Coupling Proofs
Are Probabilistic Product Programs

Gilles Barthe, Benjmain Grégoire, Justin Hsu*, Pierre-Yves Strub
IMDEA Software, Inria, University of Pennsylvania*, Ecole Polytechnique

January 18, 2017

A simple card-flipping process

Setup
» Input: positionin {1,...,9}
» Repeat:
- Draw uniformly random card € {1,...,9}

- Go forward that many steps
» Output last position before crossing 100

In pictures

\%
SENNNN---0E

In pictures

\Y
SENAN---NN

In pictures

\%
SEND S NN

In pictures

\%
) BUNCE Bl

In pictures

\%
) BUNCE Bl

Starting at a different position

BN N--0A
A

Starting at a different position

B2 N---0N
A

Starting at a different position

Bo2Z0e 0N
JAN

Starting at a different position

Bio2WoN--Ne

A

Starting at a different position

Bio2WoN--Ne

A

Combine first process and

Combine first process and

\%
SENNNN---0E
7N

Combine first process and

\Y
SENNNN---0E
A

Combine first process and

\Y
AN nN--0i
A

Combine first process and

\Y
AN nN--0i
A

Combine first process and

\Y
g2l mN---Ni
A

Combine first process and

\Y
gzl mN--Ni
JAN

Combine first process and

\Y
g2 AN N
JAN

Combine first process and

\%
g2 AN N
JAN

Combine first process and

\%
SRR B9
JAN

Combine first process and

\%
SRR B9 |
JAN

Combine first process and

\%
SRR |
JAN

Combine first process and

\%
3274
JAN

Combine first process and

\%
3274
JAN

Product program

Why is this
Interesting?

In general

Property P of product program

|

Property P’ of two programs

Our construction

Two simulated programs can
share randomness

v
N N NURCH BROR

RENCN REN BYERC
A

Distance between
output distributions

v
N N NURCH BROR
v
o [2 [l [7eee o B
A

Distance between
output distributions

v
N N NURCH BROR

v
o [2 [l [7eee o B
A
RENCN REN BYERC
A

Distance between Probability that
output distributions outputs differ

v
N N NURCH BROR

Today:

v
o [2 [l [7eee o B
A

RN NN Bl I

o

Distance between Probability that
output distributions outputs differ

Our technical contributions

A probabilistic product construction
with shared randomness

A probabilistic program logic x pRHL:
a proof-relevant version of pRHL

10

Imperative language

cu=x <+ e|c;c|if ethen celse c | whileedoc

12

Imperative language

ci=x<el|c;clifethencelsec|whileedoc|z & [9]

Uniform sampling from finite set [5]

» coin flip: [heads, tails]
» random card: [1,...,9]

12

Imperative language

ci=x<el|c;clifethencelsec|whileedoc|z & [9]

Uniform sampling from finite set [5]
» coin flip: [heads, tails]
» random card: [1,...,9]
Command semantics []

» Input: memory
» Output: distribution over memories

12

Judgments: similar to Hoare logic

1P} c{Q}

13

Judgments: similar to Hoare logic

{P}c{@}
Assertions: binary relation on memories

» Can refer to tagged program variables: 2(1) and z(2)
» First order formulas, non-probabilistic

13

Judgments: similar to Hoare logic

{P}tc{@}
Assertions: binary relation on memories

» Can refer to tagged program variables: 2(1) and z(2)
» First order formulas, non-probabilistic

If the two inputs satisfy P, we can

share the randomness on two runs of ¢
so that the two outputs satisfy Q.

13

Proof rules in pRHL: mostly similar to Hoare logic

T L1 270N S/ O 2 o JOL RAND w
{Q{e(D),e@)/2(1),2@}} o ¢ Q) 0 € 5,Q{m (1), 22(2)/v, J)}} & & [5] Q)

EP = e(l) =e(2)
{Pre()} c{Q} {PA-e(l)} {Q} {PAel)ne2)} c {PAel) =e2)}

AssN

JiPreder {@} ¢ {B}

SE Conp

consng IPY Q) EP = PrQ =@ rep PARY (@) {PA-R}c{Q}

{P'} c{Q} {P} c{Q}

{P} c;c {R} {P} if e then celse ¢’ {Q} {P Ne(l) = e(2)} while e do ¢ {P A —e(l) A —e(2)}

14

Proof rules in pRHL: mostly similar to Hoare logic

T L1 270N S/ AN O 2 o JOL RAND w
{Q{e(D),e@)/2(1),2@}} = ¢ (@} AN G € 8,0 (1), 22@) v, f)}) = & [5] (@)

EP = e(l) =¢(2)
{Pre}c{Q} {PA-e()} {Q} {PAel) ne@)} e {PAe(l) = e(2)}

AssN

JiPred@r {@} ¢ {B}

SE Conp

consng (P eHQ EP = PrQ =@ rep PARY (@) {PA-R}c{Q}

{P'} c{Q} {P} c{Q}

{P} c;cd {R} {P} if e then c else ¢ {Q} {P Ae(l) =e(2)} while e do ¢ {P A —e(1) A —e(2)}

14

Proof rules in pRHL: Random sampling

f: S8 — S bijection

1T @& [S]1z2) = flz1))}

Proof rules in pRHL: Random sampling

f: S — S bijection
1T}z & [S]{x(2) = flz(1))}

Select how to share randomness

16

|ldea: Product program ¢* simulates two processes

1P} c{Q}

17

|ldea: Product program ¢* simulates two processes

{P}c{@}c”

17

|ldea: Product program ¢* simulates two processes

{P}c{@}c”

Runs in combined memory

» Two separate copies of single memory
» Duplicate program variables: z(1) and x(2)

17

|ldea: Product program ¢* simulates two processes

{P}c{@}c”

Runs in combined memory

» Two separate copies of single memory
» Duplicate program variables: z(1) and x(2)

Property of ¢ = property of two runs of ¢

17

A tour of xpRHL rules: [Seq]

In pRHL:

1P} c1@} {Q} ¢ {R}

{P} c;d {R}

A tour of xpRHL rules: [Seq]

In xpRHL:

{Pye{Q}~c {Q}{R}~ X

{PYc;d {R} ~ ¢ ;¢

18

A tour of xpRHL rules: [Seq]

In xpRHL:

{Pye{Q}~c {Q}{R}~ X

{PYc;d {R} ~ ¢ ;¢

Sequence product programs

A tour of xpRHL proof rules: [Rand]

In pRHL:

f:S — S bijection

{Tha & [S]H{z(2) = f(z(1)}

19

A tour of xpRHL proof rules: [Rand]

In xpRHL:

f:S — S bijection

{Tha &[S {z(2) = fa() v x(1) & [S] ;5 2(2) « f(z(1)

19

A tour of xpRHL proof rules: [Rand]

In xpRHL:

f:S — S bijection

{Tha &[S {z(2) = fa() v x(1) & [S] ;5 2(2) « f(z(1)

Sample x(2) depends on x(1)

A tour of xpRHL rules: [Case]

In pRHL:

{PANQ} c{R}

{P A-Q} c{R}

{P} c{R}

pie]

A tour of xpRHL rules: [Case]

In xpRHL:

{PAQ} c{R}~ ¢~ {PA-Q}c{R}~ c

{P} c {R}~ if Q then ¢* else ¢

pie]

A tour of xpRHL rules: [Case]

In xpRHL:

{PAQ}c{R}~ ¢~ {PA-Q}c{R}~ c

{P} c {R}~ if Q then ¢* else ¢

Case In proof ~» conditional in product

pie]

See the paper for ...

Verifying rapid mixing for Markov chains

» Examples from statistical physics
» A cool card trick

Advanced proof rules

» Asynchronous loop rule

Soundness

21

Our technical contributions

A probabilistic product construction
with shared randomness

A probabilistic program logic x pRHL:
a proof-relevant version of pRHL

P

m - M 71 @é L e ﬁ“i‘i?&;’z: ; a1 0
%* mrz\ @ Lo 7 | i Xl
5’(7_ ' 1*_*" :€ (.1_1.(€\()+¥~U .k—g[’: ﬁéz
\4(5 o"TZ.\‘LH gL\ X(Q\Z\) 228 5>€,(n B Ns [0~) [0 9. 2230y § 5 0 Juh LY 35,

é a7 © o 4
» €= s By 4’ 5 i(“ws"% /»0044'6(‘(/—\—\ Co €55 f1° -2
£C 4 S ‘*Tﬂ// el e ‘ %e//zc W E&-}»@i»

“€2§ = xevsw“** $eifan 8- 8 GZ’) Eﬂ;

AO(H 71 qu 4,' OIA $€4n ﬁ_.‘;{;“@ S

ek i - o A S ‘”I\""C]
/e c‘ Lh;tok_:»:z.m > } g B

gzo

27_1\
3 g kk..{_.. ‘C
ZL{Is m 7’74 ’
z'a((sll . -

23

Proof by coupling

A proof technique from probability theory

» Given: two processes
» Specify: how to coordinate random samplings
» Analyze: properties of linked/coupled processes

Attractive features

» Compositional
» Reason about relation between samples, not probabilities
» Reduce properties of two programs to properties of one program

24

Coupling proofs = pRHL proofs

Coupling proofs
describe

Two coupled
processes

I
Y

PRHL proofs

25

Coupling proofs
describe

Two coupled
processes

PRHL proofs

encode

Probabilistic
product programs

25

Coupling proofs = pRHL proofs

describe encode
Two coupled ~ Probabilistic
processes product programs

Probabilistic product programs

are the computational content
of coupling proofs

25

