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Lightning recap

Definition (Dwork, McSherry, Nissim, Smith (2006))

An algorithm is (¢, §)-differentially private if, for every two
adjacent inputs, the output distributions 1, o satisfy:

for all sets of outputs S, Pr,,, [S] < e® - Pr,,[S] + 0

Intuitively

Output can’'t depend too much
on any single individual's data
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Why so popular? Elegant definition

Cleanly carve out a slice of privacy

» Mathematically formalize one kind of privacy
» “Your data” versus “data about you” (McSherry)

Simple and flexible

» Can establish property in isolation
» Achievable via rich variety of techniques



Why so popular? Theoretical features

Protects against worst-case scenarios

» Strong adversaries
» Colluding individuals
» Arbitrary side information

Rule out “blatantly” non-private algorithms

» Release data record at random: not private!



Above all, one reason...



Above all, one reason...

Composition!



Today

1. Review and motivate composition properties
2. Case study: formal verification for privacy
3. Case study: advanced composition



A Quick Review:
Composition and Privacy




Sequential composition
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Sequential composition
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Theorem

Consider randomized algorithms M : D — Distr(R) and
M’ : R x D — Distr(R'). If M is (e, d)-private and for every
r € R, M'(r,—) is (¢’,8")-private, then the composition

r ~ M(d); out ~ M'(r,d); return(out)

is (e + €', + &')-private.



Example: post processing

- @‘0‘ Output
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Example: post processing

- @‘0‘ Output

» Fis (0,0)-private: doesn’t use private data
» Result is still (e, §)-private

10



Parallel composition

Database 1

Database 2

1



Parallel composition

Database 1

Theorem

Consider randomized algorithms M, : D — Distr(R,) and
M, : D — Distr(Ry). If My and M, are both (e, §)-private, then
the parallel composition

(d1,da) < split(d); 1 ~ My(dy);re ~ Ma(ds); return(ry, o)
is (e, §)-private.

1



Example: local differential privacy

Each individual adds noise

» Split data among individuals
» Each individual computation achieves privacy

Central computation aggregates noisy data

» Post-processing
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Group privacy

Bound output distance when multiple inputs differ

» Inputs databases differ in one individual: (¢,0)-privacy
» Inputs databases differ in % individuals: (ke,0)-privacy

Cast privacy as Lipschitz continuity

» Composes well
» Not so clean for (e, d)-privacy...
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Why You Might Care
About Composition




Make definitions easier to use

Easier to prove property
» Privacy proofs are often straightforward
» Don’t need to unfold definition each time
More people can prove privacy

» Don't need years of PhD training

15



Increase re-usability

Dramatically increases impact

» One useful algorithm can enable many others
» Repurpose for new, unforeseen applications
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Increase re-usability

Dramatically increases impact

» One useful algorithm can enable many others
» Repurpose for new, unforeseen applications

Key algorithms used everywhere

» Laplace, Gaussian, Exponential mechanisms
Sparse vector technique
Private counters

>
>
» Subsampling
>



Build larger algorithms

Scale up private algorithms

» Construct complex private algorithms out of simple pieces
» Composition ensures result is still correct

Enables common toolboxes

» PINQ framework (McSherry)
» PSI project (see Salil’s talk)
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Sign of a “good” definition

Not just about generalizing

» More general: must assume less about the pieces
» More specific: must prove more about the whole

Sweet spot between specific and general

» One way of probing robustness of definitions
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Case Study:
Verifying Privacy




Recap: verification setting

Dynamic

» Monitor program as it executes on particular input
» Raise error if it violates differential privacy

Static

» Take program (maybe written in special language)
» Check differential privacy on all inputs

20



Composition is crucial

Simplify verification task

» Trust a (small) collection of primitives
» Verify components separately

Enable automation

» Generally: enables faster/simpler verification
» So simple, a computer can do it
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Privacy-integrated queries (PINQ)

C# library for private queries

» Proposed by Frank McSherry (2006)
» First verification technique for privacy

Dynamic analysis

» User writes PINQ query in C#
» Runtime monitors privacy budget as query runs

P



The Fuzz family of languages
History

» Reed and Pierce (2010), many subsequent extensions
» Programming language and custom type system
Main concept: function sensitivity

» Equip each type with a metric
» Types can express Lipschitz continuity
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The Fuzz family of languages
History

» Reed and Pierce (2010), many subsequent extensions

» Programming language and custom type system
Main concept: function sensitivity

» Equip each type with a metric

» Types can express Lipschitz continuity

Example

.o —o 7 is type of a k-sensitive function from o to 7
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The Fuzz family of languages

Strengths

» Static analysis: don’t need to run program

» Typechecking/privacy checking can be automated
» Can express sequential and parallel composition
» Captures kind of group privacy (e.g., (¢,0)-privacy)

Weaknesses

» Can't verify programs where proof isn't from composition
» Have to use a custom programming language

24



The Fuzz family of languages

Recent developments: extending to (g, d)-privacy

» ldea: cast (,d)-privacy as sensitivity property

» For inputs that are two apart, output distributions are
(¢,6)-related via some intermediate distribution

» So-called path metric construction
» Incorporate (g, d)-privacy into Fuzz framework

25



Privacy as an approximate coupling

History

» Arose from work on verifying cryptographic protocols via
game-based techniques, comparing pairs of hybrids

» Target more familiar, imperative programming language

Main concept: prove privacy by constructing a coupling

» Consider program run on two adjacent inputs
» Approximately couple sampling instructions
» Establish relation between coupled outputs

26



Privacy as an approximate coupling

Strengths

» Static analysis: don’t need to run program
» Can verify examples beyond composition
» Sparse vector, propose-test-release, ...

» No issue handling (g, d)-privacy

Weaknesses

» Checks proof automatically, but doesn’t build proof
» Human expert must provide proof, manual process

27



Privacy as an approximate coupling

Recent developments: automate proof construction

» Encode proof requirement as a logical constraint

» Use techniques from program synthesis to find valid proofs
» Automatically verify sophisticated algorithms

» Sparse vector, report-noisy-max, between thresholds, ...

28



Brilliant collaborators
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Case Study:
Advanced Composition




Recap: advanced composition

Sequentially compose £ mechanisms

» Each (e, d)-private
» Basic analysis: result is (ke, kd)-private
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Recap: advanced composition

Sequentially compose £ mechanisms

» Each (e, d)-private
» Basic analysis: result is (ke, kd)-private

Better analysis

» Proposed by Dwork, Rothblum, and Vadhan (2010)
» For any ¢, result is (¢/, k6 + &')-private for

&' = ey/2k1n(1/8) + ke(ef — 1)
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Extremely useful, but seems a bit off...

Intuitively

» Slow growth of ¢ by increasing ¢ a bit more
» Privacy loss is “usually” much less than ke

Composition is not so clean

» Best bounds if applied to a block of £ mechanisms
» Weaker if repeatedly applied pairwise

32



Improving the definitions: RDP and zCDP

History

» “Concentrated DP”: Dwork and Rothblum (2016)
“Zero-Concentrated DP”: Bun and Steinke (2016)
“Rényi DP": Mironov (2017)

Bound Rényi divergence between output distributions
Refinement of (e, §)-privacy

33



Cleaner composition

Theorem (Mironov (2017))

Consider randomized algorithms M : D — Distr(R) and

M’ : R x D — Distr(R'). If M is («, €)-RDP and for every r € R,
M’'(r,—) is (o, €')-RDP, then the composition

r ~ M(d); out ~ M'(r,d); return(out)
is (a, e + €’)-RDP.
Benefits

» Composing pairwise or k-wise: same bounds
» Closure under post-processing
» Improved formulation of advanced composition
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Simplify reasoning

Enable formal verification

» Extensions of techniques for imperative languages
» Also works for programs in functional languages
» Opens the way to automated proofs

E5



Wrapping Up



Success of privacy is a success of composition

Key factor behind high interest

» Make proofs easy enough for all

» The world has only so many TCS researchers

» Trivial to adapt privacy to new applications

» Ancillary benefit: enable computer verification
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Composition matters!

Often not easy, but...

» Difference between a theoretically interesting definition,
and a practically usable one

» Worth extra work and trouble to achieve

Compare to situation in cryptography

» Immense need for this technology, but poor composition
» Implementation still tricky, subtle errors
» “Don't roll your own cryptography”
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Trend towards “formal engineering”

Security is too hard for humans

» Want formal guarantees from our systems
» Rule out classes of attacks (subject to assumptions...)
» Principled construction of safe software

Compositional definitions are critical to this vision

» Needed to reason about large systems
» Only way to manage complexity

39



As | once heard from a famous systems researcher...
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As | once heard from a famous systems researcher...

Without modularity,
there is no civilization.
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As | once heard from a famous systems researcher...

Without modularity,
there is no civilization.

(Or at least, the going is pretty tough.)
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