Privately Solving Linear Programs

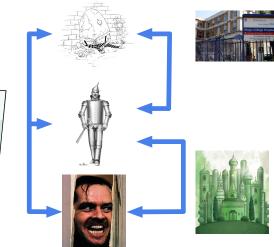
Justin Hsu1Aaron Roth1Tim Roughgarden2Jonathan Ullman3

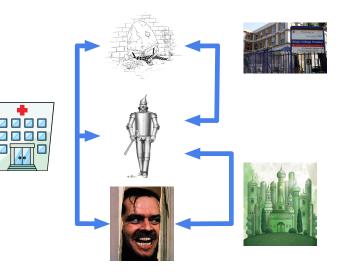
¹University of Pennsylvania

²Stanford University

³Harvard University

July 8th, 2014





Set cover

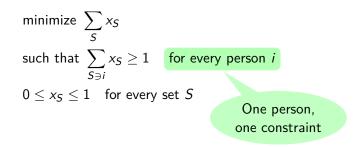
• Approximate solution by solving a linear program (LP):

minimize
$$\sum_{S} x_{S}$$

such that $\sum_{S \ni i} x_{S} \ge 1$ for every person i
 $0 \le x_{S} \le 1$ for every set S

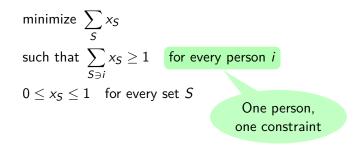
Set cover

• Approximate solution by solving a linear program (LP):



Set cover (Private?)

• Approximate solution by solving a linear program (LP):



Set cover (Private?)

• Approximate solution by solving a linear program (LP):

minimize
$$\sum_{S} x_{S}$$

such that $\sum_{S \ni i} x_{S} \ge 1$ for every person *i*
 $0 \le x_{S} \le 1$ for every set *S*
One person,
one constraint

More generally...

- Solving LPs is a very common tool
- Can we solve LPs privately?

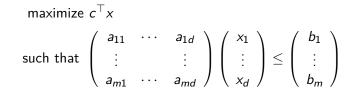
Today

The plan

- LPs and privacy
- "Neighboring" LPs
- A private LP solver
- The state of private LPs

Linear Programs (LPs)

General form



Linear Programs (LPs)

General form

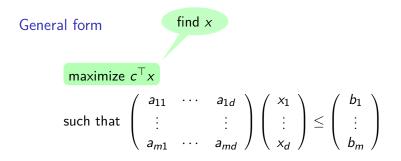
maximize
$$c^{\top}x$$

such that $\begin{pmatrix} a_{11} & \cdots & a_{1d} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{md} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \leq \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$

We'll assume

- Optimum objective value known
- Just want to find feasible solution

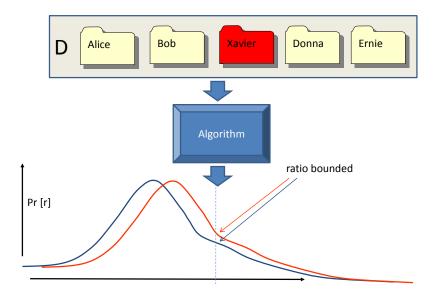
Linear Programs (LPs)



We'll assume

- Optimum objective value known
- Just want to find feasible solution

Differential privacy [DMNS]



Definition (DMNS)

Let M be a randomized mechanism from databases to range \mathcal{R} , and let D, D' be databases differing in one record. M is (ε, δ) -differentially private if for every $r \in \mathcal{R}$,

$$\Pr[M(D) = r] \le e^{\varepsilon} \cdot \Pr[M(D') = r] + \delta.$$

Definition (DMNS)

Let M be a randomized mechanism from databases to range \mathcal{R} , and let D, D' be databases differing in one record. M is (ε, δ) -differentially private if for every $r \in \mathcal{R}$,

$$\Pr[M(D) = r] \le e^{\varepsilon} \cdot \Pr[M(D') = r] + \delta.$$

For us

database ⇒ linear program

Definition (DMNS)

Let M be a randomized mechanism from databases to range \mathcal{R} , and let D, D' be databases differing in one record. M is (ε, δ) -differentially private if for every $r \in \mathcal{R}$,

$$\Pr[M(D) = r] \le e^{\varepsilon} \cdot \Pr[M(D') = r] + \delta.$$

For us

- database \implies linear program
- differing in one record \implies ??

Definition (DMNS)

Let M be a randomized mechanism from databases to range \mathcal{R} , and let D, D' be databases differing in one record. M is (ε, δ) -differentially private if for every $r \in \mathcal{R}$,

$$\Pr[M(D) = r] \le e^{\varepsilon} \cdot \Pr[M(D') = r] + \delta.$$

For us

- database \implies linear program
- differing in one record \implies ??

What are "neighboring" LPs?

Neighboring LPs

Define what data can change on "neighboring" LPs

- One row of constraint matrix
- One column of constraint matrix
- The objective
- The scalars

Neighboring LPs

Define what data can change on "neighboring" LPs

- One row of constraint matrix
- One column of constraint matrix
- The objective
- The scalars

Qualitatively different results (and algorithms)

Detour: Some context

Prior work

- Known iterative solvers for LPs (multiplicative weights [PST])
- Private version of this technique used for <u>query release</u> [HR]
- Also used for analyst private query release [HRU]

Detour: Some context

Prior work

- Known iterative solvers for LPs (multiplicative weights [PST])
- Private version of this technique used for <u>query release</u> [HR]
- Also used for analyst private query release [HRU]

Our contribution

- Observe the private query release problem is equivalent to solving a LP under "scalar privacy"
- Extend known techniques to additional classes of private LPs

Neighboring LPs

Define what data can change on "neighboring" LPs

- One row of constraint matrix
- One column of constraint matrix
- The objective
- The scalars

Qualitatively different results (and algorithms)

Neighboring LPs

Define what data can change on "neighboring" LPs

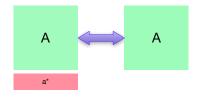
- One row of constraint matrix
- One column of constraint matrix
- The objective
- The scalars

Qualitatively different results (and algorithms)

Hiding a constraint

"Constraint privacy"

• Neighboring databases have constraint matrices:



- All other data unchanged
- Hide presence or absence of a single constraint
- Example: private set cover LP

Multiplicative weights for LPs

Iterative LP solver [PST]

- Maintain distribution over constraints
- In a loop:
 - Find point satisfying (a single) "weighted" constraint
 - Reweight to emphasize unsatisfied constraints

Repeat

Multiplicative weights for LPs

Iterative LP solver [PST]

- Maintain distribution over constraints
- In a loop:
 - Find point satisfying (a single) "weighted" constraint
 - Reweight to emphasize unsatisfied constraints

Multiplicative weights for LPs

Iterative LP solver [PST]

- Maintain distribution over constraints
- In a loop:
 - Find point satisfying (a single) "weighted" constraint
 - Reweight to emphasize unsatisfied constraints

- Repeat
- Average of points is approximately feasible solution

Constraint privacy?

Recall: hide presence or absence of a single constraint

- Select point satisfying weighted constraint privately
- Adapt known algorithms from privacy literature

Constraint privacy?

Recall: hide presence or absence of a single constraint

- Select point satisfying weighted constraint privately
- Adapt known algorithms from privacy literature

One more key idea

- Cap weight on any single constraint by projecting distribution
- Limit influence of a single constraint on chosen point
- Pay in the accuracy...

How good is the solution?

Two ways of being inaccurate

- Solution satisfies most constraint to within additive $\boldsymbol{\alpha}$
- The other constraints can be arbitrarily infeasible
- Precise theorem depends on how points satisfying the weighted constraints are chosen, specific LP, etc...

How good is the solution?

Two ways of being inaccurate

- Solution satisfies most constraint to within additive $\boldsymbol{\alpha}$
- The other constraints can be arbitrarily infeasible
- Precise theorem depends on how points satisfying the weighted constraints are chosen, specific LP, etc...

Theorem

Let OPT be the size of the optimal cover. There is an (ε, δ) -constraint private algorithm that with high probability produces a fractional collection of sets covering all but s people to at least $1 - \alpha$, where

$$s = \tilde{O}\left(rac{\mathsf{OPT}^2 \log^{1/2}(1/\delta)}{lpha^2 \cdot arepsilon}
ight).$$

• Not hard to see: can't hope to hide presence of a constraint if all constraints must be approximately satisfied

• Not hard to see: can't hope to hide presence of a constraint if all constraints must be approximately satisfied

Even more discouraging results...

- Not hard to see: can't hope to hide presence of a constraint if all constraints must be approximately satisfied
- Even more discouraging results...
 - Objective private LPs? Impossible.

• Not hard to see: can't hope to hide presence of a constraint if all constraints must be approximately satisfied

Even more discouraging results...

- Objective private LPs? Impossible.
- Column private LPs? Impossible.

• Not hard to see: can't hope to hide presence of a constraint if all constraints must be approximately satisfied

Even more discouraging results...

- Objective private LPs? Impossible.
- Column private LPs? Impossible.
- Scalar private LPs? Impossible.

What is there to do?

Classifying private LPs

Needed: finer distinctions

- LPs encode an extremely broad range of problems
- Little hope to solve all LPs privately, for any notion of privacy
- Lower bounds are all for very simple, "unnatural" LPs
- Focus on smaller classes of LPs/neighboring LPs

A simple distinction: sensitivity

Bounding the degree of change

- In privacy for databases, number of records n
- As *n* increases, accuracy often improves
- Adapt same idea to private LPs

A simple distinction: sensitivity

Bounding the degree of change

- In privacy for databases, number of records n
- As *n* increases, accuracy often improves
- Adapt same idea to private LPs

Distinguishing two kinds of privacy guarantees

- High sensitivity: degree of change constant in *n*
- Low sensitivity: degree of change decreasing in *n*
- Example: LP data derived from averages over a population

Joint Differential Privacy [KPRU]

- Variables and data partitioned among different agents
- No need to publish the entire solution

Joint Differential Privacy [KPRU]

- Variables and data partitioned among different agents
- No need to publish the entire solution

Other classifications?

- So far: modify privacy guarantee, definition of neighboring...
- Structural properties of LPs to aid private solvability?

The state of private LPs

Location of change	High sensitivity	Low sensitivity
Objective	No	Yes
Scalars	No	Yes
Row of constraints	Yes	Yes
Column of constraints	No	Yes

Table : Efficient, accurate, private solvability

More directions

- Huge literature on techniques for non-privately solving LPs (primal-dual, interior point methods, etc.)
- Can any of these techniques be made private?

Privately Solving Linear Programs

Justin Hsu1Aaron Roth1Tim Roughgarden2Jonathan Ullman3

¹University of Pennsylvania

²Stanford University

³Harvard University

July 8th, 2014