An Assertion-Based Program Logic for Probabilistic Programs

> Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, <u>Justin Hsu</u>, and Pierre-Yves Strub

Randomized algorithms are everywhere!

Random!

The Foundation of Cryptography

Complex programs

Algorithm 1 Joint Differentially Private Convex Solver: $\mathsf{PrivDude}(\mathcal{O}, \sigma, \tau, w, \varepsilon, \delta, \beta)$

Input: Convex problem $\mathcal{O} = (S, v, c, b)$ with *n* agents and *k* coupling constraints, gradient sensitivity bounded by σ , a dual bound τ , width bounded by *w*, and privacy parameters $\varepsilon > 0, \delta \in (0, 1)$, confidence parameter $\beta \in (0, 1)$. **Initialize:**

$$\begin{split} \lambda_j^{(1)} &:= 0 \text{ for } j \in [k], \qquad T := w^2, \qquad \varepsilon' := \frac{\varepsilon \sigma}{\sqrt{8T \ln(2/\delta)}}, \qquad \delta' := \frac{\delta}{2T}, \\ \eta &:= \frac{2\tau}{\sqrt{T} \left(w + \frac{1}{\varepsilon'} \log\left(\frac{Tk}{\beta}\right) \right)}, \qquad \Lambda := \{\lambda \in \mathbb{R}^k_+ \mid \|\lambda\|_{\infty} \le 2\tau\}. \end{split}$$

for iteration $t = 1 \dots T$ for each agent $i = 0 \dots n$

Compute personal best response:

$$x_t^{(i)} := \operatorname*{argmax}_{x \in S^{(i)}} v^{(i)}(x) - \sum_{j=1}^k \lambda_j^{(t)} c^{(i)}(x).$$

for each constraint $j = 1 \dots k$ Compute noisy gradient:

$$\widehat{\ell}_j^{(t)} := \left(\sum_{i=0}^n c^{(i)}(x_t^{(i)})\right) - b_j + \mathcal{N}\left(0, \frac{2\sigma^2\log\left(1.25/\delta'\right)}{\varepsilon'^2}\right),$$

Do gradient descent update:

Complex proofs

Proof. Let ν_t denote the noise vector we have in round t, we can decompose the regret into several parts

$$\begin{aligned} \mathcal{R}_{T} &= \frac{1}{T} \sum_{t=1}^{T} \langle p_{t}, x_{t} \rangle - \frac{1}{T} \min_{p \in \mathcal{P}} \sum_{t=1}^{T} \langle p, x_{t} \rangle \\ &= \frac{1}{T} \sum_{t=1}^{T} \langle p_{t}, \hat{x}_{t} \rangle - \frac{1}{T} \sum_{t=1}^{T} \langle p_{t}, \nu_{t} \rangle - \frac{1}{T} \left[\min_{p \in \mathcal{P}} \sum_{t=1}^{T} \langle p, x_{t} \rangle - \min_{\widehat{p} \in \mathcal{P}} \sum_{t=1}^{T} \langle \hat{p}, \hat{x}_{t} \rangle \right] - \frac{1}{T} \min_{\widehat{p} \in \mathcal{P}} \sum_{t=1}^{T} \langle \hat{p}, \hat{x}_{t} \rangle \\ &= \left[\frac{1}{T} \sum_{t=1}^{T} \langle p_{t}, \hat{x}_{t} \rangle - \frac{1}{T} \min_{\widehat{p} \in \mathcal{P}} \sum_{t=1}^{T} \langle \hat{p}, \hat{x}_{t} \rangle \right] - \frac{1}{T} \sum_{t=1}^{T} \langle p_{t}, \nu_{t} \rangle - \frac{1}{T} \left[\min_{\widehat{p} \in \mathcal{P}} \sum_{t=1}^{T} \langle p, x_{t} \rangle - \min_{\widehat{p} \in \mathcal{P}} \sum_{t=1}^{T} \langle p, \hat{x}_{t} \rangle \right] \\ &= \widehat{\mathcal{R}}_{T} - \frac{1}{T} \sum_{t=1}^{T} \langle p_{t}, \nu_{t} \rangle - \frac{1}{T} \left[\min_{p \in \mathcal{P}} \sum_{t=1}^{T} \langle p, x_{t} \rangle - \min_{\widehat{p} \in \mathcal{P}} \sum_{t=1}^{T} \langle p, \hat{x}_{t} \rangle \right] \\ &\leq \widehat{\mathcal{R}}_{T} - \frac{1}{T} \min_{p \in \mathcal{P}} \sum_{t=1}^{T} \langle p, \nu_{t} \rangle - \frac{1}{T} \left[\min_{p \in \mathcal{P}} \sum_{t=1}^{T} \langle p, x_{t} \rangle - \min_{\widehat{p} \in \mathcal{P}} \sum_{t=1}^{T} \langle \hat{p}, \hat{x}_{t} \rangle \right]. \end{aligned}$$

We will bound the three terms separately. By the no-regret guarantee of online gradient descent in Lemma 13, we have the following the regret guarantee w.r.t the noisy losses if we set $\eta = \frac{||P||}{||P||}$

$$\widehat{\mathcal{R}}_T = \frac{1}{T} \sum_{t=1}^T \langle p_t, \widehat{x}_t \rangle - \min_{p \in \mathcal{P}} \frac{1}{T} \sum_{t=1}^T \langle p, \widehat{x}_t \rangle \le \frac{\|\mathcal{P}\|^2}{2\eta T} + \frac{\eta \|\widehat{\mathcal{X}}\|^2}{2} = \frac{\|\mathcal{P}\| \|\widehat{\mathcal{X}}\|}{\sqrt{T}},$$

where $\|\mathcal{P}\|$ and $\|\hat{\mathcal{X}}\|$ denote the bound on the ℓ_2 norm of the vectors $\{p_t\}$ and $\{\hat{x}_t\}$ respectively. Recall that for any random variable Y sampled from the Gaussian distribution $\mathcal{N}(0, \sigma^2)$, we

A simple randomized algorithm and property

Noisy sum

$$\begin{array}{l} sum \leftarrow 0;\\ \mathsf{for}\; i=1,\ldots,n\;\mathsf{do}\\ toss & \textit{$^{\$}$}\;flip(p);\\ sum \leftarrow sum + toss;\\ \mathsf{return}(sum) \end{array}$$

A simple randomized algorithm and property

Noisy sum

To show: sum not too small

 $\begin{array}{l} sum \leftarrow 0; \\ \text{for } i = 1, \ldots, n \text{ do} \\ toss \Leftrightarrow flip(p); \\ sum \leftarrow sum + toss; \\ \text{return}(sum) \end{array}$

 $\Pr[sum \le n \cdot p - 4\sqrt{n \cdot p}]$ is at most 0.0005

A simple randomized algorithm and property

Noisy sum

To show: sum not too small

 $\begin{array}{l} sum \leftarrow 0;\\ \mathsf{for}\; i=1,\ldots,n\; \mathsf{do}\\ toss \notin flip(p);\\ sum \leftarrow sum + toss;\\ \mathsf{return}(sum) \end{array}$

 $\Pr[sum \le n \cdot p - 4\sqrt{n \cdot p}]$ is at most 0.0005

Proof of correctness, on paper?

- 1. *sum* is sum of *n* independent *p*-biased coins.
- 2. Apply standard concentration bound, done.

Deductive verification? Not so easy.

Expectation-based approaches

- Rules manipulate single expected value/probability
- Can't directly express properties like independence
- ► Kozen's PPDL (1985); Morgan, McIver, Seidel's PGCL (1996)

Deductive verification? Not so easy.

Expectation-based approaches

- Rules manipulate single expected value/probability
- Can't directly express properties like independence
- ► Kozen's PPDL (1985); Morgan, McIver, Seidel's PGCL (1996)

Program logic (assertion-based) approaches

- Use general boolean assertions on distributions
- Complex loop rules, more limited programming languages
- Chadha et al. (2007); Rand and Zdancewic (2015)

Overall goal: Narrow this gap

Work with higher-level properties as much as possible

Minimize reasoning about single probabilities

Avoid reasoning at level of program semantics

Side-conditions should be easy to check

Incorporate proof methods from paper proofs

Structure the proof, abstract away unimportant details

More concretely: Our contributions

• A new program logic for probabilistic programs

 Embeddings of several specialized proof techniques

 Implementation and formalized examples

The ELLORA Framework: A Lightning Tour

The core: A program logic for probabilistic programs

The pWhile imperative language

 $c ::= x \leftarrow e \mid x \xleftarrow{\hspace{0.5mm}{\$}} d \mid c; c \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c$

The core: A program logic for probabilistic programs

The pWhile imperative language

 $c ::= x \leftarrow e \mid x \xleftarrow{e} d \mid c; c \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c$

Sample from primitive distributions

- Biased coin flips, uniform distribution, ...
- ► Geometric distribution, Laplace distribution, ...

The core: A program logic for probabilistic programs

The pWhile imperative language

 $c ::= x \leftarrow e \mid x \xleftarrow{\hspace{0.5mm}{\$}} d \mid c; c \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c$

Sample from primitive distributions

- Biased coin flips, uniform distribution, ...
- ► Geometric distribution, Laplace distribution, ...

Commands transform (sub-)distributions over memories

► Distribution over inputs → Distribution over outputs

Assertion language: two layers

State assertions: model memories

$$\phi, \psi \quad ::= \quad e = e' \mid e < e' \mid \dots$$

Assertion language: two layers

State assertions: model memories

$$\phi, \psi \quad ::= \quad e = e' \mid e < e' \mid \dots$$

Distribution assertions: model distributions

$$\Phi, \Psi \quad ::= \quad \mathbb{E}[e] = \mathbb{E}[e'] \mid \mathbb{E}[e] < \mathbb{E}[e'] \mid \dots$$

Assertion language: two layers

State assertions: model memories

$$\phi, \psi \quad ::= \quad e = e' \mid e < e' \mid \dots$$

Distribution assertions: model distributions

$$\Phi, \Psi \quad ::= \quad \mathbb{E}[e] = \mathbb{E}[e'] \mid \mathbb{E}[e] < \mathbb{E}[e'] \mid \dots$$

Examples: defined notation

$$\mathbb{P}[\phi] \triangleq \mathbb{E}[1_{\phi}] \qquad \qquad \Box \phi \triangleq \mathbb{P}[\phi] = 1$$

Proof system Typical program logic judgment

 $\{\Phi\} \ c \ \{\Psi\}$

Proof system Typical program logic judgment

 $\{\overline{\Phi}\}\ c\ \overline{\{\Psi\}}$

System rules

$$\frac{\eta_{0} \Rightarrow \eta_{1} \quad \{\eta_{1}\} \ s \ \{\eta_{2}\} \quad \eta_{2} \Rightarrow \eta_{3}}{\{\eta_{0}\} \ s \ \{\eta_{3}\}} \quad [\text{Conseq}] \qquad \frac{\forall x : T. \ \{\eta\} \ s \ \{\eta'\}}{\{\exists x : T. \ \eta\} \ s \ \{\eta'\}} \quad [\text{Exists}]$$

$$\frac{\eta' \triangleq \eta[[x \leftarrow e]]}{\{\eta\} \ \text{abort} \ \{\Box\bot\}} \quad [\text{Abort}] \qquad \frac{\eta' \triangleq \eta[[x \leftarrow e]]}{\{\eta'\} \ x \leftarrow e \ \{\eta\}} \quad [\text{Assgn}] \qquad \frac{\eta' \Rightarrow s \ \{\eta'\}}{\{\eta\} \ s \ s \ \eta\}} \quad [\text{SKIP}]$$

$$\frac{\eta' \triangleq \eta[[x \notin g]]}{\{\eta'\} \ x \notin g \ \{\eta\}} \quad [\text{SAMPLE}] \qquad \frac{\{\eta_{0}\} \ s_{1} \ \{\eta_{1}\} \ s_{2} \ \{\eta_{2}\}}{\{\eta_{0}\} \ s_{1}; s_{2} \ \{\eta_{2}\}} \quad [\text{Seq}]$$

$$\frac{\{\eta_{1} \land \Box e\} \ s_{1} \ \{\eta'_{1}\} \quad \{\eta_{2} \land \Box \neg e\} \ s_{2} \ \{\eta'_{2}\}}{\{(\eta_{1} \land \Box e) \oplus (\eta_{2} \land \Box \neg e)\} \ \text{if } e \ \text{then} \ s_{1} \ \text{elses} \ s_{2} \ \{\eta'_{1} \oplus \eta'_{2}\}} \quad [\text{Cond}]$$

$$\frac{\{\eta_{1}\} \ s \ \{\eta'_{1}\} \quad \{\eta_{2}\} \ s \ \{\eta'_{2}\}}{\{\eta_{1} \oplus \eta'_{2}\}} \quad [\text{SelIT}]$$

How to reason about loops?

Well-known pitfall: naive rule unsound!

Always have:

$\{\mathbb{P}[\top]=1\}$ skip $\{\mathbb{P}[\top]=1\}$

But not:

 $\{\mathbb{P}[\top]=1\}$ while true do skip $\{\mathbb{P}[\top]=1\}$

How to reason about loops?

Well-known pitfall: naive rule unsound!

Always have:

$\{\mathbb{P}[\top]=1\}$ skip $\{\mathbb{P}[\top]=1\}$

But not:

 $\{\mathbb{P}[\top]=1\}$ while true do skip $\{\mathbb{P}[\top]=1\}$

Tradeoff

Generality of invariants/allowed termination behavior

 $\frac{\{\Phi \land \Box b\} \ c \ \{\Phi\}}{\{\Phi\} \text{ while } b \text{ do } c \ \{\Phi \land \Box \neg b\}}$

 $\frac{\{\Phi \land \Box b\} \ c \ \{\Phi\}}{\{\Phi\} \text{ while } b \text{ do } c \ \{\Phi \land \Box \neg b\}}$

Loop: Bounded number of iterations ("for-loops")

• Invariant Φ : arbitrary predicate

 $\frac{\{\Phi \land \Box b\} c \{\Phi\}}{\{\Phi\} \text{ while } b \text{ do } c \{\Phi \land \Box \neg b\}}$

Loop: Bounded number of iterations ("for-loops")

• Invariant Φ : arbitrary predicate

Loop: Terminates with probability 1

▶ Invariant Φ : "topologically closed" (e.g., $\mathbb{P}[\phi] = 1/2$)

 $\frac{\{\Phi \land \Box b\} c \{\Phi\}}{\{\Phi\} \text{ while } b \text{ do } c \{\Phi \land \Box \neg b\}}$

Loop: Bounded number of iterations ("for-loops")

• Invariant Φ : arbitrary predicate

Loop: Terminates with probability 1

▶ Invariant Φ : "topologically closed" (e.g., $\mathbb{P}[\phi] = 1/2$)

Loop: Arbitrary termination

▶ Invariant Φ : "downwards closed" (e.g., $\mathbb{P}[\phi] < 1/2$)

Adding to the Toolbox: Specialized Proof Techniques

Two common properties in paper proofs

Probabilistic independence

► In our assertions:

 $e # e' \triangleq \forall a, b. \mathbb{P}[e = a \land e' = b] = \mathbb{P}[e = a] \cdot \mathbb{P}[e' = b]$

Two common properties in paper proofs

Probabilistic independence

► In our assertions:

 $e \# e' \triangleq \forall a, b. \mathbb{P}[e = a \land e' = b] = \mathbb{P}[e = a] \cdot \mathbb{P}[e' = b]$

Distribution laws

► In our assertions:

 $e \sim \mathsf{Unif}(A) \triangleq \forall a \in \overline{A}. \mathbb{P}[e = a] = 1/|A|$

Reasoning about independence and distribution laws Useful facts about independence

 $(e_1, e_2) \# e_3 \implies (e_1 \# e_3) \land (e_2 \# e_3)$

Combining independence and uniformity

 $e \sim \mathsf{Unif}(A) \wedge e' \sim \mathsf{Unif}(A') \wedge (e \ \# \ e') \implies (e,e') \sim \mathsf{Unif}(A \times A')$

Incorporating this reasoning in ELLORA

Build a program logic IL around these assertions, soundness by embedding into core program logic.

Other tools available in ELLORA

Prior work: union bound logic [ICALP 2016]

▶ Designed for proving proeprties of the form $\mathbb{P}[\phi] < \beta$

Precondition calculus

- Similar to Morgan and McIver's weakest pre-expectations
- Defined on syntax of assertions

Implementation and Formalized Examples

Implementation

Part of the EASYCRYPT system

► Tactic-based proofs, SMT support

Formalization of basic discrete probability theory

- > Definitions: independence, basic distributions, ...
- ► Theorems: Markov inequality, Chernoff bound, ...

Examples: Nine verified algorithms

Name	Lines of Code	Lines of Proof
hypercube	100	1140
coupon	27	184
vertex-cover	30	61
pairwise-indep	30	231
private-sums	22	80
poly-id-test	22	32
random-walk	16	42
dice-sampling	10	64
matrix-prod-test	20	75

Examples: Nine verified algorithms

Name	Lines of Code	Lines of Proof
hypercube	100	1140
coupon	27	184
vertex-cover	30	61
pairwise-indep	30	231
private-sums	22	80
poly-id-test	22	32
random-walk	16	42
dice-sampling	10	64
matrix-prod-test	20	75

A classic example: Valiant's hypercube routing

Hypergraph network

- Nodes: $\{0,1\}^d$
- Given: permutation π
- ► Edge capacity 1
- Goal: route i to $\pi(i)$

A classic example: Valiant's hypercube routing Hypergraph network Routing 111 to 100 (d = 3)

▶ Nodes: {0,1}^{*d*}

- Given: permutation π
- ► Edge capacity 1
- Goal: route i to $\pi(i)$

A classic example: Valiant's hypercube routing Routing 111 to 100 (d = 3)

Hypergraph network

- Nodes: $\{0,1\}^d$
- Given: permutation π
- ► Edge capacity 1
- Goal: route i to $\pi(i)$

Valiant's routing plan

- Uniformly random $\rho(i)$
- Route: $i \mapsto \rho(i) \mapsto \pi(i)$

A classic example: Valiant's hypercube routing

Hypergraph network

- ▶ Nodes: {0,1}^d
- Given: permutation π
- ▶ Edge capacity 1
- Goal: route *i* to $\pi(i)$

Valiant's routing plan

- Uniformly random $\rho(i)$
- Route: $i \mapsto \rho(i) \mapsto \pi(i)$

Routing 111 to 100 (d = 3)

Show: with high probability, routes all 2^d packets in O(d) steps

Future Directions and Open Design Questions

The story so far

The story so far

Next steps?

Next steps?

Next steps?

How to structure the assertion language?

Need help managing large assertions and invariants

How to structure the assertion language?

Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?

Deterministic gives simpler but less flexible pre-conditions

How to structure the assertion language?

Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?

Deterministic gives simpler but less flexible pre-conditions

How to combine different proof techniques?

Want to support many tools, but not all can be freely mixed

How to structure the assertion language?

Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?

Deterministic gives simpler but less flexible pre-conditions

How to combine different proof techniques?

► Want to support many tools, but not all can be freely mixed

Should reasoning be code-directed?

► Maybe easier: lift random sampling instructions out

An Assertion-Based Program Logic for Probabilistic Programs

> Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, <u>Justin Hsu</u>, and Pierre-Yves Strub