Verifying Probabilistic Properties with Probabilistic Couplings

Justin Hsu UW–Madison Computer Sciences

Work with brilliant collaborators

What Are Probabilistic "Relational Properties"?

Today's target properties

Probabilistic

- \triangleright Programs can take random samples (flip coins)
- \triangleright Map (single) input value to a distribution over outputs

Relational

- \triangleright Compare two executions of a program (or: two programs)
- \triangleright Describe outputs (distributions) from two related inputs
- \blacktriangleright Also known as 2-properties, or hyperproperties

Examples throughout computer science...

Security and privacy

- \blacktriangleright Indistinguishability
- \blacktriangleright Differential privacy

Machine learning

 \blacktriangleright Uniform stability

... and beyond

- \blacktriangleright Incentive properties (game theory/mechanism design)
- \triangleright Convergence and mixing (probability theory)

Challenges for formal verification

Reason about two sources of randomness

- \blacktriangleright Two executions may behave very differently
- \triangleright Completely different control flow (even for same program!)

Quantitative reasoning

- \blacktriangleright Target properties describe distributions
- \blacktriangleright Probabilities, expected values, etc.
- \blacktriangleright Very messy for formal reasoning

Today: Combine two ingredients

Probabilistic Couplings

 $+$

Relational Program Logics

Probabilistic Couplings and "Proof by Coupling"

Given: programs *c*¹ and *c*2, each taking 10 coin flips

Experiment #1

Given: programs *c*¹ and *c*2, each taking 10 coin flips

Experiment #1 Experiment #2

Given: programs *c*¹ and *c*2, each taking 10 coin flips

Experiment #1 Experiment #2

Distributions equal in Experiment #1 ⇐⇒ Distributions equal in Experiment #2

Given: programs *c*¹ and *c*2, each taking 10 coin flips Experiment #1

Given: programs *c*¹ and *c*2, each taking 10 coin flips Experiment #1 Experiment #2

Given: programs *c*¹ and *c*2, each taking 10 coin flips Experiment #1 Experiment #2

Distributions equal in Experiment #1 Distributions equal in Experiment #2

Why "pretend" two executions share randomness?

Easier to reason about one source of randomness

- \blacktriangleright Fewer possible executions
- \blacktriangleright Pairs of coordinated executions follow similar control flow

Reduce quantitative reasoning

- \blacktriangleright Reason on (non-probabilistic) relations between samples
- \triangleright Don't need to work with raw probabilities (messy)

A bit more precisely. . .

A coupling of two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$ is a joint distribution $\mu \in \overline{\text{Distr}(A \times A)}$ with $\pi_1(\mu) = \mu_1$ and $\pi_2(\mu) = \mu_2.$

A bit more precisely. . .

A coupling of two distributions $\mu_1, \mu_2 \in \mathsf{Distr}(A)$ is a joint distribution $\mu \in \text{Distr}(A \times A)$ with $\pi_1(\mu) = \mu_1$ and $\pi_2(\mu) = \mu_2.$

> A coupling models two distributions sharing one source of randomness

For example

For example

Why are couplings interesting for verification?

Existence of a coupling* can imply a property of two distributions

If there exists a coupling of (μ_1, μ_2) where: then:

Two coupled samples differ with small probability μ_1 is "close" to μ_2

If there exists a coupling of (μ_1, μ_2) where: then:

Two coupled samples differ with small probability μ_1 is "close" to μ_2

Two coupled samples are always equal *µ* are always equal *µ* μ_1 is "equal" to μ_2

If there exists a coupling of (μ_1, μ_2) where: then:

Two coupled samples differ with small probability μ_1 is "close" to μ_2

Two coupled samples are always equal μ_1 is "equal" to μ_2

First coupled sample is always larger than second sample μ_1 "dominates" μ_2

Our plan to verify these properties Three easy steps

- 1. Start from two given programs
- 2. Show that for two related inputs, there exists a coupling of the output distributions with certain properties
- 3. Conclude relational property of program(s)

Our plan to verify these properties Three easy steps

- 1. Start from two given programs
- 2. Show that for two related inputs, there exists a coupling of the output distributions with certain properties
- 3. Conclude relational property of program(s)

Our plan to verify these properties Three easy steps

- 1. Start from two given programs
- 2. Show that for two related inputs, there exists a coupling of the output distributions with certain properties
- 3. Conclude relational property of program(s)

Show existence of a coupling by constructing it

A coupling proof is a recipe for constructing a coupling

Show existence of a coupling by constructing it

A coupling proof is a recipe for constructing a coupling

- 1. Specify: How to couple pairs of intermediate samples
- 2. Deduce: Relation between final coupled samples
- 3. Conclude: Property about two original distributions

Probabilistic Relational Program Logics

Make statements about imperative programs

Imperative language While

 $c ::=$ skip $\mid x \leftarrow e \mid$ if b then c else $c' \mid c;$ $c' \mid$ while b do c

Make statements about imperative programs

Imperative language While

 $c ::=$ skip $\mid x \leftarrow e \mid$ if b then c else $c' \mid c;$ $c' \mid$ while b do c

Semantics: While programs transform memories

- \blacktriangleright Variables: Fixed set $\mathcal X$ of program variable names
- \blacktriangleright Memories M: functions from X to values V (e.g., 42)
- Interpret each command c as a memory transformer:

 $\llbracket c \rrbracket : \mathcal{M} \to \mathcal{M}$

Program logics (Floyd-Hoare logics)

Logical judgments look like this

$$
\{P\} \ c \ \{Q\}
$$

Interpretation

- **Program** c, While program (e.g., $x \leftarrow y; y \leftarrow y + 1$)
- **P** Precondition P, formula over \mathcal{X} (e.g., $y > 0$)
- \triangleright Postcondition *Q*, formula over *X* (e.g., *x* > 0 ∧ *y* > 0)

If *P* holds before running *c*, then *Q* holds after running *c*

Probabilistic Relational Hoare Logic (pRHL) [BGZ-B]

Previously

- \blacktriangleright Inspired by Benton's Relational Hoare Logic
- \blacktriangleright Foundation of the EasyCrypt system
- \triangleright Verified security of many cryptographic schemes

Probabilistic Relational Hoare Logic (pRHL) [BGZ-B]

Previously

- \blacktriangleright Inspired by Benton's Relational Hoare Logic
- \blacktriangleright Foundation of the EasyCrypt system
- \triangleright Verified security of many cryptographic schemes

New interpretation

pRHL is a logic for formal proofs by coupling

Language and judgments

The pWhile imperative language

 $c ::=$ skip $|x \leftarrow e \mid x \triangleleft d$ | if *e* then *c* else $c \mid c$; c | while *e* do *c*

Language and judgments

The pWhile imperative language

 $c ::=$ skip $|x \leftarrow e \mid x \triangleleft d$ | if *e* then *c* else $c \mid c$; $c \mid$ while *e* do *c*

Semantics of pWhile programs

- \blacktriangleright Input: a single memory (assignment to variables)
- \blacktriangleright Output: a distribution over memories
- \blacktriangleright Interpret each command c as:

 $\llbracket c \rrbracket : \mathcal{M} \to \mathsf{Distr}(\mathcal{M})$
Basic pRHL judgments

$$
\{P\} \ c_1 \sim c_2 \ \{Q\}
$$

- \blacktriangleright *P* and *Q* are formulas over program variables
- \blacktriangleright Labeled program variables: x_1, x_2
- \blacktriangleright *P* is precondition, *Q* is postcondition

Interpreting the judgment

Logical judgments in pRHL look like this

{*P*} $c_1 \sim c_2$ {*Q*}

Interpreting the judgment

Logical judgments in pRHL look like this

{*P*} $c_1 \sim c_2$ {*Q*}

Interpreting pre- and post-conditions

- \blacktriangleright As usual, P is a relation on two memories
- \blacktriangleright Q interpreted as a relation $\langle Q \rangle$ on memory distributions

Interpreting the judgment

Logical judgments in pRHL look like this

$$
\{P\} \ c_1 \sim c_2 \ \{Q\}
$$

Interpreting pre- and post-conditions

- \blacktriangleright As usual, P is a relation on two memories
- \blacktriangleright Q interpreted as a relation $\langle Q \rangle$ on memory distributions

Definition (Valid pRHL judgment)

For any pair of related inputs $(m_1, m_2) \in \llbracket P \rrbracket$, there exists a coupling $\mu \in \text{Distr}(\mathcal{M} \times \mathcal{M})$ of the output distributions $([c_1]_m, [c_2]_m)$ such that $supp(\mu) \subseteq [Q]$.

Encoding couplings with pRHL theorems

 $\{P\}$ *c*₁ ~ *c*₂ $\{o_1 = o_2\}$

Interpretation

If two inputs satisfy *P*, there exists a coupling of the output distributions where the coupled samples have equal *o*

Encoding couplings with pRHL theorems

 $\{P\}$ *c*₁ ~ *c*₂ $\{o_1 = o_2\}$

Interpretation

If two inputs satisfy *P*, there exists a coupling of the output distributions where the coupled samples have equal *o*

This implies:

If two inputs satisfy *P*, the distributions of *o* are equal

Encoding couplings with pRHL theorems

{*P*} $c_1 \sim c_2$ {*o*₁ ≥ *o*₂}

This implies:

If two inputs satisfy *P*, then the first distribution of *o* stochastically dominates the second distribution of *o*

Proving Judgments: The Proof System of pRHL

More convenient way to prove judgments

Inference rules describe:

- \blacktriangleright Judgments that are always true (axioms)
- \blacktriangleright How to prove judgment for a program by combining judgments for components

More convenient way to prove judgments

Inference rules describe:

- \blacktriangleright Judgments that are always true (axioms)
- \blacktriangleright How to prove judgment for a program by combining judgments for components

Example: sequential composition rule

Given: $\{P\} c_1 \{Q\}$ and $\{Q\} c_2 \{R\}$

More convenient way to prove judgments

Inference rules describe:

- \blacktriangleright Judgments that are always true (axioms)
- \blacktriangleright How to prove judgment for a program by combining judgments for components

Example: sequential composition rule

Given: $\{P\} c_1 \{Q\}$ and $\{Q\} c_2 \{R\}$

Conclude: $\{P\} c_1 : c_2 \{R\}$

 ${ \vdash } {\} x_1 \overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \textit{flip} \sim x_2 \overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \textit{flip} \ \{x_1 = x_2\}$

$$
\vdash \{\ \} \ x_1 \overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \text{flip} \sim x_2 \overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \text{flip} \ \{x_1 = x_2\}
$$

 $\vdash \{\}\ x_1 \triangleq \text{flip} \sim x_2 \triangleq \text{flip} \ \{x_1 \neq x_2\}$

$$
\vdash \{\ \} \ x_1 \overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \text{flip} \sim x_2 \overset{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \text{flip} \ \{x_1 \neq x_2\}
$$

 $\vdash \{P\}$ *c*₁ ∼ *c*₂ $\{Q\}$ $\vdash \{Q\}$ c_1' $c_1' \sim c_2'$ $\begin{array}{c} \prime \2 \end{array}$ {R} $\overline{\vdash \{P\}}\ \ c_1;c_1'$ $c_1'\sim c_2;c_2'$ $\begin{array}{c} \prime \2 \end{array}$ {R}

 $\vdash \{P\}$ *c*₁ ∼ *c*₂ $\{Q\}$ $\vdash \{Q\}$ c_1' $c_1' \sim c_2'$ $\begin{array}{c} \prime \2 \end{array}$ {R} $\overline{\vdash \{P\}}\ \ c_1;c_1'$ $c_1'\sim c_2;c_2'$ $\begin{array}{c} \prime \2 \end{array}$ {R}

Sequence couplings

 $\vdash \{P \land S\}$ *c*₁ ∼ *c*₂ $\{Q\}$ $\vdash \{P \land \neg S\}$ $c_1 \sim c_2$ $\{Q\}$ $\vdash \{P\}$ *c*₁ ∼ *c*₂ $\{Q\}$

 $\vdash \{P \land S\}$ *c*₁ ∼ *c*₂ $\{Q\}$ $\vdash \{P \land \neg S\}$ $c_1 \sim c_2$ $\{Q\}$ $\vdash \{P\}$ *c*₁ ∼ *c*₂ $\{Q\}$

Select couplings

$$
\frac{\vdash \{P \land e_1 \land e_2\} \ c_1 \sim c_2 \ \{P\}}{\vdash \{P\} \ \text{while } e_1 \text{ do } c_1 \sim \text{while } e_2 \text{ do } c_2 \ \{P \land (\neg e_1 \land \neg e_2)\}}
$$

$$
\dfrac{\vdash \{P \land e_1 \land e_2\} \quad c_1 \sim c_2 \quad \{P\}}{\vdash \{P\} \quad \text{while } e_1 \text{ do } c_1 \sim \text{while } e_2 \text{ do } c_2 \quad \{P \land (\neg e_1 \land \neg e_2)\}}
$$

Repeat couplings

$$
\dfrac{\vdash \{P \land e_1 \land e_2\} \ c_1 \sim c_2 \ \{P\} \qquad \models P \to e_1 = e_2}{\vdash \{P\} \ \text{ while } e_1 \text{ do } c_1 \sim \text{while } e_2 \text{ do } c_2 \ \{P \land (\neg e_1 \land \neg e_2)\}}
$$

Repeat couplings

Not a rule: conjunction

 $\vdash \{P\}$ *c*₁ ∼ *c*₂ $\{Q\}$ \vdash {*P*} *c*₁ ∼ *c*₂ {*R*} \vdash {*P*} *c*₁ ∼ *c*₂ {*Q* ∧ *R*}

Not a rule: conjunction

 $\vdash \{P\}$ *c*₁ ∼ *c*₂ $\{Q\}$ \vdash {*P*} *c*₁ ∼ *c*₂ {*R*} \vdash {*P*} *c*₁ ∼ *c*₂ {*Q* ∧ *R*}

Can't compose this way

Is this just bisimulation?

More general property

- \blacktriangleright Relation need not be equivalence (bisimulation)
- \blacktriangleright Relation need not be preorder (simulation)

More general model of computation

- \blacktriangleright Probabilistic imperative programs
- \triangleright State space can be infinite/parametrized

More flexible construction

- \blacktriangleright No fixed notion of a transition
- \triangleright Coupling can be constructed "asynchronously"

Formal Proofs by Coupling

Ex. 1: Equivalence

Target property: equivalence

P's output distribution is the same for any two inputs

- \triangleright Shows: output distribution is the same for any input
- \triangleright Security: input is secret, output is encrypted

Warmup example: secrecy of one-time-pad (OTP)

The program

- **Program input: a secret boolean** sec
- I Program output: an encrypted version of the secret

 $enc \leftarrow sec \oplus key$; // exclusive or

 $key \triangleq flip$; $\qquad \qquad$ // draw random key return(*enc*) // return encrypted

Proof by coupling

- \blacktriangleright Either sec_1, sec_2 are equal, or unequal
	- 1. If equal: couple sampling for *key* to be equal in both runs
	- 2. If unequal: couple sampling for *key* to be unequal in both runs
- \triangleright Coupling ensures $enc_1 = enc_2$, hence distributions equal

Formalizing the proof in pRHL

Case 1: $sec_1 = sec_2$

 \triangleright By applying identity coupling rule (general version):

$$
{\{sec_1 = sec_2\}}
$$

$$
key \stackrel{\&}{{\leq}r} flip;
$$

$$
{\{key_1 = key_2\}}
$$

$$
enc \leftarrow sec \oplus key
$$

$$
{\{enc_1 = enc_2\}}
$$

$$
{\lbrace sec_1 = sec_2 \rbrace \ \ ofp \sim otp \ \lbrace enc_1 = enc_2 \rbrace}
$$

Formalizing the proof in pRHL

Case 2: $sec_1 \neq sec_2$

 \blacktriangleright By applying negation coupling rule (general version):

$$
{\{sec_1 \neq sec_2\}}
$$

$$
key \stackrel{\&} \leftarrow flip;
$$

$$
{\{key_1 \neq key_2\}}
$$

$$
enc \leftarrow sec \oplus key
$$

$$
{\{enc_1 = enc_2\}}
$$

 \blacktriangleright Hence:

 ${sec_1 \neq sec_2}$ *otp* ∼ *otp* {*enc*₁ = *enc*₂}

Formalizing the proof in pRHL

Combining the cases:

$$
\begin{aligned}\n\{sec_1 = sec_2\} \quad otp \sim otp \quad \{enc_1 = enc_2\} \\
\frac{\{sec_1 \neq sec_2\} \quad otp \sim otp \quad \{enc_1 = enc_2\}}{\{\top\} \quad otp \sim otp \quad \{enc_1 = enc_2\}}\n\end{aligned}
$$

and we are done!

Formal Proofs by Coupling Ex. 2: Stochastic Domination

Target property: stochastic domination

Order relation on distributions

- \blacktriangleright Given: ordered set (A, \leq_A)
- \blacktriangleright Lift to ordering on distributions (Distr(A), \leq_{sd})

For naturals $(N, <)$...

Two distributions $\mu_1, \mu_2 \in \text{Distr}(\mathbb{N})$ satisfy $\mu_1 \leq_{sd} \mu_2$ if

for all $k \in \overline{N}$, $\mu_1(\{n \mid k \leq n\}) \leq \mu_2(\{n \mid k \leq n\})$

Proof by coupling

$$
ct \leftarrow 0;
$$

for $i=1,...,T_1$ do
 $r \stackrel{s}{\leftarrow} flip;$
if $r =$ heads then
 $ct \leftarrow ct + 1;$
return (ct)

 $ct \leftarrow 0;$ for $i=1,\ldots,T_2$ do $r \triangleq flip;$ if $r =$ heads then return(*ct*)

Proof by coupling

 $ct \leftarrow 0$; for $i=1,\ldots,T_1$ do $r \triangleq flip$; if $r =$ heads then $ct \leftarrow ct + 1$; return(*ct*)

 $ct \leftarrow 0$; $for i=1,\ldots,T_2$ do $r \triangleq \text{flip}$; if $r =$ heads then $ct \leftarrow ct + 1;$ return(*ct*)

Suppose $T_1 > T_2$: first loop runs more

 \blacktriangleright Want to prove $\mu_1 \geq_{sd} \mu_2$

Proof by coupling

 $ct \leftarrow 0$: for $i=1,\ldots,T_1$ do $r \triangleq flip$; if $r =$ heads then $ct \leftarrow ct + 1$; return(*ct*)

 $ct \leftarrow 0$: for $i=1,\ldots,T_2$ do $r \triangleq \text{flip}$; if $r =$ heads then $ct \leftarrow ct + 1$; return(*ct*)

Suppose $T_1 > T_2$: first loop runs more

 \blacktriangleright Want to prove $\mu_1 \geq_{sd} \mu_2$

Suffices to construct a coupling where $ct_1 > ct_2$

- \blacktriangleright Couple the first T_2 samples to be equal across both runs; establishes $ct_1 = ct_2$
- \blacktriangleright Take the remaining $T_1 T_2$ samples (in the first run) to be arbitrary; preserves $ct_1 > ct_2$
Formalizing the proof in pRHL

$$
ct \leftarrow 0;
$$

for i=1,...,T₁ do

$$
r \stackrel{\&}{\underset{\sim}{\ast}} flip;
$$

if r = heads then

$$
ct \leftarrow ct + 1;
$$

return(ct)

$$
ct \leftarrow 0;
$$

for i=1,...,T₂ do
 $r \stackrel{\&}{\leq} flip;$
if r = heads then
 $ct \leftarrow ct + 1;$
return(ct)

Goal: prove

$$
\boxed{\vdash \{T_1 \ge T_2\} \ c_1 \sim c_2 \ \{ct_1 \ge ct_2\}}
$$

Step 1: Rewrite

```
ct \leftarrow 0:
for i=1,\ldots,T_2 do
   r \triangleq flip;
   if r = heads then
      ct \leftarrow ct + 1;
for i = T_2 + 1, ..., T_1 do
   r \triangleq flip;if r = heads then
      ct \leftarrow ct + 1;
return(ct)
```
 $ct \leftarrow 0$: for $i=1,\ldots,T_2$ do $r \triangleq \text{flip}$; if $r =$ heads then $ct \leftarrow ct + 1$;

return(*ct*)

$$
ct \leftarrow 0;
$$

for i=1,...,T₂ do

$$
r \stackrel{\$}{\leq} flip;
$$

if r = heads then

$$
ct \leftarrow ct + 1
$$

 $ct \leftarrow 0;$ for $i=1,\ldots,T_2$ do $r \triangleq flip;$ if $r =$ **heads** then $ct \leftarrow ct+1$

$$
ct \leftarrow 0;
$$

for i=1,...,T₂ do

$$
r \underset{r}{\triangle} flip;
$$

if r = heads then

$$
ct \leftarrow ct + 1
$$

 $ct \leftarrow 0;$ for $i=1,\ldots,T_2$ do $r \triangleq flip;$ if $r =$ **heads** then $ct \leftarrow ct+1$

Step 2: First loop

 \blacktriangleright Use sampling rule with identity coupling: $r_1 = r_2$

$$
ct \leftarrow 0;
$$

for i=1,...,T₂ do

$$
r \stackrel{\&}{\leq} flip;
$$

if r = heads then

$$
ct \leftarrow ct + 1
$$

 $ct \leftarrow 0;$ for $i=1,\ldots,T_2$ do $r \leftarrow flip;$ if $r =$ **heads** then $ct \leftarrow ct+1$

Step 2: First loop

 \blacktriangleright Use sampling rule with identity coupling: $r_1 = r_2$

$$
ct \leftarrow 0;
$$

for $i=1,...,T_2$ do
 $r \stackrel{\&}{{}_{\sim}} flip;$
if $r =$ heads then
 $ct \leftarrow ct + 1$

 $ct \leftarrow 0;$ for $i=1,\ldots,T_2$ do $r \triangleq flip;$ if $r =$ heads then $ct \leftarrow ct+1$

Step 2: First loop

 \blacktriangleright Use sampling rule with identity coupling: $r_1 = r_2$

$$
ct \leftarrow 0;
$$

for i=1,...,T₂ do

$$
r \stackrel{\&}{\underset{\sim}{\ast}} flip;
$$

if r = heads then

$$
ct \leftarrow ct + 1
$$

 $ct \leftarrow 0$; for $i=1,\ldots,T_2$ do $r \triangleq flip;$ if $r =$ **heads** then $ct \leftarrow ct+1$

Step 2: First loop

- \blacktriangleright Use sampling rule with identity coupling: $r_1 = r_2$
- **Establish loop invariant** $ct_1 = ct_2$

for $i = T_2 + 1, ..., T_1$ do $r \triangleq flip;$ if $r =$ heads then $return(ct)$ return(*ct*)

Step 3: Second loop

- \blacktriangleright Use "one-sided" sampling rule
- **►** Apply "one-sided" loop rule to show invariant $ct_1 > ct_2$

Formal Proofs by Coupling Ex. 3: Uniformity

Simulating a fair coin flip from a biased coin Problem setting

- \blacktriangleright Given: ability to draw biased coin flips $\overline{flip}(p)$, $p \neq 1/2$
- Goal: simulate a fair coin flip $flip(1/2)$

Simulating a fair coin flip from a biased coin Problem setting

- \blacktriangleright Given: ability to draw biased coin flips $flip(p)$, $p \neq 1/2$
- \blacktriangleright Goal: simulate a fair coin flip $flip(1/2)$

Algorithm ("von Neumann's trick")

$$
x \leftarrow true; y \leftarrow true
$$

while $x = y$ do

$$
x \stackrel{\&}{{\scriptstyle \sim}} \text{flip}(p);
$$

$$
y \stackrel{\&}{{\scriptstyle \sim}} \text{flip}(p);
$$

return
$$
(x)
$$

 $\frac{1}{i}$ initialize $x = y$ *//* if equal, repeat *x* ←\$ *flip*(*p*); // flip biased coin *y* ←\$ *flip*(*p*); // flip biased coin $\frac{1}{i}$ if not equal, return x

Simulating a fair coin flip from a biased coin Problem setting

- \blacktriangleright Given: ability to draw biased coin flips $flip(p)$, $p \neq 1/2$
- \blacktriangleright Goal: simulate a fair coin flip $flip(1/2)$

Algorithm ("von Neumann's trick")

$$
x \leftarrow true; y \leftarrow true;
$$

while $x = y$ do

$$
x \stackrel{\&}{\leftarrow} flip(p);
$$

$$
y \stackrel{\&}{\leftarrow} flip(p);
$$

return
$$
(x)
$$

 $\frac{1}{i}$ initialize $x = y$ *//* if equal, repeat *x* ←\$ *flip*(*p*); // flip biased coin *y* ←\$ *flip*(*p*); // flip biased coin $\frac{1}{i}$ if not equal, return x

How to prove that the result *x* is unbiased (uniform)?

From existence of coupling, to uniformity

Suppose that we know there exist two couplings:

- 1. Under first coupling, $x_1 = true$ implies $x_2 = false$
- 2. Under second coupling, $x_1 = false$ implies $x_2 = true$

From existence of coupling, to uniformity

Suppose that we know there exist two couplings:

- 1. Under first coupling, $x_1 = true$ implies $x_2 = false$
- 2. Under second coupling, $x_1 = false$ implies $x_2 = true$

As a consequence:

- ▶ By (1), $Pr[x_1 = true]$ < $Pr[x_2 = false]$
- \blacktriangleright By (2), $Pr[x_1 = false] \le Pr[x_2 = true]$

From existence of coupling, to uniformity

Suppose that we know there exist two couplings:

- 1. Under first coupling, $x_1 = true$ implies $x_2 = false$
- 2. Under second coupling, $x_1 = false$ implies $x_2 = true$

As a consequence:

$$
\blacktriangleright \text{ By (1), } \Pr[x_1 = true] \le \Pr[x_2 = false]
$$

 \blacktriangleright By (2), $Pr[x_1 = false] \le Pr[x_2 = true]$

But x_1 and x_2 have same distribution

- ▶ By (1), $Pr[x_1 = true]$ < $Pr[x_1 = false]$
- \blacktriangleright By (2), $Pr[x_1 = false] \le Pr[x_1 = true]$
- \blacktriangleright Hence uniform: $Pr[x_1 = true] = Pr[x_1 = false]$

Proof by coupling

Algorithm ("von Neumann's trick")

$$
x \leftarrow true; y \leftarrow true;
$$

while $x = y$ do

$$
x \stackrel{\$}{\underset{\sim}{\sim}} flip(p);
$$

$$
y \stackrel{\$}{\underset{\sim}{\sim}} flip(p);
$$

return(x)

 $\frac{1}{i}$ initialize $x = y$ // if equal, repeat *x* ←\$ *flip*(*p*); // flip biased coin *y* ←\$ *flip*(*p*); // flip biased coin μ if not equal, return x

Construct couplings such that:

- 1. Under first coupling, $x_1 = true$ implies $x_2 = false$
- 2. Under second coupling, $x_1 = false$ implies $x_2 = true$

Consider the following coupling:

- \blacktriangleright Couple sampling of x_1 to be equal to sampling of y_2
- \triangleright Couple sampling of x_2 to be equal to sampling of y_1
- Resulting coupling satisfies both (1) and $(2)!$

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $x \triangleq flip(p);$ $y \triangleq flip(p);$ return(*x*)

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $y \triangleq flip(p);$ $x \triangleq flip(p);$ return(*x*)

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $x \triangleq flip(p);$ $y \triangleq flip(p);$ return(*x*)

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $y \triangleq flip(p);$ $x \triangleq flip(p);$ return(*x*)

Build coupling for loop bodies, then loops

 \blacktriangleright Use sampling rule with identity coupling: $x_1 = y_2$

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $x \triangleq flip(p);$ $y \triangleq flip(p);$ return(*x*)

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $y \triangleq flip(p);$ $x \triangleq flip(p);$ return(*x*)

Build coupling for loop bodies, then loops

 \blacktriangleright Use sampling rule with identity coupling: $x_1 = y_2$

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $x \triangleq flip(p);$ $y \triangleq flip(p);$ return(*x*)

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $y \triangleq flip(p);$ $x \triangleq flip(p);$ return(*x*)

- \blacktriangleright Use sampling rule with identity coupling: $x_1 = y_2$
- \blacktriangleright Use sampling rule with identity coupling: $y_1 = x_2$

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $x \triangleq flip(p);$ $y \triangleq flip(p);$ return(*x*)

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $y \triangleq flip(p);$ $x \triangleq flip(p);$ return(*x*)

- \blacktriangleright Use sampling rule with identity coupling: $x_1 = y_2$
- \blacktriangleright Use sampling rule with identity coupling: $y_1 = x_2$

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $x \triangleq flip(p);$ $y \triangleq flip(p);$ return(*x*)

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $y \triangleq flip(p);$ $x \triangleq flip(p);$ return(*x*)

- \blacktriangleright Use sampling rule with identity coupling: $x_1 = y_2$
- \blacktriangleright Use sampling rule with identity coupling: $y_1 = x_2$
- \blacktriangleright Use loop rule with invariant:

$$
(x_1 = y_1 \to x_1 = y_2) \land (x_1 \neq y_1 \to x_1 \neq x_2)
$$

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $x \triangleq flip(p);$ $y \triangleq flip(p);$ return(*x*)

 $x \leftarrow true; y \leftarrow true;$ while $x = y$ do $y \triangleq flip(p);$ $x \triangleq flip(p);$ return(*x*)

- \blacktriangleright Use sampling rule with identity coupling: $x_1 = y_2$
- \blacktriangleright Use sampling rule with identity coupling: $y_1 = x_2$
- \blacktriangleright Use loop rule with invariant:

$$
(x_1 = y_1 \to x_1 = y_2) \land (x_1 \neq y_1 \to x_1 \neq x_2)
$$

Wrapping Up

Variations and extensions

Approximate couplings

- \blacktriangleright Prove differential privacy as approximate equivalence
- \triangleright Coming up next in Marco's tutorial!

Expectation couplings

- \triangleright Prove quantitative bounds on distance b/t distributions
- \blacktriangleright MC convergence, stability of ML, path coupling, ...
- ▶ Program logic: https://arxiv.org/abs/1708.02537
- \blacktriangleright Pre-expectation calculus: https://arxiv.org/abs/1901.06540

Automation

- \blacktriangleright Encode search for coupling proofs as a synthesis problem
- \triangleright Coupling proofs: https://arxiv.org/abs/1804.04052
- ▶ Approximate couplings: https://arxiv.org/abs/1709.05361

References

Relational reasoning via probabilistic coupling

- \blacktriangleright Initial connection between couplings and pRHL (LPAR 2015)
- \blacktriangleright arXiv: https://arxiv.org/abs/1509.03476

Coupling proofs are probabilistic product programs

- ▶ Extract product programs from pRHL proofs (POPL 2016)
- \blacktriangleright arXiv: https://arxiv.org/abs/1607.03455

Proving uniformity and independence by self-composition and coupling

- \triangleright Coupling proofs for non-relational properties (LPAR 2017)
- \blacktriangleright arXiv: https://arxiv.org/abs/1701.06477

Verifying Probabilistic Properties with Probabilistic Couplings

Justin Hsu UW–Madison Computer Sciences