
Coupling Proofs
Are Probabilistic Product Programs

Gilles Barthe, Benjmain Grégoire, Justin Hsu*, Pierre-Yves Strub

IMDEA Software, Inria, University of Pennsylvania*, École Polytechnique

January 18, 2017

1

A simple card-flipping process

Setup
I Input: position in {1, . . . , 9}
I Repeat:

– Draw uniformly random card ∈ {1, . . . , 9}
– Go forward that many steps

I Output last position before crossing 100

2

In pictures

3

Output last position: 99

3

In pictures

3 1

Output last position: 99

3

In pictures

3 1 5

Output last position: 99

3

In pictures

3 1 5 4

Output last position: 99

3

In pictures

3 1 5 4

Output last position: 99

3

Starting at a different position

1

How close are the two output distributions?

4

Starting at a different position

1 2

How close are the two output distributions?

4

Starting at a different position

1 2 9

How close are the two output distributions?

4

Starting at a different position

1 2 9 8

How close are the two output distributions?

4

Starting at a different position

1 2 9 8

How close are the two output distributions?

4

Combine first process and second process

Product program: One program simulating two programs

5

Combine first process and second process

3

Product program: One program simulating two programs

5

Combine first process and second process

3

Product program: One program simulating two programs

5

Combine first process and second process

3 1

Product program: One program simulating two programs

5

Combine first process and second process

3 1

Product program: One program simulating two programs

5

Combine first process and second process

3 1 2

Product program: One program simulating two programs

5

Combine first process and second process

3 1 2

Product program: One program simulating two programs

5

Combine first process and second process

3 1 2 1

Product program: One program simulating two programs

5

Combine first process and second process

3 1 2 1

Product program: One program simulating two programs

5

Combine first process and second process

3 1 2 1 1

Product program: One program simulating two programs

5

Combine first process and second process

3 1 2 1 1

Product program: One program simulating two programs

5

Combine first process and second process

3 1 2 1 1 7

Product program: One program simulating two programs

5

Combine first process and second process

3 1 2 1 1 7 4

Product program: One program simulating two programs

5

Combine first process and second process

3 1 2 1 1 7 4

Product program: One program simulating two programs

5

Why is this
interesting?

6

In general

Property P of product program

⇓
Property P ′ of two programs

7

Our construction

Two simulated programs can
share randomness

8

3 1 5 4

1 2 9 8

Today:
=⇒

Distance between
output distributions

≤ Probability that
outputs differ

9

3 1 5 4

1 2 9 8

Today:

=⇒ 3 1 2 1 1 7 4

Distance between
output distributions

≤ Probability that
outputs differ

9

3 1 5 4

1 2 9 8

Today:

=⇒ 3 1 2 1 1 7 4

Distance between
output distributions ≤ Probability that

outputs differ

9

3 1 5 4

1 2 9 8

Today:
=⇒ 3 1 2 1 1 7 4

Distance between
output distributions ≤ Probability that

outputs differ

9

Our technical contributions

A probabilistic product construction
with shared randomness

A probabilistic program logic ×pRHL:
a proof-relevant version of pRHL

10

A crash course: Probabilistic Relational Hoare Logic [BGZ-B]

11

Imperative language

c ::= x← e | c ; c | if e then c else c | while e do c

| x $← [S]

Uniform sampling from finite set [S]
I coin flip: [heads, tails]
I random card: [1, . . . , 9]

Command semantics [[c]]
I Input: memory
I Output: distribution over memories

12

Imperative language

c ::= x← e | c ; c | if e then c else c | while e do c | x $← [S]

Uniform sampling from finite set [S]
I coin flip: [heads, tails]
I random card: [1, . . . , 9]

Command semantics [[c]]
I Input: memory
I Output: distribution over memories

12

Imperative language

c ::= x← e | c ; c | if e then c else c | while e do c | x $← [S]

Uniform sampling from finite set [S]
I coin flip: [heads, tails]
I random card: [1, . . . , 9]

Command semantics [[c]]
I Input: memory
I Output: distribution over memories

12

Judgments: similar to Hoare logic

{P} c {Q}

Assertions: binary relation on memories
I Can refer to tagged program variables: x〈1〉 and x〈2〉
I First order formulas, non-probabilistic

If the two inputs satisfy P , we can
share the randomness on two runs of c

so that the two outputs satisfy Q.

13

Judgments: similar to Hoare logic

{P} c {Q}
Assertions: binary relation on memories
I Can refer to tagged program variables: x〈1〉 and x〈2〉
I First order formulas, non-probabilistic

If the two inputs satisfy P , we can
share the randomness on two runs of c

so that the two outputs satisfy Q.

13

Judgments: similar to Hoare logic

{P} c {Q}
Assertions: binary relation on memories
I Can refer to tagged program variables: x〈1〉 and x〈2〉
I First order formulas, non-probabilistic

If the two inputs satisfy P , we can
share the randomness on two runs of c

so that the two outputs satisfy Q.

13

Proof rules in pRHL: mostly similar to Hoare logic

14

Proof rules in pRHL: mostly similar to Hoare logic

14

Proof rules in pRHL: Random sampling

f : S → S bijection
{>} x $← [S] {x〈2〉 = f(x〈1〉)}

Select how to share randomness

15

Proof rules in pRHL: Random sampling

f : S → S bijection
{>} x $← [S] {x〈2〉 = f(x〈1〉)}

Select how to share randomness

15

Introducing
×pRHL

Product pRHL

16

Idea: Product program c× simulates two processes

{P} c {Q}

 c×

Runs in combined memory
I Two separate copies of single memory
I Duplicate program variables: x〈1〉 and x〈2〉

Property of c× =⇒ property of two runs of c

17

Idea: Product program c× simulates two processes

{P} c {Q} c×

Runs in combined memory
I Two separate copies of single memory
I Duplicate program variables: x〈1〉 and x〈2〉

Property of c× =⇒ property of two runs of c

17

Idea: Product program c× simulates two processes

{P} c {Q} c×

Runs in combined memory
I Two separate copies of single memory
I Duplicate program variables: x〈1〉 and x〈2〉

Property of c× =⇒ property of two runs of c

17

Idea: Product program c× simulates two processes

{P} c {Q} c×

Runs in combined memory
I Two separate copies of single memory
I Duplicate program variables: x〈1〉 and x〈2〉

Property of c× =⇒ property of two runs of c

17

A tour of ×pRHL rules: [Seq]

In

×

pRHL:

{P} c {Q}

 c×

{Q} c′ {R}

 c×
′

{P} c ; c′ {R}

 c× ; c×
′

Sequence product programs

18

A tour of ×pRHL rules: [Seq]

In ×pRHL:

{P} c {Q} c× {Q} c′ {R} c×
′

{P} c ; c′ {R} c× ; c×
′

Sequence product programs

18

A tour of ×pRHL rules: [Seq]

In ×pRHL:

{P} c {Q} c× {Q} c′ {R} c×
′

{P} c ; c′ {R} c× ; c×
′

Sequence product programs

18

A tour of ×pRHL proof rules: [Rand]

In

×

pRHL:

f : S → S bijection
{>} x $← [S] {x〈2〉 = f(x〈1〉)}

 x〈1〉 $← [S] ; x〈2〉 ← f(x〈1〉)

Sample x〈2〉 depends on x〈1〉

19

A tour of ×pRHL proof rules: [Rand]

In ×pRHL:

f : S → S bijection
{>} x $← [S] {x〈2〉 = f(x〈1〉)} x〈1〉 $← [S] ; x〈2〉 ← f(x〈1〉)

Sample x〈2〉 depends on x〈1〉

19

A tour of ×pRHL proof rules: [Rand]

In ×pRHL:

f : S → S bijection
{>} x $← [S] {x〈2〉 = f(x〈1〉)} x〈1〉 $← [S] ; x〈2〉 ← f(x〈1〉)

Sample x〈2〉 depends on x〈1〉

19

A tour of ×pRHL rules: [Case]

In

×

pRHL:

{P ∧Q} c {R}

 c×

{P ∧ ¬Q} c {R}

 c×¬

{P} c {R}

 if Q then c× else c×¬

Case in proof conditional in product

20

A tour of ×pRHL rules: [Case]

In ×pRHL:

{P ∧Q} c {R} c× {P ∧ ¬Q} c {R} c×¬

{P} c {R} if Q then c× else c×¬

Case in proof conditional in product

20

A tour of ×pRHL rules: [Case]

In ×pRHL:

{P ∧Q} c {R} c× {P ∧ ¬Q} c {R} c×¬

{P} c {R} if Q then c× else c×¬

Case in proof conditional in product

20

See the paper for . . .

Verifying rapid mixing for Markov chains
I Examples from statistical physics
I A cool card trick

Advanced proof rules
I Asynchronous loop rule

Soundness

21

Our technical contributions

A probabilistic product construction
with shared randomness

A probabilistic program logic ×pRHL:
a proof-relevant version of pRHL

22

23

Proof by coupling

A proof technique from probability theory
I Given: two processes
I Specify: how to coordinate random samplings
I Analyze: properties of linked/coupled processes

Attractive features
I Compositional
I Reason about relation between samples, not probabilities
I Reduce properties of two programs to properties of one program

24

Coupling proofs ≈ pRHL proofs

describe encode

Two coupled
processes ≈ Probabilistic

product programs

Probabilistic product programs
are the computational content

of coupling proofs

25

Coupling proofs ≈ pRHL proofs
describe

encode

Two coupled
processes

≈ Probabilistic
product programs

Probabilistic product programs
are the computational content

of coupling proofs

25

Coupling proofs ≈ pRHL proofs
describe encode

Two coupled
processes ≈ Probabilistic

product programs

Probabilistic product programs
are the computational content

of coupling proofs

25

Coupling proofs ≈ pRHL proofs
describe encode

Two coupled
processes ≈ Probabilistic

product programs

Probabilistic product programs
are the computational content

of coupling proofs
25

