Proving Uniformity and Independence
by Self-Composition and Coupling

Gilles Barthe
Thomas Espitau
Benjamin Grégoire
Justin Hsu*
Pierre-Yves Strub

A puzzle
A random walk on a cycle
» Start at position s € {0,1,...,n — 1}

» Each iteration, flip a fair coin

- Heads: increment position (modulo n)
- Tails decrement position (modulo n)

» Return: last edge (r,r + 1) to be traversed

A question

What is the distribution of the
returned edge, and how does it
depend on the starting position s?

A puzzle

A puzzle

A puzzle

A puzzle

A puzzle

A puzzle

A puzzle

A puzzle

A puzzle

Distribution of final edge is uniform:
Starting position s doesn’t matter!

Basic properties of probabilistic programs

Uniformity of a variable X
For any two values w, v in the (finite) range of X, we have:

Pr[X = w] = Pr[X = v]

in output distribution.

Basic properties of probabilistic programs

Uniformity of a variable X
For any two values w, v in the (finite) range of X, we have:

Pr[X = w] = Pr[X = v]
in output distribution.

Independence of two variables X, Y
For any two values w, v, we have:

Pr X =wAY =v] =Pr[X =w] - Pr[Y = v]

in output distribution.

Basic properties of probabilistic programs

Uniformity of a variable X
For any two values w, v in the (finite) range of X, we have:

Pr[X = w] = Pr[X = v]
in output distribution.

Independence of two variables X, Y
For any two values w, v, we have:

Pr X =wAY =v] =Pr[X =w] - Pr[Y = v]

in output distribution.

Can be quite subtle to verify!

The idea today

Use logic for relational verification
to verify uniformity
and independence

A crash course:
the relational logic pRHL

A curious program logic: pRHL (sartne, Grégoire, zanella-Beguelin]

pWhile: An imperative language with random sampling

cu=x<+e| x & flip(p) |ifethencelsec | whileedoc | skip|¢; ¢

A cu riOUS program I.Ogic: pRHL [Barthe, Grégoire, Zanella-Béguelin]

pWhile: An imperative language with random sampling

cu=zx+e| - | if ethen celse c | whileedoc | skip | ¢; ¢

PRHL is a program logic that is:

» Probabilistic: Programs can draw samples

A curious program logic: pRHL igarthe, Gregoire, zanella-Béguelin]

pWhile: An imperative language with random sampling
cu=x<+e| x & flip(p) |ifethencelsec | whileedoc | skip|¢; ¢

PRHL is a program logic that is:

» Probabilistic: Programs can draw samples
» Relational: Describe executions of two programs

Judgments in pRHL

{P(in(1),in(2))} c ~ ¢ {Q(out(1), out(2))}

Judgments in pRHL

{P(in(1),in(2))} c ~ ¢ {Q(out(1), out(2))}

Assertions

» Non-probabilistic
» FO formulas over program variables tagged with (1) or (2)

Judgments in pRHL

{P(in(1),in(2))} ¢ ~ ¢ {Q(out(1), out(2))}

Assertions

» Non-probabilistic
» FO formulas over program variables tagged with (1) or (2)

Judgments in pRHL

{P(in(1),in(2))} c ~ ¢ {Q(out(1), out(2))}

Assertions

» Non-probabilistic
» FO formulas over program variables tagged with (1) or (2)

Deep connection to probabilistic couplings

» Proofs specify how to correlate random samplings in runs
» Reduce sources of randomness, simplify verification

For our purposes today: equality of distributions

If this is provable:

{P} e~ {e(l) = €(2)}

Then:

On any two input memories related by P, the
distribution of e in the first output is equal to the
distribution of ¢’ in the second output.

In particular: express equality of probabilities

If this is provable for booleans b, b':

= {P} e~ {b(1) =V (2)}

Then:

On any two input memories related by P, the
probability of b in the first output is equal to the
probability of &’ in the second output.

10

Random sampling rules in pRHL

Simplified version

FLIPEQ

F{T} = & flip(p) ~ 2’ & flip(p) {=(1) = 2/(2)}

FLIPNEG

{T} @ & flip(p) ~ 2" & flip(1 —p) {z(1) = ~2/(2)}

1"

Random sampling rules in pRHL

Simplified version

FLIPEQ " {T} z & flip(p) ~ 7 & flip(p) {1‘<1> = x/<2>}

FLIPNEG

{T} @ & flip(p) ~ 2" & flip(1 —p) {z(1) = ~2/(2)}

Reading: for any p € [0, 1],

1. [FLIPEQ]: Distributions of flip(p) and flip(p) are equal

2. [FLIPNEG]: Distributions of flip(p) and negated flip(1 — p)
are equal

1

Rest of rules are standard (=~ Hoare logic)

Assignments

ASSN

F{Qle(1), € (2)/x(1),2'(2)]} =« e1 ~a' < es {Q}

Sequencing

F{P} a~a {QF F{Q} a~d {R}

SEQ
F{P} c1;co ~c); ¢y {R}

Loops

F{PABD)} c~d {P} P = b(1)=b(2)

WHILE
+{P} while bdo c ~ while b’ do " {P A —=b(1)}

12

Rest of rules are standard (=~ Hoare logic)

Assignments

ASSN

F{Qle(1), € (2)/x(1),2'(2)]} =« e1 ~a' < es {Q}

Sequencing

F{P} a~a {QF F{Q} a~d {R}

SEQ
F{P} c1;co ~c); ¢y {R}

Loops

F{PABWL)} c~d {P} EP = b{l)=b(2)

WHILE
+{P} while bdo c ~ while b’ do " {P A —=b(1)}

12

Benefits of pRHL

Probabilistic properties without probabilistic reasoning

» Abstract away all probabilities
» All reasoning is about relation between samples

Highly similar to Hoare logic

» Most things “just work”
» Compositional reasoning

13

Benefits of pRHL

Probabilistic properties without probabilistic reasoning

» Abstract away all probabilities
» All reasoning is about relation between samples

Highly similar to Hoare logic

» Most things “just work”
» Compositional reasoning

Apply to non-relational properties,
like uniformity and independence.

13

Verifying uniformity:
simulating a fair coin

The algorithm

Goal

Generate one fair coin flip, using only coin flips with a fixed
bias p € (0,1).

Procedure

1. Flip two coins with bias p
2. Re-flip as long as they are equal
3. Return the first coin flip the first time they are different

15

In code

Consider the program fair:

T < 1t;
Y — tt;
while x = y do
z & flip(p);
y & flip(p);
return(z)

To show: generates fair coin flip

Distribution of return
value 1s uniform

16

Observation: uniformity can be proved in pRHL

For every two booleans w, v, show:

={p(1) = p(2)} fair ~ foir {(2(1) =w) <= (2(2) =)}

Reading: for every two booleans w, v,

Pr[z = w] = Pr[z = v] in the output of fair.

Four choices in all for w,v

» We show the cases with w # v

17

Step 1: rearrange program

Two equivalent programs: fair and fair’

T < tt; T — 1t;

Y — tt; Y < tt;

while z = y do while z = y do
x & flip(p); y & flip(p);
y < flip(p); z & flip(p);

return(z) return(z)

Step 1: rearrange program

Two equivalent programs: fair and fair’

T < tt; T — 1t;

Y — tt; Y < tt;

while z = y do while z = y do
x & flip(p); y & flip(p);
y < flip(p); z & flip(p);

return(z) return(z)

Step 1: rearrange program

Two equivalent programs: fair and fair’

T < tt; T — 1t;

Y — tt; Y < tt;

while z = y do while z = y do
x & flip(p); y & flip(p);
y < flip(p); z & flip(p);

return(z) return(z)

Step 1: rearrange program

Two equivalent programs: fair and fair’

T < tt; T — 1t;

y < tt; Yy <t

while z = y do while z = y do
z & flip(p); y & flip(p);
y & flip(p); x & flip(p);

return(z) return(z)

For the cases w # v, suffices to show:

H{p(1) =p(2)} fair ~ fair’ {x(1) = -x(2)}

18

Step 2: apply the loop rule

while x = y do
x & flip(p);
y & flip(p);
return(z)

while x = y do
y < flip(p);
x & flip(p);
return(z)

19

Step 2: apply the loop rule

while x = y do while x = y do
z & flip(p); y & flip(p);
y & flip(p); z & flip(p);

return(z) return(z)

In the body: apply [FLIPEQ] for both pairs of samples

19

Step 2: apply the loop rule

while x = y do while x = y do
x & flip(p); y & flip(p);
y & flip(p); z & flip(p);

return(z) return(z)

In the body: apply [FLIPEQ] for both pairs of samples
» We have: (1) = y(2)

19

Step 2: apply the loop rule

while x = y do while x = y do
z & flip(p); y & flip(p);
y & flip(p); z & flip(p);

return(z) return(z)

In the body: apply [FLIPEQ] for both pairs of samples

» We have: (1) = y(2)
» And: z(2) = y(1)

19

Step 2: apply the loop rule

while x = y do while x = y do
z & flip(p); y & flip(p);
y & flip(p); z & flip(p);

return(z) return(z)

In the body: apply [FLIPEQ] for both pairs of samples

» We have: (1) = y(2)
» And: z(2) = y(1)

Establishes main invariant:

x(2) = (if (1) = y(1) then y(2) else —x(1))

19

Step 3: putting it all together

Applying [Assn], [SEQ] shows:

F{p(1) =p@2)} fair ~ fair {(z(1) =w) < ((2) =v)}

when w # v; can also show same judgment when w = v.

Conclude

fair returns a uniform boolean

pie]

Extensions:
verifying independence

Verifying independence: the easier way

Observation: reduce independence to uniformity

(x,y) 1s uniform over pairs

x and y are independent

Limitation

» Only can show independence for uniform variables

P

Verifying independence: the harder way
Use self-composition

» Let ¢[1], ¢[2] be two copies of ¢ with disjoint variables
» Prove a pRHL judgment relating

c ~ c[1]; c[2]

23

Verifying independence: the harder way
Use self-composition

» Let ¢[1], ¢[2] be two copies of ¢ with disjoint variables
» Prove a pRHL judgment relating

c ~ c[1]; c[2]

Independence of two variables X, Y
For any two values w, v, we have:

PriX =wAY =v] = Pr[X =w]- Pr[Y =]

in output distribution.

23

Verifying independence: the harder way
Use self-composition

» Let ¢[1], ¢[2] be two copies of ¢ with disjoint variables
» Prove a pRHL judgment relating

c ~ c[1]; c[2]

Independence of two variables X, Y
For any two values w, v, we have:

Pr[X =wAY =v] = Pr[X =w]- Pr[Y =]

in output distribution.

23

Verifying independence: the harder way
Use self-composition

» Let ¢[1], ¢[2] be two copies of ¢ with disjoint variables
» Prove a pRHL judgment relating

c ~ c[1]; c[2]

Independence of two variables X, Y
For any two values w, v, we have:

Pr X =wAY =v] =Pr[X =w]: Pr[Y = v]

in output distribution.

23

Verifying independence: the harder way
Use self-composition

» Let ¢[1], ¢[2] be two copies of ¢ with disjoint variables
» Prove a pRHL judgment relating

c ~ c[1]; c[2]

Independence of two variables X, Y
For any two values w, v, we have:

Pr[X =wAY =v] = Pr[X =w] - Pr[Y = v]

in output distribution.

23

Verifying independence: the harder way
Use self-composition

» Let ¢[1], ¢[2] be two copies of ¢ with disjoint variables
» Prove a pRHL judgment relating

c ~ c[1]; c[2]

Independence of two variables X, Y
For any two values w, v, we have:

Pr[X =wAY =v] = Pr[X =w]- Pr[Y =]
in output distribution.

Benefits

» Can prove independence for non-uniform variables
» Similar ideas can cover conditional independence

23

Summing up

See the paper for

Lots more examples

\4

Cycle random walk

\4

Pairwise and k-wise independence
Bayesian network

\4

\4

Ballot theorem

Details about the implementation

» Most examples formalized in EasyCrypt framework

25

Future directions

e Automate this approach

e Explore relational verification
for non-relational properties

e Integrate with more general
probabilistic verification tools

26

Proving Uniformity and Independence
by Self-Composition and Coupling

Gilles Barthe
Thomas Espitau
Benjamin Grégoire
Justin Hsu*
Pierre-Yves Strub

27

