Composition, Verification, and Differential Privacy

Justin Hsu

University of Wisconsin-Madison

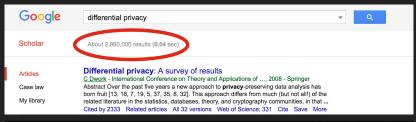
Lightning recap

Definition (Dwork, McSherry, Nissim, Smith (2006)) An algorithm is (ε, δ) -differentially private if, for every two adjacent inputs, the output distributions μ_1, μ_2 satisfy:

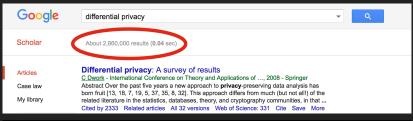
for all sets of outputs S, $\Pr_{\mu_1}[S] \leq e^{\varepsilon} \cdot \Pr_{\mu_2}[S] + \delta$

Intuitively

Output can't depend too much on any single individual's data







TPDP 2018 - Theory and Practice of Differential Privacy

Toronto, Canada - 15 October 2018 - part of CCS 2018

Why so popular? Elegant definition

Cleanly carve out a slice of privacy

- Mathematically formalize one kind of privacy
- "Your data" versus "data about you" (McSherry)

Simple and flexible

- Can establish property in isolation
- Achievable via rich variety of techniques

Why so popular? Theoretical features

Protects against worst-case scenarios

- Strong adversaries
- Colluding individuals
- Arbitrary side information

Rule out "blatantly" non-private algorithms

Release data record at random: not private!

Above all, one reason...

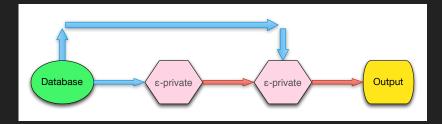
Above all, one reason...

Composition!

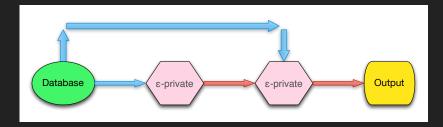
- 1. Review and motivate composition properties
- 2. Case study: formal verification for privacy
- 3. Case study: advanced composition

A Quick Review: Composition and Privacy

Sequential composition



Sequential composition



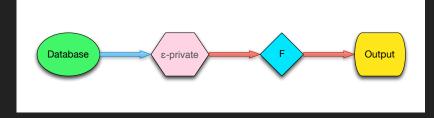
Theorem

Consider randomized algorithms $M: D \rightarrow \text{Distr}(R)$ and $M': R \times D \rightarrow \text{Distr}(R')$. If M is (ε, δ) -private and for every $r \in R$, M'(r, -) is (ε', δ') -private, then the composition

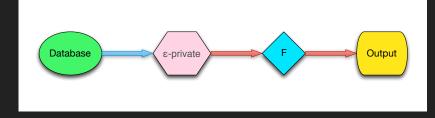
 $r \sim M(d); out \sim M'(r, d); \mathsf{return}(out)$

is $(\varepsilon + \varepsilon', \delta + \delta')$ -private.

Example: post processing



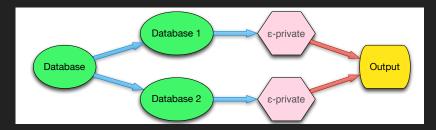
Example: post processing



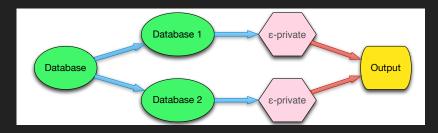
Privacy is preserved

- F is (0,0)-private: doesn't use private data
- Result is still (ε, δ) -private

Parallel composition



Parallel composition



Theorem

Consider randomized algorithms $M_1: D \rightarrow \text{Distr}(R_1)$ and $M_2: D \rightarrow \text{Distr}(R_2)$. If M_1 and M_2 are both (ε, δ) -private, then the parallel composition

 $(d_1, d_2) \leftarrow split(d); r_1 \sim M_1(d_1); r_2 \sim M_2(d_2); \mathsf{return}(r_1, r_2)$

is (ε, δ) -private.

Example: local differential privacy

Each individual adds noise

- Split data among individuals
- ► Each individual computation achieves privacy

Central computation aggregates noisy data

Post-processing

Group privacy

Bound output distance when multiple inputs differ

- ▶ Inputs databases differ in one individual: $(\varepsilon, 0)$ -privacy
- ► Inputs databases differ in k individuals: $(k\varepsilon, 0)$ -privacy

Cast privacy as Lipschitz continuity

- Composes well
- Not so clean for (ε, δ) -privacy...

Why You Might Care About Composition

Make definitions easier to use

Easier to prove property

- Privacy proofs are often straightforward
- Don't need to unfold definition each time

More people can prove privacy

Don't need years of PhD training

Increase re-usability

Dramatically increases impact

- One useful algorithm can enable many others
- ► Repurpose for new, unforeseen applications

Increase re-usability

Dramatically increases impact

- One useful algorithm can enable many others
- Repurpose for new, unforeseen applications

Key algorithms used everywhere

- Laplace, Gaussian, Exponential mechanisms
- Sparse vector technique
- Private counters
- Subsampling

Build larger algorithms

Scale up private algorithms

- ► Construct complex private algorithms out of simple pieces
- Composition ensures result is still correct

Enables common toolboxes

- PINQ framework (McSherry)
- PSI project (see Salil's talk)

Sign of a "good" definition

Not just about generalizing

- ► More general: must assume less about the pieces
- More specific: must prove more about the whole

Sweet spot between specific and general

One way of probing robustness of definitions

Case Study: Verifying Privacy

Recap: verification setting

Dynamic

- ► Monitor program as it executes on particular input
- Raise error if it violates differential privacy

Static

- Take program (maybe written in special language)
- Check differential privacy on all inputs

Composition is crucial

Simplify verification task

- ► Trust a (small) collection of primitives
- Verify components separately

Enable automation

- ► Generally: enables faster/simpler verification
- ► So simple, a computer can do it

Privacy-integrated queries (PINQ)

C# library for private queries

- Proposed by Frank McSherry (2006)
- ► First verification technique for privacy

Dynamic analysis

- User writes PINQ query in C#
- Runtime monitors privacy budget as query runs

The Fuzz family of languages History

- ► Reed and Pierce (2010), many subsequent extensions
- Programming language and custom type system

Main concept: function sensitivity

- ► Equip each type with a metric
- ► Types can express Lipschitz continuity

The Fuzz family of languages History

- ► Reed and Pierce (2010), many subsequent extensions
- Programming language and custom type system

Main concept: function sensitivity

- ► Equip each type with a metric
- ► Types can express Lipschitz continuity

Example

 $!_k \sigma \multimap \tau$ is type of a k-sensitive function from σ to τ

The Fuzz family of languages

Strengths

- Static analysis: don't need to run program
- Typechecking/privacy checking can be automated
- Can express sequential and parallel composition
- Captures kind of group privacy (e.g., $(\varepsilon, 0)$ -privacy)

Weaknesses

- Can't verify programs where proof isn't from composition
- Have to use a custom programming language

The Fuzz family of languages

Recent developments: extending to (ε, δ) -privacy

- Idea: cast (ε, δ) -privacy as sensitivity property
- For inputs that are two apart, output distributions are (ε, δ)-related via some intermediate distribution
- So-called path metric construction
- ▶ Incorporate (ε, δ) -privacy into Fuzz framework

Privacy as an approximate coupling

History

- Arose from work on verifying cryptographic protocols via game-based techniques, comparing pairs of hybrids
- Target more familiar, imperative programming language

Main concept: prove privacy by constructing a coupling

- Consider program run on two adjacent inputs
- Approximately couple sampling instructions
- Establish relation between coupled outputs

Privacy as an approximate coupling

Strengths

- Static analysis: don't need to run program
- Can verify examples beyond composition
- Sparse vector, propose-test-release, ...
- No issue handling (ε, δ) -privacy

Weaknesses

- Checks proof automatically, but doesn't build proof
- Human expert must provide proof, manual process

Privacy as an approximate coupling

Recent developments: automate proof construction

- Encode proof requirement as a logical constraint
- Use techniques from program synthesis to find valid proofs
- Automatically verify sophisticated algorithms
- Sparse vector, report-noisy-max, between thresholds, ...

Brilliant collaborators

Case Study: Advanced Composition

Recap: advanced composition

Sequentially compose k mechanisms

- **•** Each (ε, δ) -private
- Basic analysis: result is $(k\varepsilon, k\delta)$ -private

Recap: advanced composition

Sequentially compose k mechanisms

- ► Each (ε, δ) -private
- Basic analysis: result is $(k\varepsilon, k\delta)$ -private

Better analysis

- ▶ Proposed by Dwork, Rothblum, and Vadhan (2010)
- ▶ For any δ' , result is $(\varepsilon', k\delta + \delta')$ -private for

$$\varepsilon' = \varepsilon \sqrt{2k \ln(1/\delta')} + k\varepsilon (e^{\varepsilon} - 1)$$

Extremely useful, but seems a bit off...

Intuitively

- Slow growth of ε by increasing δ a bit more
- Privacy loss is "usually" much less than $k\varepsilon$

Composition is not so clean

- Best bounds if applied to a block of k mechanisms
- Weaker if repeatedly applied pairwise

Improving the definitions: RDP and zCDP

History

- "Concentrated DP": Dwork and Rothblum (2016)
- "Zero-Concentrated DP": Bun and Steinke (2016)
- "Rényi DP": Mironov (2017)
- Bound Rényi divergence between output distributions
- Refinement of (ε, δ) -privacy

Cleaner composition

Theorem (Mironov (2017))

Consider randomized algorithms $M : D \rightarrow \text{Distr}(R)$ and $M' : R \times D \rightarrow \text{Distr}(R')$. If M is (α, ε) -RDP and for every $r \in R$, M'(r, -) is (α, ε') -RDP, then the composition

 $r \sim M(d); out \sim M'(r,d); \mathsf{return}(out)$

is $(\alpha, \varepsilon + \varepsilon')$ -RDP.

Benefits

- Composing pairwise or k-wise: same bounds
- Closure under post-processing
- Improved formulation of advanced composition

Simplify reasoning

Enable formal verification

- Extensions of techniques for imperative languages
- Also works for programs in functional languages
- Opens the way to automated proofs

Wrapping Up

Success of privacy is a success of composition

Key factor behind high interest

- Make proofs easy enough for all
- The world has only so many TCS researchers
- Trivial to adapt privacy to new applications
- ► Ancillary benefit: enable computer verification

Composition matters!

Often not easy, but...

- Difference between a theoretically interesting definition, and a practically usable one
- Worth extra work and trouble to achieve

Compare to situation in cryptography

- Immense need for this technology, but poor composition
- ► Implementation still tricky, subtle errors
- "Don't roll your own cryptography"

Trend towards "formal engineering"

Security is too hard for humans

- ► Want formal guarantees from our systems
- Rule out classes of attacks (subject to assumptions...)
- Principled construction of safe software

Compositional definitions are critical to this vision

- Needed to reason about large systems
- Only way to manage complexity

As I once heard from a famous systems researcher...

As I once heard from a famous systems researcher...

Without modularity, there is no civilization.

As I once heard from a famous systems researcher...

Without modularity, there is no civilization.

(Or at least, the going is pretty tough.)

Composition, Verification, and Differential Privacy

Justin Hsu

University of Wisconsin-Madison