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Program Sensitivity

Similar inputs→ similar outputs
I Given: distances din on inputs, dout on outputs
I Want: for all inputs in1, in2,

dout(P (in1), P (in2)) ≤ din(in1, in2)

If P is sensitive and Q is sensitive,
then Q ◦ P is sensitive
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Probabilistic Program Sensitivity?

Similar inputs→ similar output distributions
I Given: distances din on inputs, dout on output distributions
I Want: for all inputs in1, in2,

dout(P (in1), P (in2)) ≤ din(in1, in2)

What distance dout should we take?
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Our contributions

• Coupling-based de�nition
of probabilistic sensitivity

• Relational program logic EpRHL

• Formalized examples:
stability and convergence
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What is a good de�nition
of probabilistic sensitivity?
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One possible de�nition: output distributions close

For two distributions µ1, µ2 over a set A:

dout(µ1, µ2) , k ·max
E⊆A

|µ1(E)− µ2(E)|

k-Uniform sensitivity
I Larger k→ closer output distributions
I Strong guarantee: probabilities close for all sets of outputs
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Application: probabilistic convergence/mixing

Probabilistic program forgets initial state
I Given: probabilistic loop, two di�erent input states
I Want: state distributions converge to same distribution

Consequence of k-uniform sensitivity
I As number of iterations T increases, prove k-uniform
sensitivity for larger and larger k(T )

I Relation between k and T describes speed of convergence
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Another possible de�nition: average outputs close

For two distributions µ1, µ2 over real numbers:

dout(µ1, µ2) , k · |E[µ1]− E[µ2]|

k-Mean sensitivity
I Larger k→ closer averages
I Weaker guarantee than uniform sensitivity
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Application: algorithmic stability

Machine learning algorithm A

I Input: set S of training examples
I Output: list of numeric parameters (randomized)

Danger: over�tting
I Output parameters depend too much on training set S
I Low error on training set, high error on new examples
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Application: algorithmic stability

One way to prevent over�tting
I L maps S to average error of randomized learning
algorithm A

I If |L(S)− L(S′)| is small for all training sets S, S′ di�ering
in a single example, then A does not over�t too much

L should be mean sensitive
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Wanted: a general de�nition that is . . .

• Expressive

• Easy to reason about
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Ingredient #1: Probabilistic coupling

A coupling models two distributions with one distribution
Given two distributions µ1, µ2 ∈ Distr(A), a joint distribution
µ ∈ Distr(A×A) is a coupling if

π1(µ) = µ1 and π2(µ) = µ2

Typical pattern
Prove property about two (output) distributions by
constructing a coupling with certain properties
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Ingredient #2: Lift distance on outputs

Given:
I Two distributions µ1, µ2 ∈ Distr(A)
I Ground distance d : A×A→ R+

De�ne distance on distributions:

d#(µ1, µ2) , min
µ ∈ C(µ1, µ2)

Eµ[d]

set of all couplings

Typical pattern
Bound distance d# between two (output) distributions by
constructing a coupling with small average distance d
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Putting it together: Expected sensitivity

Given:
I A function f : A→ Distr(B) (think: probabilistic program)
I Distances din and dout on A and B

We say f is (din, dout)-expected sensitive if:

d#
out(f(a1), f(a2)) ≤ din(a1, a2)

for all inputs a1, a2 ∈ A.
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Bene�ts: Expressive

If dout(b1, b2) > k for all distinct b1, b2:

(din, dout)-expected sensitive =⇒ k-uniform sensitive

If outputs are real-valued and dout(b1, b2) = k · |b1 − b2|:

(din, dout)-expected sensitive =⇒ k-mean sensitive
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Bene�ts: Easy to reason about

f : A→ Distr(B) is (dA, dB)-expected sensitive
g : B → Distr(C) is (dB, dC)-expected sensitive

g ◦̃ f : A→ Distr(C) is (dA, dC)-expected sensitive

Abstract away distributions
I Work in terms of distances on ground sets
I No need to work with complex distances over distributions
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How to verify this property?
The program logic EpRHL
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A relational program logic EpRHL

The pWhile imperative language

c ::= x← e | x $← d | if e then c else c | while e do c | skip | c; c

Judgments

` {P ; din} c1 ∼ c2 {Q; dout}
I Tagged program variables: x〈1〉, x〈2〉
I P and Q: boolean predicates over tagged variables
I din and dout: real-valued expressions over tagged variables
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EpRHL judgments model expected sensitivity

A judgment

` {P ; din} c1 ∼ c2 {Q; dout}

is valid if:
for all input memories (m1,m2) satisfying pre-condition P ,
there exists a coupling of outputs ([[c1]]m1, [[c2]]m2) with

I support satisfying post-condition Q
I E[dout] ≤ din(m1,m2)
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One proof rule: Sequential composition

` {P ; dA} c1 ∼ c2 {Q; dB}
` {Q; dB} c′1 ∼ c′2 {R; dC}

` {P ; dA} c1; c′1 ∼ c2; c′2 {R; dC}

Expected sensitivity composes
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Wrapping up
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More in the paper

Theoretical results
I Full proof system (sampling, conditionals, loops, etc.)
I Transitivity principle (internalizes path coupling)

Implementation in EasyCrypt, formalizations of:
I Stability for the Stochastic Gradient Method
I Convergence for the RSM population dynamics
I Mixing for the Glauber dynamics
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Looking forward

Possible directions
I Other useful consequences of expected sensitivity?
I Formal veri�cation systems beyond program logics?
I How to automate this proof technique?

Shameless plug: Looking for
students at UWisconsin!
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