
Justin Hsu
University of Wisconsin–Madison

Composition, Veri�cation,
and Di�erential Privacy

1

Lightning recap
De�nition (Dwork, McSherry, Nissim, Smith (2006))
An algorithm is (ε, δ)-di�erentially private if, for every two
adjacent inputs, the output distributions µ1, µ2 satisfy:

for all sets of outputs S, Prµ1 [S] ≤ eε · Prµ2 [S] + δ

Intuitively

Output can’t depend too much
on any single individual’s data

2

Tremendous impact

3

Tremendous impact

3

Tremendous impact

3

Tremendous impact

3

Why so popular? Elegant de�nition

Cleanly carve out a slice of privacy
I Mathematically formalize one kind of privacy
I “Your data” versus “data about you” (McSherry)

Simple and �exible
I Can establish property in isolation
I Achievable via rich variety of techniques

4

Why so popular? Theoretical features

Protects against worst-case scenarios
I Strong adversaries
I Colluding individuals
I Arbitrary side information

Rule out “blatantly” non-private algorithms
I Release data record at random: not private!

5

Above all, one reason...

Composition!

6

Above all, one reason...

Composition!

6

Today

1. Review and motivate composition properties
2. Case study: formal veri�cation for privacy
3. Case study: advanced composition

7

A Quick Review:
Composition and Privacy

8

Sequential composition

Database ε-private ε-private Output

Theorem
Consider randomized algorithmsM : D → Distr(R) and
M ′ : R×D → Distr(R′). IfM is (ε, δ)-private and for every
r ∈ R,M ′(r,−) is (ε′, δ′)-private, then the composition

r ∼M(d); out ∼M ′(r, d); return(out)
is (ε+ ε′, δ + δ′)-private.

9

Sequential composition

Database ε-private ε-private Output

Theorem
Consider randomized algorithmsM : D → Distr(R) and
M ′ : R×D → Distr(R′). IfM is (ε, δ)-private and for every
r ∈ R,M ′(r,−) is (ε′, δ′)-private, then the composition

r ∼M(d); out ∼M ′(r, d); return(out)
is (ε+ ε′, δ + δ′)-private.

9

Example: post processing

Database ε-private OutputF

Privacy is preserved
I F is (0, 0)-private: doesn’t use private data
I Result is still (ε, δ)-private

10

Example: post processing

Database ε-private OutputF

Privacy is preserved
I F is (0, 0)-private: doesn’t use private data
I Result is still (ε, δ)-private

10

Parallel composition

Database

ε-private

ε-private

Output

Database 1

Database 2

Theorem
Consider randomized algorithmsM1 : D → Distr(R1) and
M2 : D → Distr(R2). IfM1 andM2 are both (ε, δ)-private, then
the parallel composition

(d1, d2)← split(d); r1 ∼M1(d1); r2 ∼M2(d2); return(r1, r2)

is (ε, δ)-private.

11

Parallel composition

Database

ε-private

ε-private

Output

Database 1

Database 2

Theorem
Consider randomized algorithmsM1 : D → Distr(R1) and
M2 : D → Distr(R2). IfM1 andM2 are both (ε, δ)-private, then
the parallel composition

(d1, d2)← split(d); r1 ∼M1(d1); r2 ∼M2(d2); return(r1, r2)

is (ε, δ)-private.

11

Example: local di�erential privacy

Each individual adds noise
I Split data among individuals
I Each individual computation achieves privacy

Central computation aggregates noisy data
I Post-processing

12

Group privacy

Bound output distance when multiple inputs di�er
I Inputs databases di�er in one individual: (ε, 0)-privacy
I Inputs databases di�er in k individuals: (kε, 0)-privacy

Cast privacy as Lipschitz continuity
I Composes well
I Not so clean for (ε, δ)-privacy...

13

Why You Might Care
About Composition

14

Make de�nitions easier to use

Easier to prove property
I Privacy proofs are often straightforward
I Don’t need to unfold de�nition each time

More people can prove privacy
I Don’t need years of PhD training

15

Increase re-usability

Dramatically increases impact
I One useful algorithm can enable many others
I Repurpose for new, unforeseen applications

Key algorithms used everywhere
I Laplace, Gaussian, Exponential mechanisms
I Sparse vector technique
I Private counters
I Subsampling
I ...

16

Increase re-usability

Dramatically increases impact
I One useful algorithm can enable many others
I Repurpose for new, unforeseen applications

Key algorithms used everywhere
I Laplace, Gaussian, Exponential mechanisms
I Sparse vector technique
I Private counters
I Subsampling
I ...

16

Build larger algorithms

Scale up private algorithms
I Construct complex private algorithms out of simple pieces
I Composition ensures result is still correct

Enables common toolboxes
I PINQ framework (McSherry)
I PSI project (see Salil’s talk)

17

Sign of a “good” de�nition

Not just about generalizing
I More general: must assume less about the pieces
I More speci�c: must prove more about the whole

Sweet spot between speci�c and general
I One way of probing robustness of de�nitions

18

Case Study:
Verifying Privacy

19

Recap: veri�cation setting

Dynamic
I Monitor program as it executes on particular input
I Raise error if it violates di�erential privacy

Static
I Take program (maybe written in special language)
I Check di�erential privacy on all inputs

20

Composition is crucial

Simplify veri�cation task
I Trust a (small) collection of primitives
I Verify components separately

Enable automation
I Generally: enables faster/simpler veri�cation
I So simple, a computer can do it

21

Privacy-integrated queries (PINQ)

C# library for private queries
I Proposed by Frank McSherry (2006)
I First veri�cation technique for privacy

Dynamic analysis
I User writes PINQ query in C#
I Runtime monitors privacy budget as query runs

22

The Fuzz family of languages
History
I Reed and Pierce (2010), many subsequent extensions
I Programming language and custom type system

Main concept: function sensitivity
I Equip each type with a metric
I Types can express Lipschitz continuity

Example

!kσ (τ is type of a k-sensitive function from σ to τ

23

The Fuzz family of languages
History
I Reed and Pierce (2010), many subsequent extensions
I Programming language and custom type system

Main concept: function sensitivity
I Equip each type with a metric
I Types can express Lipschitz continuity

Example

!kσ (τ is type of a k-sensitive function from σ to τ

23

The Fuzz family of languages

Strengths
I Static analysis: don’t need to run program
I Typechecking/privacy checking can be automated
I Can express sequential and parallel composition
I Captures kind of group privacy (e.g., (ε, 0)-privacy)

Weaknesses
I Can’t verify programs where proof isn’t from composition
I Have to use a custom programming language

24

The Fuzz family of languages

Recent developments: extending to (ε, δ)-privacy
I Idea: cast (ε, δ)-privacy as sensitivity property
I For inputs that are two apart, output distributions are

(ε, δ)-related via some intermediate distribution
I So-called path metric construction
I Incorporate (ε, δ)-privacy into Fuzz framework

25

Privacy as an approximate coupling

History
I Arose from work on verifying cryptographic protocols via
game-based techniques, comparing pairs of hybrids

I Target more familiar, imperative programming language

Main concept: prove privacy by constructing a coupling
I Consider program run on two adjacent inputs
I Approximately couple sampling instructions
I Establish relation between coupled outputs

26

Privacy as an approximate coupling

Strengths
I Static analysis: don’t need to run program
I Can verify examples beyond composition
I Sparse vector, propose-test-release, ...
I No issue handling (ε, δ)-privacy

Weaknesses
I Checks proof automatically, but doesn’t build proof
I Human expert must provide proof, manual process

27

Privacy as an approximate coupling

Recent developments: automate proof construction
I Encode proof requirement as a logical constraint
I Use techniques from program synthesis to �nd valid proofs
I Automatically verify sophisticated algorithms
I Sparse vector, report-noisy-max, between thresholds, ...

28

Brilliant collaborators

29

Case Study:
Advanced Composition

30

Recap: advanced composition

Sequentially compose k mechanisms
I Each (ε, δ)-private
I Basic analysis: result is (kε, kδ)-private

Better analysis
I Proposed by Dwork, Rothblum, and Vadhan (2010)
I For any δ′, result is (ε′, kδ + δ′)-private for

ε′ = ε
√

2k ln(1/δ′) + kε(eε − 1)

31

Recap: advanced composition

Sequentially compose k mechanisms
I Each (ε, δ)-private
I Basic analysis: result is (kε, kδ)-private

Better analysis
I Proposed by Dwork, Rothblum, and Vadhan (2010)
I For any δ′, result is (ε′, kδ + δ′)-private for

ε′ = ε
√

2k ln(1/δ′) + kε(eε − 1)

31

Extremely useful, but seems a bit o�...

Intuitively
I Slow growth of ε by increasing δ a bit more
I Privacy loss is “usually” much less than kε

Composition is not so clean
I Best bounds if applied to a block of k mechanisms
I Weaker if repeatedly applied pairwise

32

Improving the de�nitions: RDP and zCDP

History
I “Concentrated DP”: Dwork and Rothblum (2016)
I “Zero-Concentrated DP”: Bun and Steinke (2016)
I “Rényi DP”: Mironov (2017)
I Bound Rényi divergence between output distributions
I Re�nement of (ε, δ)-privacy

33

Cleaner composition

Theorem (Mironov (2017))
Consider randomized algorithmsM : D → Distr(R) and
M ′ : R×D → Distr(R′). IfM is (α, ε)-RDP and for every r ∈ R,
M ′(r,−) is (α, ε′)-RDP, then the composition

r ∼M(d); out ∼M ′(r, d); return(out)
is (α, ε+ ε′)-RDP.

Bene�ts
I Composing pairwise or k-wise: same bounds
I Closure under post-processing
I Improved formulation of advanced composition

34

Simplify reasoning

Enable formal veri�cation
I Extensions of techniques for imperative languages
I Also works for programs in functional languages
I Opens the way to automated proofs

35

Wrapping Up

36

Success of privacy is a success of composition

Key factor behind high interest
I Make proofs easy enough for all
I The world has only so many TCS researchers
I Trivial to adapt privacy to new applications
I Ancillary bene�t: enable computer veri�cation

37

Composition matters!

Often not easy, but...
I Di�erence between a theoretically interesting de�nition,
and a practically usable one

I Worth extra work and trouble to achieve

Compare to situation in cryptography
I Immense need for this technology, but poor composition
I Implementation still tricky, subtle errors
I “Don’t roll your own cryptography”

38

Trend towards “formal engineering”

Security is too hard for humans
I Want formal guarantees from our systems
I Rule out classes of attacks (subject to assumptions...)
I Principled construction of safe software

Compositional de�nitions are critical to this vision
I Needed to reason about large systems
I Only way to manage complexity

39

As I once heard from a famous systems researcher...

Without modularity,
there is no civilization.

(Or at least, the going is pretty tough.)

40

As I once heard from a famous systems researcher...

Without modularity,
there is no civilization.

(Or at least, the going is pretty tough.)

40

As I once heard from a famous systems researcher...

Without modularity,
there is no civilization.

(Or at least, the going is pretty tough.)

40

Justin Hsu
University of Wisconsin–Madison

Composition, Veri�cation,
and Di�erential Privacy

41

