =⇒ out1 = out2 is
derivable, where c1 and c2 are the result of renaming variables
in c to make them separable, then c is (ε, δ)-differentially
private with respect to the relation Ψ on initial memories.

Fig. 5 shows an excerpt of the core rules of the apRHL
logic, including rules for the Laplace and Exponential mech-
anisms. Our approach subsumes core apRHL; the following
lemma shows that every probabilistic program c that can be
verified (ε, δ)-differentially private using the apRHL logic
rules shown in Fig. 5 can be verified using our self-product
technique. The soundness of the sequential composition rule

3The original apRHL rules are based on a multiplicative privacy budget.
We adapt the rules to an additive privacy parameter for consistency with the
rest of the article.



` (x1, x2)← Lap�ε (e1, e2) : vε = ε0 ∧ vδ = δ0 =⇒ x1 = x2 ∧ vε = ε0 + |e1 − e2|ε ∧ vδ = δ0

` (x1, x2)← Exp�ε (s1, e1, s2, e2) : s1 = s2 ∧ vε = ε0 ∧ vδ = δ0 =⇒ x1 = x2 ∧ vε = ε0 + ε maxr |s1(x1, r)− s2(x2, r)|

Fig. 3: Hoare specification for Lap� and Exp�

` x1 ← e1 ∼〈0,0〉 x2 ← e2 : Φ {e1/x1} {e2/x2} =⇒ Φ
[assn]

` y1 $← Lapε(e1) ∼〈|e1−e2|ε,0〉 y2 $← Lapε(e2) : true =⇒ y1 = y2
[lap]

` y1 $← Expε(s1, e1) ∼〈ε maxr |s1(x1,r)−s2(x2,r)|,0〉 y2
$← Expε,s(s2, e2) : s1 = s2 =⇒ y1 = y2

[exp]

` skip ∼〈0,0〉 skip : Ψ =⇒ Ψ
[skip]

` c1 ∼〈ε,δ〉 c2 : Ψ ∧ b1 =⇒ Φ ` d1 ∼〈ε,δ〉 d2 : Ψ ∧ ¬b1 =⇒ Φ

` if b1 then c1 else d1 ∼〈ε,δ〉 if b2 then c2 else d2 : Ψ ∧ b1 = b2 =⇒ Φ
[cond]

` c1 ∼〈ε,δ〉 c2 : Θ ∧ b1 ∧ k = e =⇒ Θ ∧ k < e
Θ ∧ n ≤ e =⇒ ¬b1 Θ =⇒ b1 = b2

` while b1 do c1 ∼〈nε,nδ〉 while b2 do c2 : Θ ∧ 0 ≤ e =⇒ Θ ∧ ¬b1
[while]

` c1 ∼〈ε,δ〉 c2 : Ψ =⇒ Φ′ ` c′1 ∼〈ε′,δ′〉 c′2 : Φ′ =⇒ Φ

` c1; c′1 ∼〈ε+ε′,δ+δ′〉 c2; c′2 : Ψ =⇒ Φ
[seq]

` c1 ∼〈ε′,δ′〉 c2 : Ψ′ =⇒ Φ′ Ψ⇒ Ψ′ Φ′ ⇒ Φ ε′ ≤ ε δ′ ≤ δ
` c1 ∼〈ε,δ〉 c2 : Ψ =⇒ Φ

[weak]

Fig. 5: Core proof rules of the approximate relational Hoare logic

[seq] relies on the assumption that while loops are terminating.

Lemma 2: For every probabilistic program c, memory
relations Ψ,Φ and real expressions ε, δ such that the following
apRHL judgment is derivable

` c ∼〈ε,δ〉 c : Ψ =⇒ Φ

we have

` dce : Ψ =⇒ Φ ∧ vε ≤ ε ∧ vδ ≤ δ.

The proof of this result is straightforward, by induction on the
derivation of the apRHL judgement.

Furthermore, our system can verify examples not captured
by core apRHL—for example, the smart sum algorithm we
describe in §V-A. Our approach is more expressive because
privacy consumption in apRHL is tracked by an accumulator
which is part of the judgment itself, independent of the
pre-condition and the initial memory. Using self-products,
reasoning about the privacy budget is carried out in the Hoare
specification and consequently inherits the full expressivity of
the Hoare logic.

Another instance of an algorithm that cannot be verified in
core apRHL is the minimum vertex cover algorithm developed
by Gupta et al. [25]. The algorithm can proved differentially
private in an ad hoc extension of apRHL. One can extend self-
products to consider the minimum vertex cover algorithm, and
prove the pre-condition of Theorem 5; however, extending the
proof of Theorem 5 to account for this example is problematic.
§V-D discusses this example in more detail.

V. EXAMPLES

In this section, we apply our method to four examples.
The first example (smart sum) is an algorithm for computing
statistics; it involves intricate applications of the composition
theorem, and is thus an interesting test case. The second
example (Iterative Database Construction, or more precisely
the Multiplicative Weights Exponential Mechanism) is an
algorithm that computes a synthetic database; it combines the
Laplace and the Exponential mechanisms, and has not been
verified in earlier work using relational logic. The third exam-
ple (Propose-Test-Release) is an algorithm that only achieves
approximate differential privacy (i.e., (ε, δ)-differential privacy
with δ > 0) using both the privacy and accuracy properties



of the Laplace distribution. To best of our knowledge, we
provide the first machine-checked proof of this mechanism.
Finally, our last example (vertex cover) is an algorithm that
achieves differential privacy by carefully adding noise to
sampled values; this example can only be verified partially
using our method, and illustrates the differences with apRHL.

A. Smart sum

In this example, a database db is a list of real numbers
[r1, . . . , rT ] and we consider two databases adjacent if they
are the same length T , at most one entry differs between the
two databases, and that entry differs by at most 1.

Suppose we want to release private sums of the first i
entries, simultaneously for every i ∈ [1 . . . T ]: that is, given
[r1, r2, r3, r4, . . . , rT ] we want to privately release[

r1,

2∑
i=1

ri,

3∑
i=1

ri,

4∑
i=1

ri, . . . ,

T∑
i=1

ri

]
.

An interesting sophisticated differentially private algorithm
for this problem is the two-level counter from Chan, et al. [14];
we call this algorithm smartsum.

At a high level, this algorithm groups the input list into
blocks of length q, and adds Laplace noise to the sum for
each block. More concretely, to compute a running sum from
1 to t with t a multiple of q, we simply add together the first
t/q block sums. If t is not a multiple of q, say t = qs + r
with r < q, we take the first s block sums and add a noised
version of each of the r remaining elements.

For an example, suppose we take q = 3 and T is a multiple
of 3. For brevity, let us use the notation L(r) to describe the
result of the application of Laplace, for a fixed value ε to r.
Then, the output of smartsum is[

L (r1) , L (r1) + L (r2) , L

(
3∑
i=1

ri

)
,

L

(
3∑
i=1

ri

)
+ L (r4) , . . . ,

T/3∑
j=0

L

(
3∑
i=1

r3j+i

) .
To informally argue privacy, observe that if we run the

Laplace mechanism on each individual entry, there is no pri-
vacy cost for the indices where the adjacent databases are the
same. So, the privacy analysis for smartsum is straightforward:
changing an input element will change exactly two noisy
sums—the sum for the block containing i, and the noisy
version of i—and each noisy sum that can change requires
ε privacy budget, since we are using the Laplace mechanism
with parameter ε. Thus, smartsum is 2ε-private.

The full program, together with the transformation into a
synchronized product program, is presented in Fig. 6. The
formal verification of the 2ε-differential privacy follows the
argument above. The pre-condition states that the two input
databases are adjacent, while the post-condition requires equal-
ity on the outputs and bounds the accumulated privacy budget
by 2ε.

The interesting part for our verification is the while loop.
Indeed, this requires a loop invariant to keep track of the
privacy budget, which depends on whether the differing entry
has been processed or not. As mentioned in the previous
section, this invariant does not fit the apRHL while rule
of Fig. 5: to deal with this example, Barthe et al. [11]
introduce a generalized while rule able to perform refined
analysis depending on a predicate preserved across iterations.
In contrast, here we do not require any special verification
rule: the standard while rule from Hoare logic suffices.

More precisely, we apply the Hoare while rule with the
invariant:

adjacent(l1, l2) ∧ out1 = out2 ∧ next1 = next2 ∧ n1 = n2∧
|c1 − c2| ≤ 1 ∧ (l1 6= l2 ⇒ vε = 0)∧
(c1 6= c2 ⇒ l1 = l2 ∧ vε ≤ ε) ∧ (l1 = l2 → vε ≤ 2 ε)

Notice from the invariant that if the accumulators c1 and c2
differ we have l1 = l2. This corresponds to the fact that
the differing entry has been processed and so the remaining
database entries coincide. Also, if this is the case then the
privacy budget of 2 ε has been already consumed.

The verification of this invariant proceeds by case analysis.
We have three cases: a) the differing entry has not been
processed yet and will not be processed in the following
iteration, b) the differing entry has not been processed yet
but is going to be processed in the next iteration, and c) the
differing entry has already been processed, in which case there
is no more privacy budget consumption.

B. Multiplicative Weights Exponential Mechanism

While answering queries on a database with the Laplace
mechanism is a simple way to guarantee privacy, the added
noise quickly renders the results useless as the number of
queries grows. To handle larger collections of queries, there
has been much research on sophisticated algorithms based on
learning theory.

One such scheme is Iterative Database Construction (IDC),
due to Gupta et al. [26]. The basic idea is simple: given a
database d̂, the algorithm gradually builds a synthetic database
that approximates the original database. The synthetic database
is built over several rounds; after some fixed number of rounds,
the synthetic database is released and used to answer all
queries.

The essence of the algorithm is the computation that it
performs at each round. Let Q be a collection of queries
that we want to answer and let di be the synthetic database
computed at round i. During round i+1, the algorithm selects
a query q ∈ Q with high error; that is, a query where the
current approximate database di and the true database d̂ give
very different answers. This selection is done in a differentially
private way. Next, the algorithm computes a noisy version
v of q evaluated on the true database d̂. Again, this step
must be differentially private. Finally, q, v and the current
database di approximation are fed into an update algorithm,
which generates the next approximation di+1 of the synthetic
database (hopefully performing better on q).



next← 0;n← 0; c← 0;
while 0 < length l do
if length lmod q = 0 then
x← Lap ε(c+ hd l);
n← x+ n;
next← n;
c← 0;
out← next :: out;

else
x← Lap ε(hd l);
next← next+ x;
c← c+ hd l;
out← next :: out;

l← tl l;
return out;

(a) Original probabilistic algorithm

vε ← 0; next1 ← 0; next2 ← 0;
n1 ← 0; n2 ← 0; c1 ← 0; c2 ← 0;
assert ((0 < length l1)⇔ (0 < length l2));
while 0 < length l1 do
assert ((length l1 mod q = 0)⇔ (length l2 mod q = 0));
if length l1 mod q = 0 then

(x1, x2)← Lap�ε (c1 + hd l1, c2 + hd l2));
n1 ← x1 + n1; n2 ← x2 + n2;
next1 ← n1; next2 ← n2;
c1 ← 0; c2 ← 0;
out1 ← next1 :: out1; out2 ← next2 :: out2;

else
(x1, x2)← Lap�ε (hd l1, hd l2));
next1 ← next1 + x1; next2 ← next2 + x2;
c1 ← c1 + hd l1; c2 ← c2 + hd l2;
out1 ← next1 :: out1; out2 ← next2 :: out2;

l1 ← tl l1; l2 ← tl l2;
return (out1, out2);

(b) Synchronized non-probabilistic product

Fig. 6: smartsum algorithm

The key point is that in many cases, this iterative procedure
will provably find an approximation with low error on all
queries in Q in a small number of steps. Hence, we can
run IDC for a small number of steps, and release the final
database approximation as the output. Queries in Q can then
be evaluated on this output for an accurate estimate of the true
answer to the query.

IDC is actually a family of algorithms parameterized by
an algorithm to privately find a high-error query (called the
private distinguisher), and the update function (called the
database update algorithm). For concreteness, let us consider
one well-studied instantiation, the Multiplicative Weights Ex-
ponential Mechanism (MWEM) algorithm originally due to
Hardt and Rothblum [28] and experimentally evaluated by
Hardt et al. [27].

MWEM uses the exponential mechanism to privately select
a query with high error—the quality score of a query q to
be maximized is the error of the query, i.e., the absolute
difference between q evaluated on the approximate database
di and q evaluated on the true database d̂. The update function
applies the multiplicative weights update [3] to adjust the
approximation to perform better on the mishandled query. This
step is non-private: it does not touch the private data directly.
Hence, we do not concern ourselves with the details here, and
treat the update step as a black box. (The reader can find
further details in Hardt et al. [27].) The full program, together
with the transformation into a synchronized product program,
is presented in Fig. 7.

We briefly comment on the program. We let di denote the
i-th iteration of the synthetic database, and d̂ denote the true
database. Initially the synthetic database d0 is set to some
default value def . Then we define the score function si that
takes as inputs a database D and a query Q and returns
the error of the query Q on the current approximation di

compared to D. We then apply the exponential mechanism
to the true database d̂ with the score function si, and we call
the result qi. We then evaluate qi on the real database, and
add Laplace noise; we call the result ai. Finally, we apply
the update function to obtain the next iteration di+1 of the
synthetic database. Once the number of rounds is exhausted,
we return the last computed synthetic databases.

For the privacy proof, we assume that all queries in Q are
1-sensitive. Note that we run T iterations of MWEM; by the
composition theorem, it is sufficient to analyze the privacy
budget consumed by each iteration. Each iteration, we select a
query with the exponential mechanism with privacy parameter
ε, and we estimate the true answer of this query with the
Laplace mechanism, parameter ε. By the composition theorem
(Theorem 3), the whole algorithm is private with parameter
2 · T · ε = 2Tε, as desired. The proof can be transcripted
directly into Hoare logic using self-products; we take as pre-
condition adjacency of the two databases, and use adjacency
to conclude that the sensitivity of the score function si is 1 at
each iteration.

C. Propose-Test-Release

The examples we have considered so far all rely on the
composition theorem. While this is a quite powerful and
useful theorem, not all algorithms use composition. In this
section, we consider one such example: the Propose-Test-
Release (PTR) framework [20], [38]. PTR is also an example
of an (ε, δ)-differentially private mechanism for δ > 0.

The motivation comes from private release of statistics that
are sometimes, but not always, very sensitive. For example,
suppose our database is an ordered list of numbers between 0
and 1000, and suppose we want to release the median element
of the database. This can be highly sensitive: consider the
database [0, 0, 1000] with median 0. Adding a record 1000
to the database would lead to a large change in the median
(now 500, if we average the two elements closest to the
median when the database has even size). However, many



i← 0;
d0 ← def;
while i < T do
si ← λD Q. |Q(di)−Q(D)|
qi ← Expε (si, d̂);

ai ← Lapε (qi d̂);
di+1 ← update (di, ai, qi);
i← i+ 1;

return dT ;

(a) Original probabilistic algorithm

vε ← 0; i1 ← 0; i2 ← 0;
d01 ← def; d02 ← def;
assert (i1 < T ⇔ i2 < T );
while i1 < T do
si1 ← λD Q. |Q(di1)−Q(D)|;
si2 ← λD Q. |Q(di2)−Q(D)|;
(qi1, q

i
2)← Exp�ε (s

i
1, d̂1, s

i
2, d̂2);

(ai1, a
i
2)← Lap�ε (q

i
1(d̂1), qi2(d̂2));

di+1
1 ← update (di1, a

i
1, q

i
1);

di+1
2 ← update (di2, a

i
2, q

i
2);

i1 ← i1 + 1;
i2 ← i2 + 1;
assert (i1 < T ⇔ i2 < T );

return (dT1 , d
T
2 );

(b) Synchronized non-probabilistic product

Fig. 7: MWEM algorithm

other databases have low sensitivities: for [0, 10, 10, 1000],
the median will remain unchanged (at 10) no matter what
element we add or remove from the database. We may hope
that we can privately compute the median in this second case
with much less noise than needed for the first case. More
generally, the second database is quite stable—all adjacent
databases have the same median value. In contrast, the first
database is instable—adjacent databases may have wildly
different median values. With this example in mind, we now
explain the general PTR framework.

Suppose we want to privately release the result of a query q
evaluated on a database d. We assume that databases are taken
from a set D and that there exists a notion of distance ∆ on
D. First, we estimate the distance to instability—that is, the
largest distance x such that q(d) = q(d′) for all databases d′

at distance x or less from d. Since this a 1-sensitive function
(moving to a neighboring database can change the distance to
instability by at most 1), we can release this distance privately
using the Laplace mechanism (say, with parameter ε). Call the
result y. Now, we compare y to a threshold t (to be specified
later). If y is less than the threshold, we output q(d) with no
noise. If y is greater than the threshold, we output a default
value ⊥. The program is given in Fig. 8.

x← DistToInstability (q, d);
y ← Lap ε x;
if (|y| > log(2/δ)/(2ε))
return (q d);

else
return (⊥);

Fig. 8: PTR algorithm

The privacy of the algorithm can be informally justified in
two parts. First, suppose that instead of outputting q(d) or
⊥, we simply output which branch the program took. This is
ε-differentially private: computing y is ε-differentially private
(via the Laplace mechanism), and the resulting branch is a
post-processing of y. Hence, we can assume that the same
branch is taken in both executions.

Second, we can conclude that the original program (out-
putting q(d) or ⊥) is (ε, δ)-differentially private if for any
adjacent databases d and d′ with q(d) 6= q(d′), the first
branch is taken with probability at most δ. By properties of the
Laplace mechanism, we can set the threshold t large enough
so that with probability at least 1− δ, the first branch is only
taken if x is strictly positive. In this case we can conclude
q(d) = q(d′), since q(d) 6= q(d′) implies that x is 0 on both
executions. So, we can safely release q(d) = q(d′) with no
noise. Of course, if the second branch is taken, then it is also
safe to release ⊥ in both runs.

More formally, the proof of (ε, δ)-differential privacy for
PTR rests on two properties of the Laplace mechanism: the
privacy property captured by Theorem 1 and the accuracy
property captured by Lemma 1.

Fig. 9 presents the proof of PTR using the synchronized
product program—the code is interleaved with some of the
pre- and post-conditions. The proof uses the accuracy property
of the Laplace mechanism and the properties of the distance
to instability that we give as specifications in Fig. 10. For
simplicity, we treat distance to instability as an abstract
procedure; however, it can be implemented as a loop over
all databases, in which case the specification can be proved.
The soundness of the accuracy specification for the Laplace
mechanism is shown in the appendix.

D. Vertex cover

A vertex cover for a graph g = (N,E) is a set S of nodes
such that for every edge (t, u) ∈ E, either t ∈ S or u ∈ S.
The minimum vertex cover is the problem of finding a vertex
cover of a minimum size. Gupta et al. [25] study the problem
of privately computing a minimum vertex cover in a setting
where the nodes of the graph are public, but its edges are
private. Since a vertex cover leaks information about vertices
(for instance, any two nodes that are not in the vertex cover are
certainly not connected by an edge), their algorithm outputs
an enumeration of the nodes of the graph, from which a vertex
cover can be recomputed efficiently from the knowledge of the
set E. Their algorithm is challenging to verify because rather



` (y1, y2)← Lap�ε (x1, x2) : x1 = x2 ∧ vδ = δ̂ =⇒ y1 = y2 ∧ |y1 − x1| ≤ log(2/δ)/(2ε) ∧ vδ = δ̂ + δ

` x1 ← DistToInstability (q, d1);x2 ← DistToInstability (q, d2) : ∆(d1, d2) ≤ 1 =⇒ q(d1) = q(d2) ∨ x1 = x2 = 0

Fig. 10: Accuracy specification for the Laplace mechanism, and specification for distance to instability.

{∆(d1, d2) ≤ 1}
vε ← 0;
vδ ← 0;
x1 ← DistToInstability (q, d1);
x2 ← DistToInstability (q, d2);{

(q(d1) = q(d2) ∨ x1 = x2 = 0)
∧vε = 0 ∧ vδ = 0

}
(y1, y2)← Lap�ε (x1, x2); (q(d1) = q(d2)) ∨ (x1 = x2 = 0
∧|y1 − x1| ≤ log(2/δ)/(2ε))
∧y1 = y2 ∧ vε ≤ ε ∧ vδ ≤ δ


assert (|y1| > log(2/δ)/(2ε)⇔ |y2| > log(2/δ)/(2ε));

if (|y1| > log(2/δ)/(2ε)){
q(d1) = q(d2) ∧ vε ≤ ε ∧ vδ ≤ δ

}
return (q(d1), q(d2));{

out1 = out2 ∧ vε ≤ ε ∧ vδ ≤ δ
}

else{
vε ≤ ε ∧ vδ ≤ δ

}
return (⊥,⊥);{

out1 = out2 ∧ vε ≤ ε ∧ vδ ≤ δ
}

Fig. 9: Proof of Propose-Test-Release

n← |E|;
out← [ ];
while g 6= ∅ do
v ← chooseε,n(g);
out← v :: out;
g ← g \ {v};

return out;

Fig. 11: Minimum vertex cover

than relying on mechanisms, it achieves privacy by sampling
according to a suitable noisy distribution choose. The code of
the algorithm is shown in Fig. 11.

We say that two graphs g1 and g2 are adjacent if they differ
at most in one edge 〈t, u〉. By defining choose as

Pr [v ← chooseε,n(g) : v = v′] ∝
(
dE,V (v′) +

4

ε

√
n

|E|

)
where g = (E, V ) and n is a given parameter, one obtains
an (ε, 0)-differentially private algorithm with respect to the
adjacency relation as defined above.

One can prove differential privacy using an extension of
apRHL with ad hoc rules (see Appendix D for details).

We now consider the formal verification of the vertex cover
algorithm using self-products. We first extend the definition of
self-product to choose. Then, there are two cases to consider:
g2 = g1 ∪ {〈u, t〉} and g1 = g2 ∪ {〈u, t〉}. In the first case,
we can use the first Hoare specification from Fig. 12. In the
second case, we use the second and third specifications from
Fig. 12. Using these specifications, it is possible to verify
that the self-product of the vertex cover algorithm satisfies
the Hoare specification of Theorem 5. However, we have not
yet been able to extend the proof of Theorem 5 to deal with
the choose self-product.

E. Formal verification of the examples
The examples above (with the exception of vertex cover)

have been formally verified. For each example, we have built
the corresponding self-product program, and verified this result
using the non-probabilistic and non-relational Hoare logic
rules available in the EasyCrypt [6] framework. As described
above, we have used non-probabilistic axiomatic specifications
for the primitives. Apart from the axiomatic specification, and
the code for the program and the self-product construction, the
longest Hoare logic verification proof (for MWEM) consists
of about 50 lines of code. This demonstrates the simplicity
offered by the self-product construction. The code for these
examples (and others) is available online [1].

VI. RELATED WORK

Differential privacy, first proposed by Blum et al. [13] and
formally defined by Dwork et al. [21], has been an area
of intensive research in the last decade. We have touched
on a handful of private algorithms, including algorithms for
computing running sums [14], [22] (part of a broader literature
on streaming privacy), answering large classes of queries [28],
[27] (part of a broader literature on learning-theoretic ap-
proaches to data privacy), the Propose-Test-Release framework
for answering stable queries in a noiseless way [20], [38],
and private combinatorial optimization [25]. We refer readers
interested in a more comprehensive treatment to the excellent
surveys by Dwork [18], [19].

Verifying differential privacy: Several tools have been
proposed for providing formal verification of the differen-
tial privacy guarantee; we can roughly classify them by
the verification approach they use. PINQ [31] provides an
encapsulation for LINQ —an SQL-like language embedded
in C#—tracking at runtime the privacy budget consumption,
and aborting the computation when the budget is exhausted.
Airavat [35] combines a similar runtime monitor with access
control in a MapReduce framework. While PINQ is restricted
to ε-differential privacy, Airavat can handle also approximate
differential privacy using a runtime monitor for δ.



` (v1, v2)← choose�ε,n(g1, g2) : g1 ∪ {〈u, t〉} = g2 ∧ vε = ε0 =⇒ v1 = v2 ∧ vε = ε0 + ε/
(

2
√
n
√
|g1|
)

` (v1, v2)← choose�ε,n(g1, g2) : g1 = g2 ∪ {〈u, t〉} ∧ vε = ε0 =⇒ (v 6= t ∧ v 6= u) ∧ vε = ε0

` (v1, v2)← choose�ε,n(g1, g2) : g1 = g2 ∪ {〈u, t〉} ∧ vε = ε0 =⇒ (v = t ∨ v = u) ∧ vε = ε0 + ε/4

Fig. 12: Hoare specifications for choose�

Another approach is based on linear type systems.
Fuzz [34] and DFuzz [24] use a type-based approach for
inferring and checking the sensitivity of functional programs.
This sensitivity analysis combined with the use of trusted prob-
abilistic primitives provides the differential privacy guarantee.
Interestingly, this type-based approach can be combined with
type systems for cryptographic protocols to verify differential
privacy for distributed protocols [23]. All these systems pro-
vide automatic verification of differential privacy. However,
they fail to verify all the examples that we can handle, like
advanced sum statistics [14] and the Propose-Test-Release
framework [20]. Moreover, so far they can address only pure
differential privacy, where δ = 0.

Tschantz, et al. [39] consider a verification framework for
interactive private programs, where the algorithm can receive
new input and produce multiple outputs over a series of steps.
They follow an approach similar to ours by verifying the
correct use of differentially private primitives. However, their
programs are well-modeled by probabilistic I/O-automata,
and they provide a proof technique based on probabilistic
bisimulation. Also, their method is currently limited to pure
differential privacy.

Finally, CertiPriv [11] and EasyCrypt [6] use custom
relational logics to verify differential privacy. These systems
are very expressive: they supports general (ε, δ)-differential
privacy, they can verify privacy for mechanisms like the
Laplace and the Exponential mechanism, and they can capture
advanced examples that go beyond mechanisms and compo-
sition, like the private vertex cover algorithm of Gupta et
al. [25]. The difficulty with their approach is that it relies
on a customized and complex logic. Moreover, ad hoc rules
for loops are required for many advanced examples.

Verifying 2-safety properties: Beyond differential privacy,
there is a large body of literature on verifying 2-safety prop-
erties. Our work is most closely related to deductive methods
based on program logics; more precisely, approaches that
reduce 2-safety of a program c to safety of a program c′ built
from c. Such approaches include self-composition [7], prod-
uct programs [40], and type-directed product programs [37].
These approaches are subsumed by work by Barthe et al. [4],
[5].

Another alternative is to reason directly on two programs
(or two executions of the same program) using relational
program logics such as Benton’s relational Hoare logic [12],
or specialized relational logics, e.g., for information flow [2].
CertiCrypt [9], and EasyCrypt [8], [6], are computer-aided
tools that support relational reasoning about probabilistic

programs and have been used to prove security of crypto-
graphic constructions and computational differential privacy of
protocols. For such applications, reasoning about structurally
different programs is essential.

Chaudhuri et al. [15] develop an automated method for
analyzing the continuity and the robustness of programs.
Robustness is a 2-safety property that is very similar to
sensitivity as used in differential privacy. An interesting aspect
of their work is that their analysis is able to reason about two
unsynchronized pairs of executions; that is, pairs of executions
that may have different control flow.

Verification of hyperproperties: Developing general veri-
fication methods for hyperproperties remains a challenge; how-
ever, there have been some recent proposals in this direction
(e.g., [29], [30], [33]).

Other work: There is an extensive body of work on
deductive verification of non-probabilistic and probabilistic
programs, as well as many works that consider product con-
structions of Labeled Transition Systems; summarizing this
large literature is beyond the scope of this paper.

VII. CONCLUSION

We have proposed a program transformation that reduces
proving (ε, δ)-differential privacy of a probabilistic program
to proving a safety property of a deterministic transformed
program. The method applies to all standard examples where
privacy is achieved through mechanisms and composition
theorems; on the other hand, differentially private algorithms
based on ad hoc output perturbation, such as the differentially
private vertex cover algorithm [25], are more difficult to
handle. In particular, they fall outside the scope of Theorem 5
which proves the soundness of our approach. Our method is
particularly suited for reasoning about differential privacy, be-
cause the transformed program can be analyzed with standard
verification tools. Our method can also be extended to reason
about probabilistic non-interference, at the cost of targeting an
assertion language that supports existential quantification over
functions. Directions for further work include extending the
scope of Theorem 5 to deal with more complex examples, like
vertex cover. On a more practical side, it would be interesting
to implement our transformation for a realistic setting, for
instance modeling the PINQ language [31].
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[9] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. For-
mal certification of code-based cryptographic proofs. In 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2009, pages 90–101, New York, 2009. ACM.
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APPENDIX A
DEFINITIONS

A. Semantics of the target language

The semantics of the non-deterministic target language is defined as a function from a memory to a set of memories. In
order to distinguish the failure of assert statements from non-terminating while loops, we lift the domain P(M) with a ⊥
element:

JskipK m = {m}
Jc1; c2K m =

⋃
m′∈Jc1KmJc2Km

Jx← eK m = 1m{JeKE m/x}

Jassert (ϕ)Km = if (JϕKE m) then {m} else ⊥
J(x1, x2)← Lap�ε (e1, e2)Km =

⋃
vm {v/x1} {v/x2} {vε + |e1 − e2|ε/vε}

J(x1, x2)← Exp�ε (s1, e1, s2, e2)Km = if (Js1 = s2KE m = true) then⋃
vm {v/x1} {v/x2} {vε + |e1 − e2|ε/vε}

else ⊥
Jif e then c1 else c2K m = if (JeKE m = true) then (Jc1Km) else (Jc2Km)

Jwhile e do cK m =
⊔
ŵim

where ŵ0m = ∅
ŵi+1m = if (JeKE m = true) then

⋃
m′∈(JcKm) ŵim

′ else {m}

where
⋃
m∈⊥ f m is defined as ⊥ for any f .

APPENDIX B
AUXILIARY LEMMAS

The following is an auxiliary result used in the proof of correctness of the method based on self-products.
Lemma 3: Suppose that for all memories m1,m2 such that m1 Ψm2 we have that c is terminating in m1 and m2, and

(JcKm1) Φ〈ε,δ〉 (JcKm2). Then, for every memory distributions µ1, µ2 such that µ1 Ψ〈ε′,δ′〉 µ2 we have

(JcK? µ1) Φ〈ε+ε′,δ+δ′〉 (JcK? µ2)

The following is another auxiliary result used in the proof of correctness.

Lemma 4: For all memories m1,m2 such that m1 Ψm2 we have that 1m1
Ψ〈0,0〉 1m2

.
Proof: We can take as witness µ̂ = 1m1,m2 .

Lemma 5: Suppose that for m1,m2 such that m1 Ψm2 we have that (µ1m1) Φ〈ε,δ〉 (µ2m2). Then,

((λv.1m1{v/x})
? µ1) Φ〈ε,δ〉 ((λv.1m2{v/x})

? µ2)

Proof: By Lemma 4 and Lemma 3.

The proof of the next two auxiliary lemmas are presented in the work in apRHL [11].
Lemma 6: Given a relation S that is preserved by c, i.e. such that:

∀m1,m2. (m1,m2) ∈ S ⇒ (∀m′1,m′2.(JcKm1m
′
1 6= 0 ∧ JcKm2m

′
2 6= 0⇒ (m′1,m

′
2) ∈ S))

If
∀m1,m2. (m1,m2) ∈ R⇒ (JcKm1)Q〈ε,δ〉 (JcKm2)

then
∀m1,m2. (m1,m2) ∈ (R ∩ S)⇒ (JcKm1) (Q ∩ S)〈ε,δ〉 (JcKm2)

Lemma 7: For all distribution expressions µ1, µ2, if

∆ε(Jµ1Km1, Jµ2Km2) ≤ δ

then
(Jx $← µ1Km1)Q〈ε,δ〉 (Jx $← µ2Km2)

where Q = {(m1,m2) | m1 x = m2 x}.



APPENDIX C
PROOF OF THE MAIN THEOREM

Theorem 5 is a corollary of the following lemma:
Lemma 8:

` dce : Ψ ∧ vε = 0 ∧ vδ = 0 =⇒ Φ ∧ vε ≤ ε ∧ vδ ≤ δ

implies
∀m1,m2. m1 Ψm2 ⇒ (JcKm1) Φ〈ε,δ〉 (JcKm2)

Proof: We first introduce some new notation. For any disjoint memories m1,m2 and real values ε, δ, m1⊕ε,δm2 denotes the
memory m such that mx = m1 x for every x ∈ dom(m1), mx = m2 x for every x ∈ dom(m2), and m vε = ε and m vδ = δ.
Given a memory relation R ⊆M×M, we let R̂〈ε,δ〉 stand for the set {m1 ⊕ε′,δ′ m2 | (m1,m2) ∈ R∧ ε′ ≤ ε∧ δ′ ≤ δ}. The
proof follows by structural induction on c, proving the following lemma: let R,Q ⊆M×M be relations on memories, then(

∀m. m ∈ R̂ε,δ ⇒ ∀m′. m′ ∈ (JdceKm)⇒ m′ ∈ Q̂ε′,δ′
)

=⇒
∀m1,m2. (m1,m2) ∈ R⇒ (JcKm1)Q〈ε′−ε,δ′−δ〉 (JcKm2)

Indeed, by setting ε = 0 and ε′ = ε, we get the statement of Lemma 8.
• Sequential composition: Let (m1,m2) ∈ R. By definition, m1 ⊕ε,δ m2 ∈ R̂ε,δ . Since m′ vε = m′′ vε for all m′,m′′ ∈

Jdc1eK (m1⊕ε,δm2), then there are ε0, δ0 and S ⊆ M × M such that Ŝε0.δ0 = Jdc1eKm1 ⊕ε,δ m2. Also, from the
hypotheses, for all m ∈ Ŝε,δ we have that ∀m′ ∈ (Jdc2eKm). m′ ∈ Q̂ε′,δ′ . By inductive hypothesis we have thus

1) (Jc1Km1)S〈ε0−ε,δ0−δ〉 (Jc1Km2)
2) for all m′,m′′ such that (m′,m′′) ∈ S, we have (Jc2Km′)Qε′−ε0,δ′−δ0(Jc2Km′′)

It follows from Lemma 3 that (Jc2K?(Jc1Km1))Q〈ε−ε,δ′−δ〉 (Jc2K?(Jc1Km2)).
• While loop: We start by proving the following auxiliary result:

(∀m. m ∈ R̂ε,δ ⇒ (b1 = b2)m ∧ ŵim 6= ⊥ ∧ ∀m′ ∈ (ŵim). m′ ∈ Q̂ε′,δ′)
=⇒
∀m1m2. (m1,m2) ∈ R⇒ (wim1)Q〈ε′−ε,δ′−δ〉 (wim2)

The proof follows by natural induction on i. The case i = 0 is trivial. For the inductive step, let m1,m2 ∈ R. Since
m1 ⊕ε,δ m2 ∈ R̂ε,δ , by hypothesis we have m1 b1 ⇔ m2 b2. We proceed by case analysis on m1 b1.

– In the case ¬m1 b1, by definition of ŵi+1, ŵi+1m1⊕ε,δm2 = m1⊕ε,δm2, and thus by hypothesis m1⊕ε,δm2 ∈ Q̂ε′,δ′ ,
which implies ε = ε′ and δ = δ′. By Lemma 4, 1m1

Q〈0,0〉 1m2
, which concludes the proof case since we have as

well wi+1m1 = 1m1
and wi+1m2 = 1m2

.
– If m1 b1 holds, then

ŵi+1m =
⋃

m′∈Jdce; assert (b1⇔b2)K

wim
′

Since b1 ⇔ b2 is deterministic in JdceKm and ŵi+1m 6= ∅ by hypothesis, then

ŵi+1m =
⋃

m′∈JdceK

wim
′

By the same reasoning as with sequential composition, there is then S, ε0, and δ0 such that Ŝε,δ = JdceKm1⊕ε,δm2.
Then, by the structural inductive hypothesis we have (JcKm1)S〈ε0−ε,δ0−δ〉 (JcKm2), and by the natural induction
hypothesis

∀m1m2. (m1,m2) ∈ S ⇒ (wim1)Q〈ε′−ε0,δ′−δ0〉 (wim2)

We can conclude from Lemma 3 that

(wi+1m1)Q〈ε′−ε,δ′−δ〉 (wi+1m2)

It remains to show that the property holds as well when considering the lubs
⊔
ŵi and

⊔
wi:

(∀m. m ∈ R̂ε,δ ⇒ (b1 = b2)m ∧ ∀m′ ∈ (
⊔
ŵim). m′ ∈ Q̂ε′,δ′)

=⇒
∀m1m2. (m1,m2) ∈ R⇒ (

⊔
wim1)Q〈ε′−ε,δ′−δ〉 (

⊔
wim2)



Let m1 and m2 such that (m1,m2) ∈ R. Since m1⊕ε,δm2 then ∀m′ ∈ (
⊔
ŵim). m′ ∈ Q̂ε′,δ′ . Since we are considering

terminating program loops, there exists k such that for all j ≥ k:

ŵj(m1 ⊕ ε, δm2) 6= ∅

and furthermore
ŵj(m1 ⊕ ε, δm2) =

⊔
ŵi(m1 ⊕ ε, δm2)

From the auxiliary lemma above we have thus

(wjm1)Q〈ε−ε′,δ−δ′〉 (wjm2)

for all j ≥ k. Since the loop termination condition is deterministic by assumption then it also holds that wjm1 =
⊔
i wim1

and wjm2 =
⊔
i wim2 for all j ≥ k. Then we can conclude:

(
⊔
i

wim1)Q〈ε−ε′,δ−δ′〉 (
⊔
i

wim2)

• Laplace mechanism: We consider the case x $← Lapε(e). Let m1 and m2 such that (m1,m2) ∈ R. Then m1⊕ε0,δ0 m2 ∈
R̂ε0,δ0 . From the hypothesis JdceKm ⊆ Q̂ε′,δ′ and the semantics of the target language, we get⋃

v∈R
(m1 {v/x})⊕ε0+|JeKm1−JeKm2|ε,δ0 (m2 {v/x}) ⊆ Q̂ε′,δ′

From this, we can conclude δ′ = δ0, ε′ = ε0 + |JeKm1 − JeKm2|ε and

Q ⊇ {(m1,m2) | ∃v1, v2. (m1 {v1/x} ,m2 {v2/x}) ∈ R} ∩ {(m1,m2) | m1 x = m2 x}

Since the first term in the intersection above is preserved by any assignment to the x variable, by Lemma 6 it is enough
to consider the case Q = {(m1,m2) | m1 x = m2 x}, and prove (JcKm1)Q〈|JeKm1−JeKm2|ε,0〉 (JcKm2). To verify this, by
Lemma 7, it is sufficient to show that

∆|JeKm1−JeKm2|ε(Lapε(JeKm1), Lapε(JeKm2)) ≤ 0

We need to show that for every r we have

Lapε(JeKm1) r − exp(|JeKm1 − JeKm2|ε)Lapε(JeKm2) r ≤ 0

Then, it is enough to prove: exp
(
− ε|r−JeKm1|

2

)
∑
r′ exp

(
− ε|r

′−JeKm1|
2

)
− exp(|JeKm1 − JeKm2|ε)

 exp
(
− ε|r−JeKm2|

2

)
∑
r′ exp

(
− ε|r

′−JeKm2|
2

)
 ≤ 0

This is equivalent to prove

exp
(
− ε|r−JeKm1|

2

)
·
∑
r′∈R exp

(
− ε|r

′−JeKm2|
2

)
exp
(
− ε|r−JeKm2|

2

)
·
∑
r′∈R exp

(
− ε|r

′−JeKm1|
2

) ≤ exp(|JeKm1 − JeKm2|ε)

The first term can be bound by

exp

(
ε|JeKm2 − JeKm1|

2

)
·

∑
r′∈R exp

(
− ε|r

′−JeKm2|
2

)
∑
r′∈R exp

(
− ε|r

′−JeKm1|
2

)
For every r′ ∈ R, we know |r′ − JeKm2| ≥ |r′ − JeKm1| − |JeKm2 − JeKm1|. So, the above can be bound by

exp

(
ε|JeKm2 − JeKm1|

2

)
·

∑
r′∈R exp

(
− ε(|r

′−JeKm1|−|JeKm2−JeKm1|)
2

)
∑
r′∈R exp

(
− ε|r

′−JeKm1|
2

)
that is equivalent to

exp

(
ε|JeKm2 − JeKm1|

2

)
· exp

(
ε|JeKm2 − JeKm1|

2

)
·

∑
r′∈R exp

(
− ε|r

′−JeKm1|
2

)
∑
r′∈R exp

(
− ε|r

′−JeKm1|
2

)



and simplifying

exp

(
ε|JeKm2 − JeKm1|

2

)
· exp

(
ε|JeKm2 − JeKm1|

2

)
that is what we need.

• Exponential mechanism: Following a similar reasoning to the Laplace mechanism case, we need to prove that for every
r we have

Expε(JsKm1, JeKm1) r − exp(ε1 − ε0)Expε(JsKm2, JeKm2) r ≤ 0

where Expε(s, x) stands for the distribution

λr.
exp
(
εs(x,r)

2

)
∑
r′∈R exp

(
εs(x,r′)

2

)
By Lemma 5 and the fact that JsKm1 = JsKm2 = ŝ it is then enough to prove:

exp
(
εŝ(JeKm1,r)

2

)
∑
r′∈R exp

(
εŝ(JeKm1,r′)

2

) − exp(ε1 − ε0)
exp
(
εŝ(JeKm2,r)

2

)
∑
r′∈R exp

(
εŝ(JeKm2,r′)

2

) ) ≤ 0

This is equivalent to prove

exp
(
εŝ(JeKm1,r)

2

)
·
∑
r′∈R exp

(
εŝ(JeKm2,r

′)
2

)
exp
(
εŝ(JeKm2,r)

2

)
·
∑
r′∈R exp

(
εŝ(JeKm1,r′)

2

) ≤ exp(ε1 − ε0)

Continuing we have

exp

(
ε(ŝ(JeKm1, r)− ŝ(JeKm2, r))

2

)
·

∑
r′∈R exp

(
εŝ(JeKm2,r

′)
2

)
∑
r′∈R exp

(
εŝ(JeKm1,r′)

2

) ≤ exp(ε1 − ε0)

Using the fact that maxr∈R |ŝ(e1, r)− ŝ(e2, r)|ε ≤ ε1 − ε0 we have:

exp

(
ε1 − ε0

2

)
·

∑
r′∈R exp

(
εŝ(JeKm2,r

′)
2

)
∑
r′∈R exp

(
εŝ(JeKm1,r′)

2

) ≤ exp(ε1 − ε0)

Using the same fact we also know that for every r′ ∈ R we have ŝ(e2, r) ≤ ε1−ε0
ε + ŝ(e1, r). So,we have:

exp

(
ε1 − ε0

2

)
·

∑
r′∈R exp

(
(ε1−ε0)+εŝ(JeKm1,r

′)
2

)
∑
r′∈R exp

(
εŝ(JeKm1,r′)

2

) ≤ exp(ε1 − ε0)

that is equivalent to

exp

(
ε1 − ε0

2

)
· exp

(
ε1 − ε0

2

)
·

∑
r′∈R exp

(
εŝ(JeKm1,r

′)
2

)
∑
r′∈R exp

(
εŝ(JeKm1,r′)

2

) ≤ exp(ε1 − ε0)

and simplifying

exp

(
ε1 − ε0

2

)
· exp

(
ε1 − ε0

2

)
≤ exp(ε1 − ε0)

Lemma 9 (Proof of the accuracy specification):

∀m1,m2. JeKm1 = JeKm2 ⇒ (Jx← Lapε(e)Km1)Q〈0,δ〉 (Jx← Lapε(e)Km2)

where
Q

.
= {(m1,m2) | m1 x = m2 x ∧ |m1 x− JeKm1| ≤ log(2/δ)/(2ε)}

Proof: We need to prove:
(Jx $← Lapε(e)Km1)Q〈0,δ〉 (Jx $← Lapε(e)Km2)



By the assumption e1 = e2 we have that Jx $← Lapε(e)Km1 and Jx $← Lapε(e)Km2 are the same distribution µ̂. Now, consider
the set S = {z : R | |z − Je1Km1| < log(2/δ)/(2ε)} and the distribution µ ∈ D(R× R), parametrized on S defined as:

µ(z1, z2) :=

{
µ̂ z1 if z1 = z2 ∧ z1 ∈ S
0 otherwise.

Notice that by definition of µ̂ we have π1µ ≤ Jx $← Lapε(e)Km1 and π2µ ≤ Jx $← Lapε(e)Km2. Moreover, by definition of S
we also have that for every m, µm 6= 0⇒ Φm. Since clearly π1µ = π2µ, the only thing left to prove is that ∆0(µ̂, π1µ) ≤ δ.
This means that we need to prove

max
R⊆R
{µ̂ R− π1µR} ≤ δ

It is easy to see that on values in R ∩ S the two distribution coincide. So we can instead consider

max
R⊆(R/S)

{µ̂ R− π1µR} ≤ δ

Now, notice that for every R ⊆ (R/S) we have π1µ = 0, so we can just consider

max
R⊆(R/S)

{µ̂ R} ≤ δ

and since by definition µ̂ R =
∑
a∈R µ̂ a where every value is non-negative, we can just consider µ̂ (R/S) ≤ δ. Now, recall

that S corresponds to the interval:

[−(log(2/δ)/(2ε)) + JeKm1, JeKm1 + (log(1/δ)/ε)]

and that µ̂ = Jx $← Lapε(e)Km1. So, we can apply a tail bound on the Laplace distribution:

{µ̂ z | z ∈ (R/S)} = {µ̂ z | |z − JeKm1| ≥ log(2/δ)/(2ε)} < δ.

and conclude

µ̂ (R/S) ≤ δ

that is what we need.

Lemma 10 (Tail bound for the discrete version of Laplace): Let x be drawn from the discrete version of the Laplace
distribution with mean 0 and parameter b > 0, i.e., with probability

Lb(x) =
exp
(
− |x|2b

)
∑
z∈Z exp

(
− |z|2b

) .
Then, for T ∈ N and T > 0:

Pr [x : |Lb(x)| > T ] ≤ 2 exp

(
− T

2b

)
.

In particular, if b = 1/ε (like in Lap ε(x)) and T = log(2/δ)/(2ε), we have Lemma 1.



Proof: We have

Pr [x : |Lb(x)| > T ] = Pr

x :

∣∣∣∣∣∣
exp
(
− |x|2b

)
∑
z∈Z exp

(
− |z|2b

)
∣∣∣∣∣∣ > T


= Pr

x :
exp
(
− |x|2b

)
∑
z∈Z exp

(
− |z|2b

) > T

+ Pr

x :
exp
(
− |x|2b

)
∑
z∈Z exp

(
− |z|2b

) < −T


=

∞∑
x=T

exp
(
− |x|2b

)
∑
z∈Z exp

(
− |z|2b

) +

−∞∑
−T

exp
(
− |x|2b

)
∑
z∈Z exp

(
− |z|2b

)
=

∑∞
x=T exp

(
− x

2b

)
+
∑−∞
−T exp

(
x
2b

)
∑
z∈Z exp

(
− |z|2b

)
=

∑∞
x=0 exp

(
−x+T2b

)
+
∑∞
x=0 exp

(−x−T
2b

)∑
z∈Z exp

(
− |z|2b

)
=

exp
(
− T

2b

) ∑∞
x=0 exp

(
− x

2b

)
+ exp

(
− T

2b

) (
1 +

∑∞
x=1 exp

(
− x

2b

))∑
z∈Z exp

(
− |z|2b

)
= exp

(
− T

2b

) (∑∞
x=0 exp

(
− x

2b

)
+ 1 +

∑∞
x=1 exp

(
− x

2b

))∑
z∈Z exp

(
− |z|2b

)
= exp

(
− T

2b

)  1∑
z∈Z exp

(
− |z|2b

) +

(∑∞
x=0 exp

(
− x

2b

)
+
∑∞
x=1 exp

(
− x

2b

))∑
z∈Z exp

(
− |z|2b

)


= exp

(
− T

2b

)  1∑
z∈Z exp

(
− |z|2b

) + 1


≤ 2 exp

(
− T

2b

)

APPENDIX D
VERIFICATION OF VERTEX COVER

The extended logic used to prove the vertex cover in apRHL features a more precise rule for while loops, that allows the
privacy budget to vary at each iteration

Θ =⇒ b1 ≡ b2 ∧ i1 = i2 Θ ∧ n ≤ i1 =⇒ ¬b1
` c1 ∼〈εj ,δj〉 c2 : Θ ∧ b1 ∧ i1 = j =⇒ Θ ∧ i1 = j+1

` while b1 do c1 ∼〈∑n−1
i=0 εi,

∑n−1
i=0 δi〉 while b2 do c2 : Θ ∧ i1 = 0 =⇒ Θ ∧ ¬b1

and a code motion rule that allows to swap statements c1 and c2 provided they satisfy some independence condition:

` c1; c2 ∼〈0,0〉 c2; c1 : ∀x ∈ X.x1 = x2 =⇒ ∀x ∈ X.x1 = x2

In addition, the extended logic features a transitivity rule that allows to compose apRHL judgments. These rules can be readily
encoded in our setting, provided we allow for more general forms of products as considered in [4], [5].

However, the extended logic also considers a probabilistic programming language with assert statements, and ad hoc rules
for random assignments and while loops:

Θ =⇒ b1 ≡ b2 ∧ P1 ≡ P2

` c1; assert (P1) ∼〈ε,δ〉 c2; assert (P2) : Θ ∧ b1 ∧ ¬P1 =⇒ Θ
` c1 ∼〈0,0〉 c2 : Θ ∧ b1 =⇒ Θ
` c1 ∼〈0,0〉 c2 : Θ ∧ b1 ∧ P1 =⇒ Θ ∧ P1

` while b1 do c1 ∼〈ε,δ〉 while b2 do c2 : Θ =⇒ Θ ∧ ¬b1



These rules are not captured by our approach.
For comparison, we briefly describe the proof in apRHL and the relational specifications of choose that are required for

completing the proof. For the first case, the apRHL proof uses the first generalized loop rule, and the following property of
choose:

` v1 ← chooseε,n(g1) ∼〈
ε/
(
2
√
n
√
|g1|
)
,0
〉 v2 ← chooseε,n(g2) : g1 ∪ {〈u1, t1〉} = g2 =⇒ v1 = v2

In the second case, the apRHL uses the second generalized loop rule, and the following properties of choose:

`
(

v1 ← chooseε,n(g1);
assert (v1 6= u1 ∧ v1 6= t1)

)
∼〈0,0〉

(
v2 ← chooseε,n(g2);

assert (v2 6= u2 ∧ v2 6= t2)

)
: g1 = g2 ∪ {〈u2, t2〉} =⇒ v1 = v2,

`
(

v1 ← chooseε,n(g1);
assert (v1 = u1 ∨ v1 = t1)

)
∼〈 ε4 ,0〉

(
v2 ← chooseε,n(g2);

assert (v2 = qu2 ∨ v2t2)

)
: g1 = g2 ∪ {〈u2, t2〉} =⇒ v1 = v2.
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