Proving Expected Sensitivity of Probabilistic Programs

Gilles Barthe Thomas Espitau Benjamin Grégoire <u>Justin Hsu</u> Pierre-Yves Strub

Program Sensitivity

Similar inputs \rightarrow similar outputs

- ► Given: distances *d*_{in} on inputs, *d*_{out} on outputs
- ▶ Want: for all inputs *in*₁, *in*₂,

$d_{out}(P(in_1), P(in_2)) \le d_{in}(in_1, in_2)$

Program Sensitivity

Similar inputs \rightarrow similar outputs

- ► Given: distances *d*_{in} on inputs, *d*_{out} on outputs
- Want: for all inputs in_1, in_2 ,

$$d_{out}(P(in_1), P(in_2)) \le d_{in}(in_1, in_2)$$

If P is sensitive and Q is sensitive, then $Q \circ P$ is sensitive

Probabilistic Program Sensitivity?

Similar inputs \rightarrow similar output distributions

- ► Given: distances *d_{in}* on inputs, *d_{out}* on output distributions
- Want: for all inputs in_1, in_2 ,

 $d_{out}(P(in_1), P(in_2)) \le d_{in}(in_1, in_2)$

Probabilistic Program Sensitivity?

Similar inputs \rightarrow similar output distributions

- ► Given: distances *d_{in}* on inputs, *d_{out}* on output distributions
- ▶ Want: for all inputs *in*₁, *in*₂,

 $d_{out}(P(in_1), P(in_2)) \le d_{in}(in_1, in_2)$

What distance *d_{out}* should we take?

Our contributions

 Coupling-based definition of probabilistic sensitivity

• Relational program logic **EpRHL**

• Formalized examples: stability and convergence

What is a good definition of probabilistic sensitivity?

One possible definition: output distributions close

For two distributions μ_1, μ_2 over a set A:

$$d_{out}(\mu_1, \mu_2) \triangleq k \cdot \max_{E \subseteq A} |\mu_1(E) - \mu_2(E)|$$

One possible definition: output distributions close

For two distributions μ_1, μ_2 over a set *A*:

$$d_{out}(\mu_1, \mu_2) \triangleq k \cdot \max_{E \subseteq A} |\mu_1(E) - \mu_2(E)|$$

k-Uniform sensitivity

- Larger $k \rightarrow$ closer output distributions
- Strong guarantee: probabilities close for all sets of outputs

Application: probabilistic convergence/mixing

Probabilistic program forgets initial state

- Given: probabilistic loop, two different input states
- Want: state distributions converge to same distribution

Application: probabilistic convergence/mixing

Probabilistic program forgets initial state

- Given: probabilistic loop, two different input states
- Want: state distributions converge to same distribution

Consequence of *k*-uniform sensitivity

- ► As number of iterations T increases, prove k-uniform sensitivity for larger and larger k(T)
- Relation between k and T describes speed of convergence

Another possible definition: average outputs close

For two distributions μ_1, μ_2 over real numbers:

$$d_{out}(\mu_1, \mu_2) \triangleq k \cdot |\mathbb{E}[\mu_1] - \mathbb{E}[\mu_2]|$$

Another possible definition: average outputs close

For two distributions μ_1, μ_2 over real numbers:

$$d_{out}(\mu_1, \mu_2) \triangleq k \cdot |\mathbb{E}[\mu_1] - \mathbb{E}[\mu_2]|$$

k-Mean sensitivity

- Larger $k \rightarrow$ closer averages
- Weaker guarantee than uniform sensitivity

Application: algorithmic stability

Machine learning algorithm \boldsymbol{A}

- ► Input: set *S* of training examples
- Output: list of numeric parameters (randomized)

Danger: overfitting

- Output parameters depend too much on training set S
- ► Low error on training set, high error on new examples

Application: algorithmic stability

One way to prevent overfitting

- ► L maps S to average error of randomized learning algorithm A
- ► If |L(S) L(S')| is small for all training sets S, S' differing in a single example, then A does not overfit too much

Application: algorithmic stability

One way to prevent overfitting

- ► L maps S to average error of randomized learning algorithm A
- ► If |L(S) L(S')| is small for all training sets S, S' differing in a single example, then A does not overfit too much

L should be mean sensitive

Wanted: a general definition that is ...

• Expressive

Easy to reason about

Ingredient #1: Probabilistic coupling

A coupling models two distributions with one distribution Given two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$, a joint distribution $\mu \in \text{Distr}(A \times A)$ is a coupling if

$$\pi_1(\mu)=\mu_1$$
 and $\pi_2(\mu)=\mu_2$

Ingredient #1: Probabilistic coupling

A coupling models two distributions with one distribution Given two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$, a joint distribution $\mu \in \text{Distr}(A \times A)$ is a coupling if

$$\pi_1(\mu)=\mu_1$$
 and $\pi_2(\mu)=\mu_2$

Typical pattern

Prove property about two (output) distributions by constructing a coupling with certain properties

Given:

- Two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$
- Ground distance $d: A \times A \rightarrow \mathbb{R}^+$

Given:

- Two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$
- Ground distance $d: A \times A \rightarrow \mathbb{R}^+$

Define distance on distributions:

$$d^{\#}(\mu_1,\mu_2) \triangleq \min_{\substack{\mu \in C(\mu_1,\mu_2)}} \mathbb{E}_{\mu}[d]$$

Given:

- Two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$
- Ground distance $d: A \times A \rightarrow \mathbb{R}^+$

Define distance on distributions:

$$d^{\#}(\mu_{1},\mu_{2}) riangleq \min_{\mu \in C(\mu_{1},\mu_{2})} \mathbb{E}_{\mu}[d]$$
set of all couplings

Given:

- Two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$
- Ground distance $d: A \times A \rightarrow \mathbb{R}^+$

Define distance on distributions:

$$d^{\#}(\mu_1,\mu_2) \triangleq \min_{\mu \in C(\mu_1,\mu_2)} \mathbb{E}_{\mu}[d]$$

Typical pattern

set of all couplings

Bound distance $d^{\#}$ between two (output) distributions by constructing a coupling with small average distance d

Putting it together: Expected sensitivity

Given:

- A function $f : A \rightarrow \text{Distr}(B)$ (think: probabilistic program)
- Distances d_{in} and d_{out} on A and B

Putting it together: Expected sensitivity

Given:

- ► A function $f : A \rightarrow \text{Distr}(B)$ (think: probabilistic program)
- Distances d_{in} and d_{out} on A and B

We say f is (d_{in}, d_{out}) -expected sensitive if:

$$d_{out}^{\#}(f(a_1), f(a_2)) \le d_{in}(a_1, a_2)$$

for all inputs $a_1, a_2 \in A$.

Benefits: Expressive

If $d_{out}(b_1, b_2) > k$ for all distinct b_1, b_2 :

 (d_{in}, d_{out}) -expected sensitive \implies k-uniform sensitive

Benefits: Expressive

If $d_{out}(b_1, b_2) > k$ for all distinct b_1, b_2 :

 (d_{in}, d_{out}) -expected sensitive $\implies k$ -uniform sensitive

If outputs are real-valued and $d_{out}(b_1, b_2) = k \cdot |b_1 - b_2|$:

 (d_{in}, d_{out}) -expected sensitive $\implies k$ -mean sensitive

$f: A \rightarrow \mathsf{Distr}(B)$ is (d_A, d_B) -expected sensitive

$f: A \rightarrow \mathsf{Distr}(B)$ is (d_A, d_B) -expected sensitive $g: B \rightarrow \mathsf{Distr}(C)$ is (d_B, d_C) -expected sensitive

$f : A \rightarrow \text{Distr}(B)$ is (d_A, d_B) -expected sensitive $g : B \rightarrow \text{Distr}(C)$ is (d_B, d_C) -expected sensitive

 $g \circ f : A \to \mathsf{Distr}(C)$ is (d_A, d_C) -expected sensitive

 $f : A \rightarrow \text{Distr}(B)$ is (d_A, d_B) -expected sensitive $g : B \rightarrow \text{Distr}(C)$ is (d_B, d_C) -expected sensitive

 $g \circ f : A \to \mathsf{Distr}(C)$ is (d_A, d_C) -expected sensitive

Abstract away distributions

- Work in terms of distances on ground sets
- No need to work with complex distances over distributions

How to verify this property? The program logic $\mathbb{E}PRHL$

A relational program logic **EpRHL**

The pWhile imperative language

 $c ::= x \leftarrow e \mid x \xleftarrow{s} d \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid \text{skip} \mid c; c$

A relational program logic $\mathbb{E}PRHL$

The pWhile imperative language

$$c ::= x \leftarrow e \mid x \xleftarrow{s} d \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid \text{skip} \mid c; c$$

A relational program logic **EpRHL**

The pWhile imperative language

 $c ::= x \leftarrow e \mid x \xleftarrow{s} d \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid \text{skip} \mid c; c$

Judgments

$$\vdash \{P; d_{in}\} \ c_1 \sim c_2 \ \{Q; d_{out}\}$$

- Tagged program variables: $x\langle 1 \rangle$, $x\langle 2 \rangle$
- ► *P* and *Q*: boolean predicates over tagged variables
- ► *d_{in}* and *d_{out}*: real-valued expressions over tagged variables

 $\mathbb{E}\mathsf{PRHL}$ judgments model expected sensitivity

A judgment

$$\vdash \{P; d_{in}\} \ c_1 \sim c_2 \ \{Q; d_{out}\}$$

is valid if:

for all input memories (m_1, m_2) satisfying pre-condition P, there exists a coupling of outputs $([\![c_1]\!]m_1, [\![c_2]\!]m_2)$ with

- support satisfying post-condition Q
- $\mathbb{E}[d_{out}] \leq d_{in}(m_1, m_2)$

 $\vdash \{\overline{P; d_A}\} \ c_1 \sim c_2 \ \{Q; d_B\}$ $\vdash \{Q; d_B\} \ c'_1 \sim c'_2 \ \{R; d_C\}$ $\vdash \{P; d_A\} \ c_1; c'_1 \sim c_2; c'_2 \ \overline{\{R; d_C\}}$

 $\vdash \{\overline{P; d_A}\} \ c_1 \sim c_2 \ \{Q; d_B\}$ $\vdash \{Q; d_B\} \ c'_1 \sim c'_2 \ \{R; d_C\}$ $\vdash \{P; d_A\} \ c_1; c'_1 \sim c_2; c'_2 \ \overline{\{R; d_C\}}$

 $\vdash \{\overline{P; d_A}\} \ c_1 \sim c_2 \ \{Q; d_B\}$ $\vdash \{Q; d_B\} \ c'_1 \sim c'_2 \ \{R; d_C\}$ $\vdash \{P; d_A\} \ c_1; c'_1 \sim c_2; c'_2 \ \overline{\{R; d_C\}}$

 $\vdash \{\overline{P; d_A}\} \ c_1 \sim c_2 \ \{Q; d_B\}$ $\vdash \{Q; d_B\} \ c'_1 \sim c'_2 \ \{R; d_C\}$ $\vdash \{P; d_A\} \ c_1; c'_1 \sim c_2; c'_2 \ \overline{\{R; d_C\}}$

 $\vdash \{P; d_A\} \ c_1 \sim c_2 \ \{Q; d_B\}$ $\vdash \{Q; d_B\} \ c'_1 \sim c'_2 \ \{R; d_C\}$ $\vdash \{P; d_A\} \ c_1; c'_1 \sim c_2; c'_2 \ \{R; d_C\}$

Expected sensitivity composes

Wrapping up

More in the paper

Theoretical results

- Full proof system (sampling, conditionals, loops, etc.)
- Transitivity principle (internalizes path coupling)

Implementation in EasyCrypt, formalizations of:

- Stability for the Stochastic Gradient Method
- Convergence for the RSM population dynamics
- Mixing for the Glauber dynamics

Looking forward

Possible directions

- Other useful consequences of expected sensitivity?
- Formal verification systems beyond program logics?
- How to automate this proof technique?

Looking forward

Possible directions

- Other useful consequences of expected sensitivity?
- Formal verification systems beyond program logics?
- How to automate this proof technique?

Shameless plug: Looking for students at UWisconsin!

Proving Expected Sensitivity of Probabilistic Programs

Gilles Barthe Thomas Espitau Benjamin Grégoire <u>Justin Hsu</u> Pierre-Yves Strub Our contributions

 Coupling-based definition of probabilistic sensitivity

• Relational program logic **EpRHL**

• Formalized examples: stability and convergence