Coupling Proofs Are Probabilistic Product Programs

Gilles Barthe, Benjmain Grégoire, Justin Hsu*, Pierre-Yves Strub

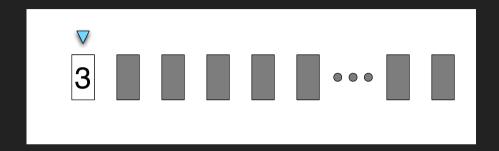
IMDEA Software, Inria, University of Pennsylvania*, École Polytechnique

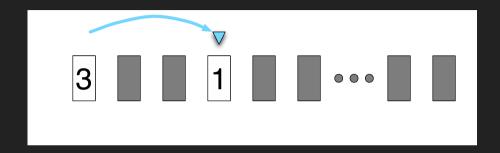
January 18, 2017

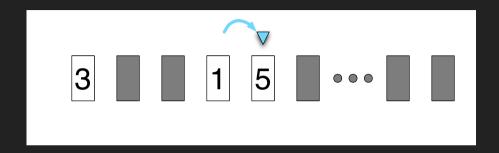
A simple card-flipping process

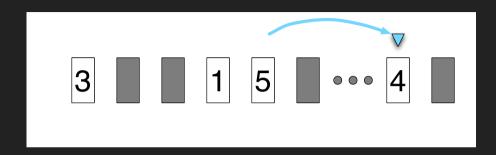
Setup

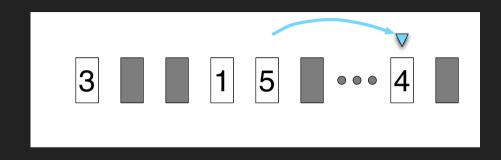
- ► Input: position in $\{1, \ldots, 9\}$
- ► Repeat:
 - Draw uniformly random card $\in \{1, \dots, 9\}$
 - Go forward that many steps
- ► Output last position before crossing 100



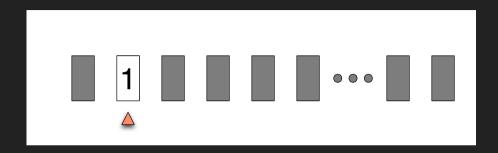


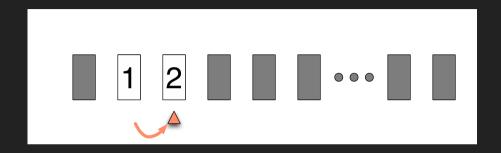


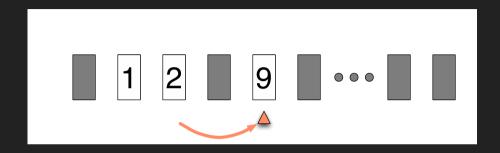


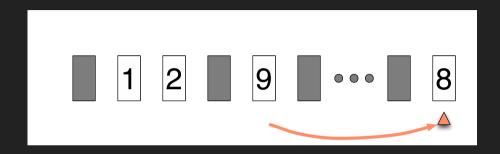


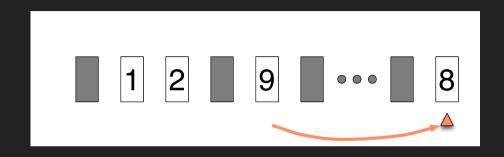
Output last position: 99



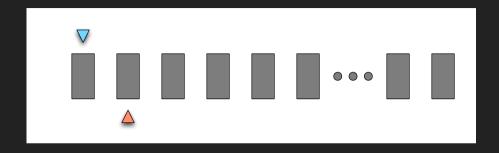


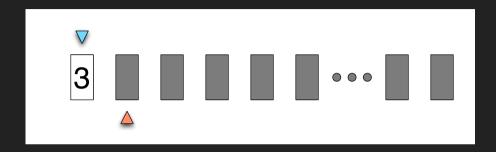


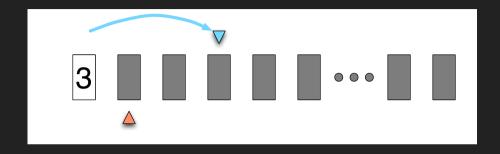


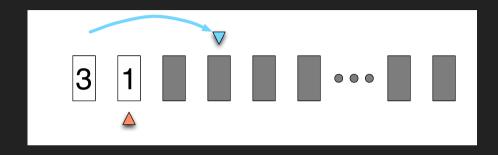


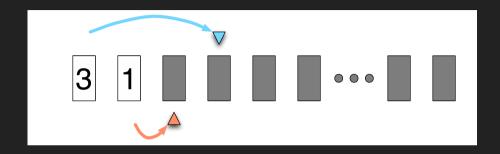
How close are the two output distributions?

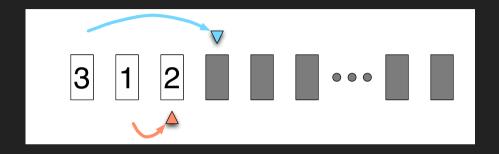


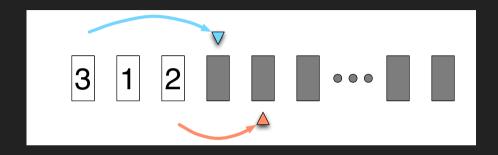


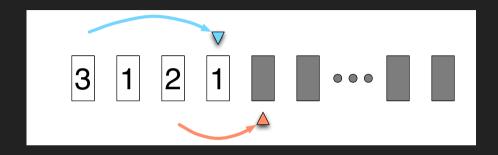


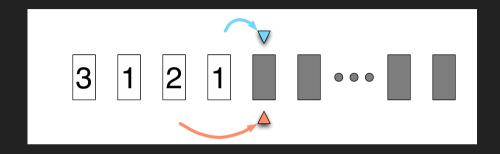


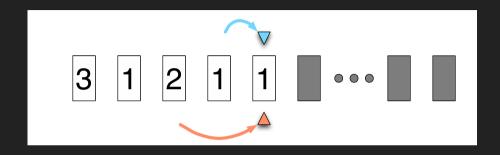


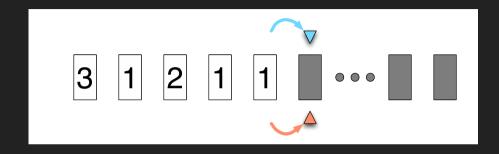


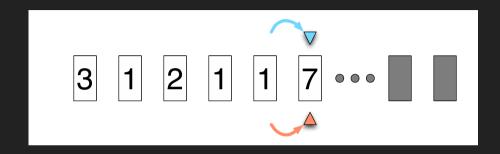


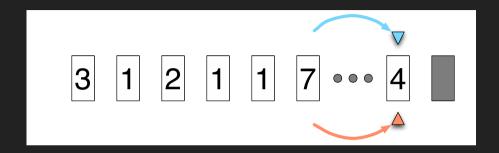


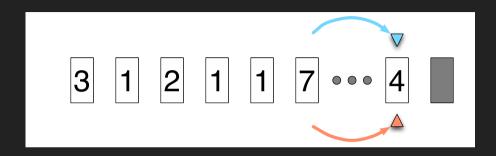












Product program: One program simulating two programs

Why is this interesting?

In general

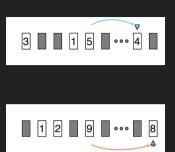
Property P of product program

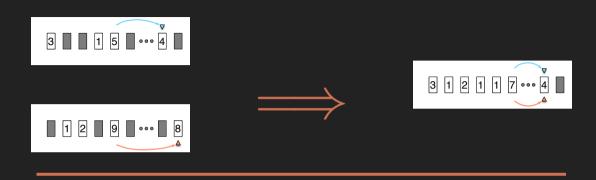
Property P' of two programs

7

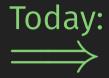
Our construction

Two simulated programs can share randomness





Probability that outputs differ



Probability that outputs differ

Our technical contributions

A probabilistic product construction with shared randomness

A probabilistic program logic × pRHL: a proof-relevant version of pRHL

A crash course: Probabilistic Relational Hoare Logic [BGZ-B]

Imperative language

 $c ::= x \leftarrow e \mid c ; c \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c$

Imperative language

$$c ::= x \leftarrow e \mid c \; ; c \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid x \notin S$$

Uniform sampling from finite set [S]

- coin flip: [heads, tails]
- ► random card: [1, ..., 9]

Imperative language

$$c ::= x \leftarrow e \mid c \; ; c \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid x \not \in [S]$$

Uniform sampling from finite set [S]

- ► coin flip: [heads, tails]
- ► random card: [1, ..., 9]

Command semantics $[\![c]\!]$

- ► Input: memory
- ► Output: distribution over memories

Judgments: similar to Hoare logic

$$\{P\}\ c\ \{Q\}$$

Judgments: similar to Hoare logic

$$\{P\}\ c\ \{Q\}$$

Assertions: binary relation on memories

- ightharpoonup Can refer to tagged program variables: $x\langle 1 \rangle$ and $x\langle 2 \rangle$
- ► First order formulas, non-probabilistic

Judgments: similar to Hoare logic

$$\{P\}\ c\ \{Q\}$$

Assertions: binary relation on memories

- ightharpoonup Can refer to tagged program variables: $x\langle 1 \rangle$ and $x\langle 2 \rangle$
- ► First order formulas, non-probabilistic

If the two inputs satisfy P, we can share the randomness on two runs of c so that the two outputs satisfy Q.

Proof rules in pRHL: mostly similar to Hoare logic

$$\operatorname{Assn} \frac{f:S \to S \text{ bijection}}{\{Q \{e\langle 1\rangle, e\langle 2\rangle/x\langle 1\rangle, x\langle 2\rangle\}\} \ x \leftarrow e \ \{Q\}} \qquad \operatorname{Rand} \frac{f:S \to S \text{ bijection}}{\{\forall v \in S, Q \{x_1\langle 1\rangle, x_2\langle 2\rangle/v, f(v)\}\} \ x \not\leftarrow [S] \ \{Q\}\}}$$

$$\operatorname{Seq} \frac{\{P\} \ c \ \{Q\} \quad \{Q\} \ c' \ \{R\} \quad \operatorname{Cond} \frac{\{P \land e\langle 1\rangle\} \ c \ \{Q\} \quad \{P \land \neg e\langle 1\rangle\} \ c' \ \{Q\} \quad \operatorname{Loop} \frac{\{P \land e\langle 1\rangle \land e\langle 2\rangle\} \ c \ \{P \land e\langle 1\rangle = e\langle 2\rangle\}}{\{P \land e\langle 1\rangle = e\langle 2\rangle\}}$$

$$\operatorname{Conseq} \frac{\{P\} \ c \ \{Q\} \quad | P' \Longrightarrow P \land Q \Longrightarrow Q'}{\{P'\} \ c \ \{Q'\}} \qquad \operatorname{Case} \frac{\{P \land R\} \ c \ \{Q\} \quad \{P \land \neg R\} \ c \ \{Q\} \quad \{P \land \neg R\} \ c \ \{Q\} \quad \{P\} \ c \ \{P\} \$$

Proof rules in pRHL: mostly similar to Hoare logic

$$\operatorname{Assn} \frac{f:S \to S \text{ bijection}}{\{Q\{e\langle 1\rangle, e\langle 2\rangle/x\langle 1\rangle, x\langle 2\rangle\}\} \ x \leftarrow e\ \{Q\}} \\ = P \Longrightarrow e\langle 1\rangle = e\langle 2\rangle \\ = P \Longrightarrow e\langle 1\rangle = P \Longrightarrow e\langle 1\rangle = e\langle$$

Proof rules in pRHL: Random sampling

$$\frac{f:S\to S \text{ bijection}}{\{\top\}\ x \not \triangleq [S]\ \{x\langle 2\rangle = f(x\langle 1\rangle)\}}$$

Proof rules in pRHL: Random sampling

$$\frac{f:S\to S \text{ bijection}}{\{\top\}\ x \not \triangleq [S]\ \{x\langle 2\rangle = f(x\langle 1\rangle)\}}$$

Select how to share randomness

Introducing ×pRHL

Product pRHL

 $\{P\}\ c\ \{Q\}$

$$\{P\} \ c \ \{Q\} \leadsto c^{\times}$$

$$\{P\} \ c \ \{Q\} \leadsto c^{\times}$$

Runs in combined memory

- ► Two separate copies of single memory
- lacktriangle Duplicate program variables: $x\langle 1 \rangle$ and $x\langle 2 \rangle$

$$\{P\} \ c \ \{Q\} \leadsto c^{\times}$$

Runs in combined memory

- ► Two separate copies of single memory
- ▶ Duplicate program variables: $x\langle 1 \rangle$ and $x\langle 2 \rangle$

Property of $c^{\times} \implies$ property of two runs of c

A tour of \times pRHL rules: [Seq]

In pRHL:

```
\frac{\{P\}\ c\ \{Q\}\ c'\ \{R\}}{\{P\}\ c\ ;\ c'\ \{R\}}
```

A tour of \times pRHL rules: [Seq]

 $In \times pRHL$:

$$\frac{\{P\}\ c\ \{Q\}\ \leadsto c^{\times}\qquad \{Q\}\ c'\ \{R\}\ \leadsto c^{\times'}}{\{P\}\ c\ ; c'\ \{R\}\ \leadsto c^{\times}\ ; c^{\times'}}$$

A tour of \times pRHL rules: [Seq]

In \times pRHL:

$$\frac{\{P\}\ c\ \{Q\}\ \leadsto c^{\times} \qquad \{Q\}\ c'\ \{R\}\ \leadsto c^{\times'}}{\{P\}\ c\ ; c'\ \{R\}\ \leadsto c^{\times}\ ; c^{\times'}}$$

Sequence product programs

A tour of \times pRHL proof rules: [Rand]

In pRHL:

$$f:S o S$$
 bijection

$$\{\top\}\ x \not \triangleq [S]\ \{x\langle 2\rangle = f(x\langle 1\rangle)\}$$

A tour of \times pRHL proof rules: [Rand]

 $In \times pRHL$:

$$f:S o S$$
 bijection

$$\overline{\{\top\}\ x \not\leftarrow [S]\ \{x\langle 2\rangle = f(x\langle 1\rangle)\}} \leadsto x\langle 1\rangle \not\leftarrow [S]\ ; x\langle 2\rangle \leftarrow f(x\langle 1\rangle)$$

A tour of \times pRHL proof rules: [Rand]

In ×pRHL:

$$f:S o S$$
 bijection

$$\{\top\} \ x \not \triangleq [S] \ \{x\langle 2\rangle = f(x\langle 1\rangle)\} \leadsto x\langle 1\rangle \not \triangleq [S] \ ; \ x\langle 2\rangle \leftarrow f(x\langle 1\rangle)$$

Sample $x\langle 2\rangle$ depends on $x\langle 1\rangle$

A tour of \times pRHL rules: [Case]

In pRHL:

$$\frac{\{P \land Q\} \ c \ \{R\}}{\{P\} \ c \ \{R\}}$$

A tour of \times pRHL rules: [Case]

In ×pRHL:

$$\frac{\{P \land Q\} \ c \ \{R\} \leadsto c^{\times} \qquad \{P \land \neg Q\} \ c \ \{R\} \leadsto c^{\times}}{\{P\} \ c \ \{R\} \leadsto \text{if } Q \text{ then } c^{\times} \text{ else } c^{\times}_{\neg}}$$

A tour of \times pRHL rules: [Case]

In \times pRHL:

$$\frac{\{P \land Q\} \ c \ \{R\} \leadsto c^{\times} \qquad \{P \land \neg Q\} \ c \ \{R\} \leadsto c_{\neg}^{\times}}{\{P\} \ c \ \{R\} \leadsto \text{if } Q \text{ then } c^{\times} \text{ else } c_{\neg}^{\times}}$$

Case in proof → conditional in product

See the paper for ...

Verifying rapid mixing for Markov chains

- Examples from statistical physics
- ► A cool card trick

Advanced proof rules

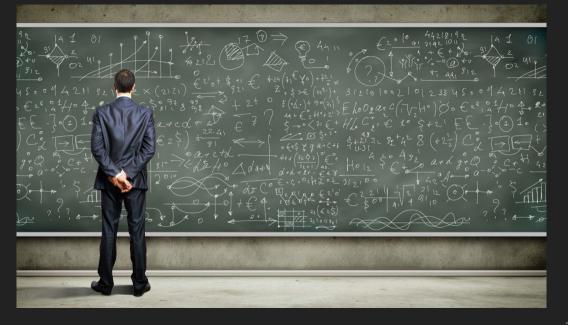
► Asynchronous loop rule

Soundness

Our technical contributions

A probabilistic product construction with shared randomness

A probabilistic program logic × pRHL: a proof-relevant version of pRHL



Proof by coupling

A proof technique from probability theory

- ► Given: two processes
- ► Specify: how to coordinate random samplings
- ► Analyze: properties of linked/coupled processes

Attractive features

- Compositional
- Reason about relation between samples, not probabilities
- Reduce properties of two programs to properties of one program

describe

Two coupled processes

describe

encode

Two coupled processes

Probabilistic product programs

describe

encode

Two coupled processes

Probabilistic product programs

Probabilistic product programs are the computational content of coupling proofs