
Justin Hsu
UW–Madison

Computer Sciences

Verifying Probabilistic Properties
with Probabilistic Couplings

1

Work with brilliant collaborators

2

What Are Probabilistic
“Relational Properties”?

3

Today’s target properties

Probabilistic
I Programs can take random samples (flip coins)
I Map (single) input value to a distribution over outputs

Relational
I Compare two executions of a program (or: two programs)
I Describe outputs (distributions) from two related inputs
I Also known as 2-properties, or hyperproperties

4

Examples throughout computer science...

Security and privacy
I Indistinguishability
I Di�erential privacy

Machine learning
I Uniform stability

... and beyond
I Incentive properties (game theory/mechanism design)
I Convergence and mixing (probability theory)

5

Challenges for formal verification

Reason about two sources of randomness
I Two executions may behave very di�erently
I Completely di�erent control flow (even for same program!)

Quantitative reasoning
I Target properties describe distributions
I Probabilities, expected values, etc.
I Very messy for formal reasoning

6

Today: Combine two ingredients

Probabilistic Couplings

+
Relational Program Logics

7

Probabilistic Couplings
and “Proof by Coupling”

8

Given: programs c1 and c2, each taking 10 coin flips

Experiment #1

Experiment #2

Distributions equal in Experiment #1
⇐⇒

Distributions equal in Experiment #2

9

Given: programs c1 and c2, each taking 10 coin flips

Experiment #1 Experiment #2

Distributions equal in Experiment #1
⇐⇒

Distributions equal in Experiment #2

9

Given: programs c1 and c2, each taking 10 coin flips

Experiment #1 Experiment #2

Distributions equal in Experiment #1
⇐⇒

Distributions equal in Experiment #2

9

Given: programs c1 and c2, each taking 10 coin flips
Experiment #1

Experiment #2

Distributions equal in Experiment #1
⇐⇒

Distributions equal in Experiment #2

10

Given: programs c1 and c2, each taking 10 coin flips
Experiment #1 Experiment #2

Distributions equal in Experiment #1
⇐⇒

Distributions equal in Experiment #2

10

Given: programs c1 and c2, each taking 10 coin flips
Experiment #1 Experiment #2

Distributions equal in Experiment #1
⇐⇒

Distributions equal in Experiment #2
10

Why “pretend” two executions share randomness?

Easier to reason about one source of randomness
I Fewer possible executions
I Pairs of coordinated executions follow similar control flow

Reduce quantitative reasoning
I Reason on (non-probabilistic) relations between samples
I Don’t need to work with raw probabilities (messy)

11

A bit more precisely. . .

A coupling of two distributions
µ1, µ2 ∈ Distr(A) is a joint distribution
µ ∈ Distr(A× A) with π1(µ) = µ1 and
π2(µ) = µ2.

A coupling models two distributions
sharing one source of randomness

12

A bit more precisely. . .

A coupling of two distributions
µ1, µ2 ∈ Distr(A) is a joint distribution
µ ∈ Distr(A× A) with π1(µ) = µ1 and
π2(µ) = µ2.

A coupling models two distributions
sharing one source of randomness

12

For example
Coin #1 Coin #2

Heads Tails Heads Tails

Pr

0.5

Pr

0.5

Heads Tails
0.5 0.5

Coin #2

H
ea

ds
Ta

ils

0.5

0.5

C
oi

n
#1

0.5 0

0 0.5

Coin #1 Coin #2

Heads Tails Heads Tails

Pr

0.5

Pr

0.5

Heads Tails
0.5 0.5

Coin #2

H
ea

ds
Ta

ils

0.5

0.5

C
oi

n
#1

0 0.5

0.5 0

13

For example
Coin #1 Coin #2

Heads Tails Heads Tails

Pr

0.5

Pr

0.5

Heads Tails
0.5 0.5

Coin #2

H
ea

ds
Ta

ils

0.5

0.5

C
oi

n
#1

0.5 0

0 0.5

Coin #1 Coin #2

Heads Tails Heads Tails

Pr

0.5

Pr

0.5

Heads Tails
0.5 0.5

Coin #2

H
ea

ds
Ta

ils

0.5

0.5
C

oi
n

#1

0 0.5

0.5 0

13

Why are couplings interesting for verification?

Existence of a coupling* can imply
a property of two distributions

14

If there exists a coupling
of (µ1, µ2) where: then:

Two coupled samples di�er
with small probability µ1 is “close” to µ2

Two coupled samples
are always equal µ1 is “equal” to µ2

First coupled sample is always
larger than second sample µ1 “dominates” µ2

15

If there exists a coupling
of (µ1, µ2) where: then:

Two coupled samples di�er
with small probability µ1 is “close” to µ2

Two coupled samples
are always equal µ1 is “equal” to µ2

First coupled sample is always
larger than second sample µ1 “dominates” µ2

15

If there exists a coupling
of (µ1, µ2) where: then:

Two coupled samples di�er
with small probability µ1 is “close” to µ2

Two coupled samples
are always equal µ1 is “equal” to µ2

First coupled sample is always
larger than second sample µ1 “dominates” µ2

15

Our plan to verify these properties
Three easy steps

1. Start from two given programs
2. Show that for two related inputs, there exists a coupling of

the output distributions with certain properties
3. Conclude relational property of program(s)

16

Our plan to verify these properties
Three easy steps

1. Start from two given programs
2. Show that for two related inputs, there exists a coupling of

the output distributions with certain properties
3. Conclude relational property of program(s)

16

Our plan to verify these properties
Three easy steps

1. Start from two given programs
2. Show that for two related inputs, there exists a coupling of

the output distributions with certain properties
3. Conclude relational property of program(s)

16

Show existence of a coupling by constructing it

A coupling proof is a recipe
for constructing a coupling

1. Specify: How to couple pairs of intermediate samples
2. Deduce: Relation between final coupled samples
3. Conclude: Property about two original distributions

17

Show existence of a coupling by constructing it

A coupling proof is a recipe
for constructing a coupling

1. Specify: How to couple pairs of intermediate samples
2. Deduce: Relation between final coupled samples
3. Conclude: Property about two original distributions

17

Probabilistic Relational
Program Logics

18

Make statements about imperative programs

Imperative language While

c ::= skip | x← e | if b then c else c′ | c; c′ | while b do c

Semantics: While programs transform memories
I Variables: Fixed set X of program variable names
I MemoriesM: functions from X to values V (e.g., 42)
I Interpret each command c as a memory transformer:

[[c]] :M→M

19

Make statements about imperative programs

Imperative language While

c ::= skip | x← e | if b then c else c′ | c; c′ | while b do c

Semantics: While programs transform memories
I Variables: Fixed set X of program variable names
I MemoriesM: functions from X to values V (e.g., 42)
I Interpret each command c as a memory transformer:

[[c]] :M→M

19

Program logics (Floyd-Hoare logics)

Logical judgments look like this

{P} c {Q}
Interpretation
I Program c, While program (e.g., x← y; y ← y + 1)
I Precondition P , formula over X (e.g., y ≥ 0)
I Postcondition Q, formula over X (e.g., x ≥ 0 ∧ y ≥ 0)

If P holds before running c, then Q holds after running c

20

Probabilistic Relational Hoare Logic (pRHL) [BGZ-B]

Previously
I Inspired by Benton’s Relational Hoare Logic
I Foundation of the EasyCrypt system
I Verified security of many cryptographic schemes

New interpretation

pRHL is a logic for formal
proofs by coupling

21

Probabilistic Relational Hoare Logic (pRHL) [BGZ-B]

Previously
I Inspired by Benton’s Relational Hoare Logic
I Foundation of the EasyCrypt system
I Verified security of many cryptographic schemes

New interpretation

pRHL is a logic for formal
proofs by coupling

21

Language and judgments

The pWhile imperative language

c ::= skip | x← e | x $← d | if e then c else c | c; c | while e do c

Semantics of pWhile programs
I Input: a single memory (assignment to variables)
I Output: a distribution over memories
I Interpret each command c as:

[[c]] :M→ Distr(M)

22

Language and judgments

The pWhile imperative language

c ::= skip | x← e | x $← d | if e then c else c | c; c | while e do c

Semantics of pWhile programs
I Input: a single memory (assignment to variables)
I Output: a distribution over memories
I Interpret each command c as:

[[c]] :M→ Distr(M)

22

Basic pRHL judgments

{P} c1 ∼ c2 {Q}

I P and Q are formulas over program variables
I Labeled program variables: x1, x2
I P is precondition, Q is postcondition

23

Interpreting the judgment

Logical judgments in pRHL look like this

{P} c1 ∼ c2 {Q}

Interpreting pre- and post-conditions
I As usual, P is a relation on two memories
I Q interpreted as a relation 〈Q〉 on memory distributions

Definition (Valid pRHL judgment)
For any pair of related inputs (m1,m2) ∈ [[P]], there exists a
coupling µ ∈ Distr(M×M) of the output distributions
([[c1]]m1, [[c2]]m2) such that supp(µ) ⊆ [[Q]].

24

Interpreting the judgment

Logical judgments in pRHL look like this

{P} c1 ∼ c2 {Q}
Interpreting pre- and post-conditions
I As usual, P is a relation on two memories
I Q interpreted as a relation 〈Q〉 on memory distributions

Definition (Valid pRHL judgment)
For any pair of related inputs (m1,m2) ∈ [[P]], there exists a
coupling µ ∈ Distr(M×M) of the output distributions
([[c1]]m1, [[c2]]m2) such that supp(µ) ⊆ [[Q]].

24

Interpreting the judgment

Logical judgments in pRHL look like this

{P} c1 ∼ c2 {Q}
Interpreting pre- and post-conditions
I As usual, P is a relation on two memories
I Q interpreted as a relation 〈Q〉 on memory distributions

Definition (Valid pRHL judgment)
For any pair of related inputs (m1,m2) ∈ [[P]], there exists a
coupling µ ∈ Distr(M×M) of the output distributions
([[c1]]m1, [[c2]]m2) such that supp(µ) ⊆ [[Q]].

24

Encoding couplings with pRHL theorems

{P} c1 ∼ c2 {o1 = o2}

Interpretation

If two inputs satisfy P , there exists a coupling of the output
distributions where the coupled samples have equal o

This implies:

If two inputs satisfy P , the distributions of o are equal

25

Encoding couplings with pRHL theorems

{P} c1 ∼ c2 {o1 = o2}

Interpretation

If two inputs satisfy P , there exists a coupling of the output
distributions where the coupled samples have equal o

This implies:

If two inputs satisfy P , the distributions of o are equal

25

Encoding couplings with pRHL theorems

{P} c1 ∼ c2 {o1 ≥ o2}

This implies:

If two inputs satisfy P , then the first distribution of o
stochastically dominates the second distribution of o

26

Proving Judgments:
The Proof System of pRHL

27

More convenient way to prove judgments

Inference rules describe:
I Judgments that are always true (axioms)
I How to prove judgment for a program by combining

judgments for components

Example: sequential composition rule

Given: {P} c1 {Q} and {Q} c2 {R}

Conclude: {P} c1 ; c2 {R}

28

More convenient way to prove judgments

Inference rules describe:
I Judgments that are always true (axioms)
I How to prove judgment for a program by combining

judgments for components

Example: sequential composition rule

Given: {P} c1 {Q} and {Q} c2 {R}

Conclude: {P} c1 ; c2 {R}

28

More convenient way to prove judgments

Inference rules describe:
I Judgments that are always true (axioms)
I How to prove judgment for a program by combining

judgments for components

Example: sequential composition rule

Given: {P} c1 {Q} and {Q} c2 {R}

Conclude: {P} c1 ; c2 {R}

28

Reading the rules: introduce couplings

` { } x1 $← flip ∼ x2 $← flip {x1 = x2}

Coin #1 Coin #2

Heads Tails Heads Tails

Pr

0.5

Pr

0.5

29

Reading the rules: introduce couplings

` { } x1 $← flip ∼ x2 $← flip {x1 = x2}

Coin #1 Coin #2

Heads Tails Heads Tails

Pr

0.5

Pr

0.5

29

Reading the rules: introduce couplings

` { } x1 $← flip ∼ x2 $← flip {x1 6= x2}

Coin #1 Coin #2

Heads Tails Heads Tails

Pr

0.5

Pr

0.5

30

Reading the rules: introduce couplings

` { } x1 $← flip ∼ x2 $← flip {x1 6= x2}

Coin #1 Coin #2

Heads Tails Heads Tails

Pr

0.5

Pr

0.5

30

Reading the rules: combine couplings

` {P} c1 ∼ c2 {Q}
` {Q} c′

1 ∼ c′
2 {R}

` {P} c1; c′
1 ∼ c2; c′

2 {R}

Sequence couplings

31

Reading the rules: combine couplings

` {P} c1 ∼ c2 {Q}
` {Q} c′

1 ∼ c′
2 {R}

` {P} c1; c′
1 ∼ c2; c′

2 {R}

Sequence couplings

31

Reading the rules: combine couplings

` {P ∧ S} c1 ∼ c2 {Q}
` {P ∧ ¬S} c1 ∼ c2 {Q}
` {P} c1 ∼ c2 {Q}

Select couplings

32

Reading the rules: combine couplings

` {P ∧ S} c1 ∼ c2 {Q}
` {P ∧ ¬S} c1 ∼ c2 {Q}
` {P} c1 ∼ c2 {Q}

Select couplings

32

Reading the rules: combine couplings

` {P ∧ e1 ∧ e2} c1 ∼ c2 {P} |= P → e1 = e2

` {P} while e1 do c1 ∼ while e2 do c2 {P ∧ (¬e1 ∧ ¬e2)}

Repeat couplings

33

Reading the rules: combine couplings

` {P ∧ e1 ∧ e2} c1 ∼ c2 {P} |= P → e1 = e2

` {P} while e1 do c1 ∼ while e2 do c2 {P ∧ (¬e1 ∧ ¬e2)}

Repeat couplings

33

Reading the rules: combine couplings

` {P ∧ e1 ∧ e2} c1 ∼ c2 {P} |= P → e1 = e2

` {P} while e1 do c1 ∼ while e2 do c2 {P ∧ (¬e1 ∧ ¬e2)}

Repeat couplings

33

Not a rule: conjunction

` {P} c1 ∼ c2 {Q}
` {P} c1 ∼ c2 {R}
` {P} c1 ∼ c2 {Q ∧R}

Can’t compose this way

34

Not a rule: conjunction

` {P} c1 ∼ c2 {Q}
` {P} c1 ∼ c2 {R}
` {P} c1 ∼ c2 {Q ∧R}

Can’t compose this way

34

Is this just bisimulation?

More general property
I Relation need not be equivalence (bisimulation)
I Relation need not be preorder (simulation)

More general model of computation
I Probabilistic imperative programs
I State space can be infinite/parametrized

More flexible construction
I No fixed notion of a transition
I Coupling can be constructed “asynchronously”

35

Formal Proofs by Coupling
Ex. 1: Equivalence

36

Target property: equivalence

P ’s output distribution is the same for any two inputs
I Shows: output distribution is the same for any input
I Security: input is secret, output is encrypted

37

Warmup example: secrecy of one-time-pad (OTP)

The program
I Program input: a secret boolean sec
I Program output: an encrypted version of the secret

key $← flip; // draw random key
enc← sec ⊕ key; // exclusive or
return(enc) // return encrypted

Proof by coupling
I Either sec1, sec2 are equal, or unequal

1. If equal: couple sampling for key to be equal in both runs
2. If unequal: couple sampling for key to be unequal in both runs

I Coupling ensures enc1 = enc2, hence distributions equal

38

Formalizing the proof in pRHL

Case 1: sec1 = sec2

I By applying identity coupling rule (general version):

{sec1 = sec2}
key $← flip;
{key1 = key2}
enc← sec ⊕ key
{enc1 = enc2}

I Hence:

{sec1 = sec2} otp ∼ otp {enc1 = enc2}

39

Formalizing the proof in pRHL

Case 2: sec1 6= sec2

I By applying negation coupling rule (general version):

{sec1 6= sec2}
key $← flip;
{key1 6= key2}
enc← sec ⊕ key
{enc1 = enc2}

I Hence:

{sec1 6= sec2} otp ∼ otp {enc1 = enc2}

40

Formalizing the proof in pRHL

Combining the cases:

{sec1 = sec2} otp ∼ otp {enc1 = enc2}
{sec1 6= sec2} otp ∼ otp {enc1 = enc2}

{>} otp ∼ otp {enc1 = enc2}

and we are done!

41

Formal Proofs by Coupling
Ex. 2: Stochastic Domination

42

Target property: stochastic domination

Order relation on distributions
I Given: ordered set (A,≤A)
I Lift to ordering on distributions (Distr(A),≤sd)

For naturals (N,≤) . . .
Two distributions µ1, µ2 ∈ Distr(N) satisfy µ1 ≤sd µ2 if

for all k ∈ N, µ1({n | k ≤ n}) ≤ µ2({n | k ≤ n})

43

Proof by coupling

ct ← 0;
for i= 1, . . . , T1 do
r $← flip;
if r = heads then

ct ← ct + 1;
return(ct)

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1;
return(ct)

Suppose T1 ≥ T2: first loop runs more
I Want to prove µ1 ≥sd µ2

Su�ces to construct a coupling where ct1 ≥ ct2

I Couple the first T2 samples to be equal across both runs;
establishes ct1 = ct2

I Take the remaining T1 − T2 samples (in the first run) to be
arbitrary; preserves ct1 ≥ ct2

44

Proof by coupling

ct ← 0;
for i= 1, . . . , T1 do
r $← flip;
if r = heads then

ct ← ct + 1;
return(ct)

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1;
return(ct)

Suppose T1 ≥ T2: first loop runs more
I Want to prove µ1 ≥sd µ2

Su�ces to construct a coupling where ct1 ≥ ct2

I Couple the first T2 samples to be equal across both runs;
establishes ct1 = ct2

I Take the remaining T1 − T2 samples (in the first run) to be
arbitrary; preserves ct1 ≥ ct2

44

Proof by coupling

ct ← 0;
for i= 1, . . . , T1 do
r $← flip;
if r = heads then

ct ← ct + 1;
return(ct)

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1;
return(ct)

Suppose T1 ≥ T2: first loop runs more
I Want to prove µ1 ≥sd µ2

Su�ces to construct a coupling where ct1 ≥ ct2

I Couple the first T2 samples to be equal across both runs;
establishes ct1 = ct2

I Take the remaining T1 − T2 samples (in the first run) to be
arbitrary; preserves ct1 ≥ ct2

44

Formalizing the proof in pRHL

ct ← 0;
for i= 1, . . . , T1 do
r $← flip;
if r = heads then

ct ← ct + 1;
return(ct)

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1;
return(ct)

Goal: prove

` {T1 ≥ T2} c1 ∼ c2 {ct1 ≥ ct2}

45

Proof sketch

Step 1: Rewrite

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1;
for i= T2 + 1, . . . , T1 do
r $← flip;
if r = heads then

ct ← ct + 1;
return(ct)

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1;

return(ct)

46

Proof sketch

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1

Step 2: First loop

I Use sampling rule with identity coupling: r1 = r2
I Establish loop invariant ct1 = ct2

47

Proof sketch

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1

Step 2: First loop
I Use sampling rule with identity coupling: r1 = r2

I Establish loop invariant ct1 = ct2

47

Proof sketch

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1

Step 2: First loop
I Use sampling rule with identity coupling: r1 = r2

I Establish loop invariant ct1 = ct2

47

Proof sketch

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1

Step 2: First loop
I Use sampling rule with identity coupling: r1 = r2

I Establish loop invariant ct1 = ct2

47

Proof sketch

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1

ct ← 0;
for i= 1, . . . , T2 do
r $← flip;
if r = heads then

ct ← ct + 1

Step 2: First loop
I Use sampling rule with identity coupling: r1 = r2
I Establish loop invariant ct1 = ct2

47

Proof sketch

for i= T2 + 1, . . . , T1 do
r $← flip;
if r = heads then

ct ← ct + 1;
return(ct) return(ct)

Step 3: Second loop
I Use “one-sided” sampling rule
I Apply “one-sided” loop rule to show invariant ct1 ≥ ct2

48

Formal Proofs by Coupling
Ex. 3: Uniformity

49

Simulating a fair coin flip from a biased coin
Problem setting
I Given: ability to draw biased coin flips flip(p), p 6= 1/2
I Goal: simulate a fair coin flip flip(1/2)

Algorithm (“von Neumann’s trick”)

x← true; y ← true; // initialize x = y
while x = y do // if equal, repeat

x $← flip(p); // flip biased coin
y $← flip(p); // flip biased coin

return(x) // if not equal, return x

How to prove that the result x is unbiased (uniform)?

50

Simulating a fair coin flip from a biased coin
Problem setting
I Given: ability to draw biased coin flips flip(p), p 6= 1/2
I Goal: simulate a fair coin flip flip(1/2)

Algorithm (“von Neumann’s trick”)

x← true; y ← true; // initialize x = y
while x = y do // if equal, repeat

x $← flip(p); // flip biased coin
y $← flip(p); // flip biased coin

return(x) // if not equal, return x

How to prove that the result x is unbiased (uniform)?

50

Simulating a fair coin flip from a biased coin
Problem setting
I Given: ability to draw biased coin flips flip(p), p 6= 1/2
I Goal: simulate a fair coin flip flip(1/2)

Algorithm (“von Neumann’s trick”)

x← true; y ← true; // initialize x = y
while x = y do // if equal, repeat

x $← flip(p); // flip biased coin
y $← flip(p); // flip biased coin

return(x) // if not equal, return x

How to prove that the result x is unbiased (uniform)?

50

From existence of coupling, to uniformity

Suppose that we know there exist two couplings:
1. Under first coupling, x1 = true implies x2 = false
2. Under second coupling, x1 = false implies x2 = true

As a consequence:
I By (1), Pr[x1 = true] ≤ Pr[x2 = false]
I By (2), Pr[x1 = false] ≤ Pr[x2 = true]

But x1 and x2 have same distribution
I By (1), Pr[x1 = true] ≤ Pr[x1 = false]
I By (2), Pr[x1 = false] ≤ Pr[x1 = true]
I Hence uniform: Pr[x1 = true] = Pr[x1 = false]

51

From existence of coupling, to uniformity

Suppose that we know there exist two couplings:
1. Under first coupling, x1 = true implies x2 = false
2. Under second coupling, x1 = false implies x2 = true

As a consequence:
I By (1), Pr[x1 = true] ≤ Pr[x2 = false]
I By (2), Pr[x1 = false] ≤ Pr[x2 = true]

But x1 and x2 have same distribution
I By (1), Pr[x1 = true] ≤ Pr[x1 = false]
I By (2), Pr[x1 = false] ≤ Pr[x1 = true]
I Hence uniform: Pr[x1 = true] = Pr[x1 = false]

51

From existence of coupling, to uniformity

Suppose that we know there exist two couplings:
1. Under first coupling, x1 = true implies x2 = false
2. Under second coupling, x1 = false implies x2 = true

As a consequence:
I By (1), Pr[x1 = true] ≤ Pr[x2 = false]
I By (2), Pr[x1 = false] ≤ Pr[x2 = true]

But x1 and x2 have same distribution
I By (1), Pr[x1 = true] ≤ Pr[x1 = false]
I By (2), Pr[x1 = false] ≤ Pr[x1 = true]
I Hence uniform: Pr[x1 = true] = Pr[x1 = false]

51

Proof by coupling
Algorithm (“von Neumann’s trick”)

x← true; y ← true; // initialize x = y
while x = y do // if equal, repeat

x $← flip(p); // flip biased coin
y $← flip(p); // flip biased coin

return(x) // if not equal, return x

Construct couplings such that:
1. Under first coupling, x1 = true implies x2 = false
2. Under second coupling, x1 = false implies x2 = true

Consider the following coupling:
I Couple sampling of x1 to be equal to sampling of y2
I Couple sampling of x2 to be equal to sampling of y1
I Resulting coupling satisfies both (1) and (2)!

52

Formalizing the proof in pRHL
Relate two (equivalent) versions of the program:

x← true; y ← true;
while x = y do

x $← flip(p);
y $← flip(p);

return(x)

x← true; y ← true;
while x = y do

y $← flip(p);
x $← flip(p);

return(x)

Build coupling for loop bodies, then loops

I Use sampling rule with identity coupling: x1 = y2
I Use sampling rule with identity coupling: y1 = x2
I Use loop rule with invariant:

(x1 = y1 → x1 = y2) ∧ (x1 6= y1 → x1 6= x2)

53

Formalizing the proof in pRHL
Relate two (equivalent) versions of the program:

x← true; y ← true;
while x = y do

x $← flip(p);
y $← flip(p);

return(x)

x← true; y ← true;
while x = y do

y $← flip(p);
x $← flip(p);

return(x)

Build coupling for loop bodies, then loops
I Use sampling rule with identity coupling: x1 = y2

I Use sampling rule with identity coupling: y1 = x2
I Use loop rule with invariant:

(x1 = y1 → x1 = y2) ∧ (x1 6= y1 → x1 6= x2)

53

Formalizing the proof in pRHL
Relate two (equivalent) versions of the program:

x← true; y ← true;
while x = y do

x $← flip(p);
y $← flip(p);

return(x)

x← true; y ← true;
while x = y do

y $← flip(p);
x $← flip(p);

return(x)

Build coupling for loop bodies, then loops
I Use sampling rule with identity coupling: x1 = y2

I Use sampling rule with identity coupling: y1 = x2
I Use loop rule with invariant:

(x1 = y1 → x1 = y2) ∧ (x1 6= y1 → x1 6= x2)

53

Formalizing the proof in pRHL
Relate two (equivalent) versions of the program:

x← true; y ← true;
while x = y do

x $← flip(p);
y $← flip(p);

return(x)

x← true; y ← true;
while x = y do

y $← flip(p);
x $← flip(p);

return(x)

Build coupling for loop bodies, then loops
I Use sampling rule with identity coupling: x1 = y2
I Use sampling rule with identity coupling: y1 = x2

I Use loop rule with invariant:

(x1 = y1 → x1 = y2) ∧ (x1 6= y1 → x1 6= x2)

53

Formalizing the proof in pRHL
Relate two (equivalent) versions of the program:

x← true; y ← true;
while x = y do

x $← flip(p);
y $← flip(p);

return(x)

x← true; y ← true;
while x = y do

y $← flip(p);
x $← flip(p);

return(x)

Build coupling for loop bodies, then loops
I Use sampling rule with identity coupling: x1 = y2
I Use sampling rule with identity coupling: y1 = x2

I Use loop rule with invariant:

(x1 = y1 → x1 = y2) ∧ (x1 6= y1 → x1 6= x2)

53

Formalizing the proof in pRHL
Relate two (equivalent) versions of the program:

x← true; y ← true;
while x = y do

x $← flip(p);
y $← flip(p);

return(x)

x← true; y ← true;
while x = y do

y $← flip(p);
x $← flip(p);

return(x)

Build coupling for loop bodies, then loops
I Use sampling rule with identity coupling: x1 = y2
I Use sampling rule with identity coupling: y1 = x2
I Use loop rule with invariant:

(x1 = y1 → x1 = y2) ∧ (x1 6= y1 → x1 6= x2)

53

Formalizing the proof in pRHL
Relate two (equivalent) versions of the program:

x← true; y ← true;
while x = y do

x $← flip(p);
y $← flip(p);

return(x)

x← true; y ← true;
while x = y do

y $← flip(p);
x $← flip(p);

return(x)

Build coupling for loop bodies, then loops
I Use sampling rule with identity coupling: x1 = y2
I Use sampling rule with identity coupling: y1 = x2
I Use loop rule with invariant:

(x1 = y1 → x1 = y2) ∧ (x1 6= y1 → x1 6= x2)

53

Wrapping Up

54

Variations and extensions
Approximate couplings
I Prove di�erential privacy as approximate equivalence
I Coming up next in Marco’s tutorial!

Expectation couplings
I Prove quantitative bounds on distance b/t distributions
I MC convergence, stability of ML, path coupling, ...
I Program logic: https://arxiv.org/abs/1708.02537
I Pre-expectation calculus: https://arxiv.org/abs/1901.06540

Automation
I Encode search for coupling proofs as a synthesis problem
I Coupling proofs: https://arxiv.org/abs/1804.04052
I Approximate couplings: https://arxiv.org/abs/1709.05361

55

References

Relational reasoning via probabilistic coupling
I Initial connection between couplings and pRHL (LPAR 2015)
I arXiv: https://arxiv.org/abs/1509.03476

Coupling proofs are probabilistic product programs
I Extract product programs from pRHL proofs (POPL 2016)
I arXiv: https://arxiv.org/abs/1607.03455

Proving uniformity and independence by
self-composition and coupling
I Coupling proofs for non-relational properties (LPAR 2017)
I arXiv: https://arxiv.org/abs/1701.06477

56

Justin Hsu
UW–Madison

Computer Sciences

Verifying Probabilistic Properties
with Probabilistic Couplings

57

