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Some terminology

State transition function P
▶ Maps state s and action a to random new state s′

▶ Learner doesn’t know this function, can only draw samples

Reward function R
▶ Maps state s and action a to random reward r ∈ [0, 1]
▶ Learner doesn’t know this function, can only draw samples

Policy function π

▶ Maps state s to an action a to play

Reinforcement learning: find optimal policy π to maximize total expected reward
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Task: Estimating the value of a policy π

Example: TD(0) algorithm

Input
▶ Initial guess V : value of each state

Output
▶ Estimated value of each state
▶ Final estimate is randomized
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Our goal

Verify: the output of TD(0) doesn’t
depend “too much” on the input V
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More formally, want to verify:

If V and V ′ are any two possible inputs:

Dist(TD(0)(V ), TD(0)(V ′)) ≤ ϵ

Here, Dist is a distance between pairs of outputs (distributions).

Even better: verify rate of convergence

Dist(TD(0)(V ), TD(0)(V ′)) ≤ (1 − ϵ)N · dist(V, V ′)
Here, dist is a distance between pairs of inputs (not distributions).
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More generally: want to verify probabilistic sensitivity

Dist(Prog(in), P rog(in′))) ≤ dist(in, in′)

Intuition: small changes in the input memory
lead to small changes in the output distribution
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Our Verification Method:
Relational Pre-Expectations
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Technical contributions, in three steps

• Define relational pre-expectation transformer rpe

• Propose a set of proof rules for bounding rpe

• Prove soundness: bounding rpe implies
probabilistic sensitivity property
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Step 1: Defining the relational pre-expectation transformer

Given: distance dist : M × M → R and probabilistic program c

Define: distance rpe(c, dist) : M × M → R in terms of rpe for subprograms of c
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Step 2: Bounding relational pre-expectations

Recall our goal: verify probabilistic sensitivity

Dist(c(in), c(in′))) ≤ dist(in, in′)

Strategy: verify something a bit different

rpe(c, d)(in, in′) ≤ dist(in, in′)
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Step 2: Bounding relational pre-expectations
Lots of proof rules
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Step 3: Proving the soundness theorem

Key construction: Kantorovich metric Kant(d)
▶ Lifts distance d on memories to distance Kant(d) on distributions
▶ Varying d leads to different distances between distributions

Main Theorem

Kant(d)(c(in), c(in′))) ≤ rpe(c, d)(in, in′)

Combine with upper-bound on rpe to verify sensitivity property:

Kant(d)(c(in), c(in′))) ≤ rpe(c, d)(in, in′) ≤ dist(in, in′)
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Task: Estimating the value of a policy π
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Verifying Convergence for TD(0)

Use proof rules to verify upper-bound on rpe:

rpe(TD(0), dist(V, V ′)) ≤ (1 − α + α · γ)N · dist(V, V ′)

Combine with soundness theorem:

Kant(dist)(TD(0)(V ), TD(0)(V ′)) ≤ (1 − α + α · γ)N · dist(V, V ′)

Verified convergence for TD(0)!
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More Examples:
Algorithms for Shuffling Cards
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Three simple models of card shuffling

Random-to-top

Random swap Riffle

Q: How well mixed are the cards after repeating K times?
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Verify different convergence rates

For a deck of N cards, K shuffling steps, and any two decks d1, d2:
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Wrapping Up
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Plenty more in the paper!

Verification details for each example
▶ Surprisingly familiar: loop invariants, push back through assignments, . . .

Connections between rpe and relational Hoare logics
▶ Embed core version of relational Hoare logic EpRHL into rpe

Other applications besides convergence
▶ Proving uniformity, lower bounds on distances, . . .
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In summary

Our work
▶ Target: sensitivity properties for probabilistic programs
▶ Develop: approach using relational pre-expectation transformers
▶ Verify: convergence for algorithms from ML, RL, probability theory

Open questions
▶ How to prove sharper, more precise bounds on distances?
▶ How to automate the verification process?
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