
Jointly Private Convex Programming
“PrivDuDe”

Justin Hsu1, Zhiyi Huang2, Aaron Roth1, Steven Zhiwei Wu1

1University of Pennsylvania
2University of Hong Kong

January 10, 2016
1

One hot summer...not enough electricity!

2

Solution: Turn off air-conditioning

Decide when customers get electricity
I Divide day into time slots
I Customers have values for slots
I Customers have hard minimum requirements for slots

Goal: maximize welfare

3

Scheduling optimization problem

Constants (Inputs to the problem)

I Customer i ’s value for electricity in time slot t: v (i)
t ∈ [0, 1]

I Customer i ’s minimum requirement: d (i)
t ∈ [0, 1]

I Total electricity supply in time slot t: st ∈ R

Variables (Outputs)

I Electricity level for user i , time t: x (i)
t

4

Scheduling optimization problem

Constants (Inputs to the problem)

I Customer i ’s value for electricity in time slot t: v (i)
t ∈ [0, 1]

I Customer i ’s minimum requirement: d (i)
t ∈ [0, 1]

I Total electricity supply in time slot t: st ∈ R

Variables (Outputs)

I Electricity level for user i , time t: x (i)
t

4

Scheduling optimization problem
Maximize welfare

max
∑
i ,t

v (i)
t · x

(i)
t

...subject to constraints

I Don’t exceed power supply:∑
i
x (i)

t ≤ st

I Meet minimum energy requirements:

x (i)
t ≥ d (i)

t

5

Scheduling optimization problem
Maximize welfare

max
∑
i ,t

v (i)
t · x

(i)
t

...subject to constraints
I Don’t exceed power supply:∑

i
x (i)

t ≤ st

I Meet minimum energy requirements:

x (i)
t ≥ d (i)

t

5

Scheduling optimization problem
Maximize welfare

max
∑
i ,t

v (i)
t · x

(i)
t

...subject to constraints
I Don’t exceed power supply:∑

i
x (i)

t ≤ st

I Meet minimum energy requirements:

x (i)
t ≥ d (i)

t

5

Privacy concerns

Private data
I Values v (i)

t for time slots
I Customer requirements d (i)

t

Customers shouldn’t learn private data of others

6

Privacy concerns

Private data
I Values v (i)

t for time slots
I Customer requirements d (i)

t

Customers shouldn’t learn private data of others

6

More generally...

Convex program
I Want to maximize:∑

i
f (i)(x (i)) f (i) concave

I Coupling constraints:∑
i
g (i)

j (x (i)) ≤ hj g (i)
j convex

I Personal constraints:

x (i) ∈ S(i) S(i) convex

7

More generally...

Convex program
I Want to maximize:∑

i
f (i)(x (i)) f (i) concave

I Coupling constraints:∑
i
g (i)

j (x (i)) ≤ hj g (i)
j convex

I Personal constraints:

x (i) ∈ S(i) S(i) convex

7

More generally...

Convex program
I Want to maximize:∑

i
f (i)(x (i)) f (i) concave

I Coupling constraints:∑
i
g (i)

j (x (i)) ≤ hj g (i)
j convex

I Personal constraints:

x (i) ∈ S(i) S(i) convex

7

More generally...

Key feature: separable
I Partition variables: Agent i ’s “part” of solution is x (i)

Agent i ’s private data affects:
I Objective f (i)

I Coupling constraints g (i)
j

I Personal constraints S(i)

Examples
I Matching LP
I d-demand fractional allocation
I Multidimensional fractional knapsack

8

Our results, in one slide

Theorem
Let ε > 0 be a privacy parameter. For a separable convex program
with k coupling constraints, there is an efficient algorithm for
privately finding a solution with objective at least

OPT−O
(k
ε

)
,

and exceeding constraints by at most k/ε in total.

No polynomial dependence on number of variables

9

The plan today

I Convex program solution ↔ equilibrium of a game
I Compute equilibrium via gradient descent
I Ensure privacy

10

The convex program game

11

The convex program two-player, zero-sum game

The players
I Primal player: plays candidate solutions x ∈ S(1) × · · · × S(n)

I Dual player: plays dual solutions λ

The payoff function
I Move constraints depending on multiple players (coupling

constraints) into objective as penalty terms

L(x , λ) =
∑

i
f (i)(x (i)) +

∑
j
λj

(∑
i
g (i)

j (x (i))− hj

)

I Primal player maximizes, dual player minimizes

12

The convex program two-player, zero-sum game

The players
I Primal player: plays candidate solutions x ∈ S(1) × · · · × S(n)

I Dual player: plays dual solutions λ

The payoff function
I Move constraints depending on multiple players (coupling

constraints) into objective as penalty terms

L(x , λ) =
∑

i
f (i)(x (i)) +

∑
j
λj

(∑
i
g (i)

j (x (i))− hj

)

I Primal player maximizes, dual player minimizes

12

Idea: Solution ↔ equilibrium

Convex duality
I Optimal solution x∗ gets payoff OPT versus any λ
I Optimal dual λ∗ gets payoff at least −OPT versus any x

In game theoretic terms...
I The value of the game is OPT
I Optimal primal-dual solution (x∗, λ∗) is an equilibrium

Find an equilibrium to find an optimal solution

approximate approximately

13

Idea: Solution ↔ equilibrium

Convex duality
I Optimal solution x∗ gets payoff OPT versus any λ
I Optimal dual λ∗ gets payoff at least −OPT versus any x

In game theoretic terms...
I The value of the game is OPT
I Optimal primal-dual solution (x∗, λ∗) is an equilibrium

Find an equilibrium to find an optimal solution

approximate approximately

13

Idea: Solution ↔ equilibrium

Convex duality
I Optimal solution x∗ gets payoff OPT versus any λ
I Optimal dual λ∗ gets payoff at least −OPT versus any x

In game theoretic terms...
I The value of the game is OPT
I Optimal primal-dual solution (x∗, λ∗) is an equilibrium

Find an equilibrium to find an optimal solution

approximate approximately

13

Finding the equilibrium

Simulated play via gradient descent

14

Known: techniques for finding equilibrium [FS96]

Simulated play
I First player chooses the action xt with best payoff
I Second player uses a no-regret algorithm to select action λt
I Use payoff L(xt , λt) to update the second player
I Repeat

Key features
I Average of (xt , λt) converges to approximate equilibrium
I Limited access to payoff data, can be made private

15

Known: techniques for finding equilibrium [FS96]

Simulated play
I First player chooses the action xt with best payoff
I Second player uses a no-regret algorithm to select action λt
I Use payoff L(xt , λt) to update the second player
I Repeat

Key features
I Average of (xt , λt) converges to approximate equilibrium
I Limited access to payoff data, can be made private

15

Gradient descent dynamics (linear case)

Idea: repeatedly go “downhill”
I Given primal point x (i)

t , gradient of L(xt ,−) is

`j =
∑

i
g (i)

j · x
(i)
t − hj

I Update:
λt+1 = λt − η · `

16

Achieving privacy

17

(Plain) Differential privacy [DMNS06]

D

Differential Privacy
[Dwork-McSherry-Nissim-Smith 06]

Algorithm

Pr [r]

ratio bounded

Alice

Bob Chris

Donna Ernie Xavier

18

More formally

Definition (DMNS06)
Let M be a randomized mechanism from databases to range R, and
let D,D′ be databases differing in one record. M is
(ε, δ)-differentially private if for every S ⊆ R,

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ.

For us: too strong!

19

More formally

Definition (DMNS06)
Let M be a randomized mechanism from databases to range R, and
let D,D′ be databases differing in one record. M is
(ε, δ)-differentially private if for every S ⊆ R,

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ.

For us: too strong!

19

A relaxed notion of privacy [KPRU14]

Idea
I Give separate outputs to agents
I Group of agents can’t violate privacy of other agents

Definition
An algorithmM : Cn → Ωn is (ε, δ)-joint differentially private if for
every agent i , pair of i-neighbors D,D′ ∈ Cn, and subset of outputs
S ⊆ Ωn−1,

Pr[M(D)−i ∈ S] ≤ exp(ε)Pr[M(D′)−i ∈ S] + δ.

20

A relaxed notion of privacy [KPRU14]

Idea
I Give separate outputs to agents
I Group of agents can’t violate privacy of other agents

Definition
An algorithmM : Cn → Ωn is (ε, δ)-joint differentially private if for
every agent i , pair of i-neighbors D,D′ ∈ Cn, and subset of outputs
S ⊆ Ωn−1,

Pr[M(D)−i ∈ S] ≤ exp(ε)Pr[M(D′)−i ∈ S] + δ.

20

Achieving joint differential privacy

“Billboard” mechanisms
I Compute signal S satisfying standard differential privacy
I Agent i ’s output is a function of i ’s private data and S

Lemma (Billboard lemma [HHRRW14])
Let S : D → S be (ε, δ)-differentially private. Let agent i have
private data Di ∈ X , and let F : X × S → R. Then the mechanism

M(D)i = F (Di , S(D))

is (ε, δ)-joint differentially private.

21

Achieving joint differential privacy

“Billboard” mechanisms
I Compute signal S satisfying standard differential privacy
I Agent i ’s output is a function of i ’s private data and S

Lemma (Billboard lemma [HHRRW14])
Let S : D → S be (ε, δ)-differentially private. Let agent i have
private data Di ∈ X , and let F : X × S → R. Then the mechanism

M(D)i = F (Di , S(D))

is (ε, δ)-joint differentially private.

21

Our signal: noisy dual variables

Privacy for the dual player
I Recall gradient is

`j =
∑

i
g (i)

j · x
(i)
t − hj

I May depend on private data in a low-sensitivity way

I Use Laplace mechanism to add noise, “noisy gradient”:

ˆ̀j =
∑

i
g (i)

j · x
(i)
t − hj + Lap(∆/ε)

I Noisy gradients satisfy standard differential privacy

22

Our signal: noisy dual variables

Privacy for the dual player
I Recall gradient is

`j =
∑

i
g (i)

j · x
(i)
t − hj

I May depend on private data in a low-sensitivity way
I Use Laplace mechanism to add noise, “noisy gradient”:

ˆ̀j =
∑

i
g (i)

j · x
(i)
t − hj + Lap(∆/ε)

I Noisy gradients satisfy standard differential privacy

22

Private action: best response to dual variables

(Joint) privacy for the primal player

I Best response problem:

max
x∈S
L(x , λt) = max

x∈S

∑
i
f (i) ·x (i)+

∑
j
λj,t

(∑
i
g (i)

j · x
(i) − hj

)

I Can optimize separately:

max
x (i)∈S(i)

f (i) · x (i) +
∑

j
λj,t

(
g (i)

j · x (i)
)

I Key point: optimization for x (i) depends only on λ and
functions of i ’s private data (S(i), f (i), g (i))

23

Private action: best response to dual variables

(Joint) privacy for the primal player

I Best response problem:

max
x∈S
L(x , λt) = max

x∈S

∑
i
f (i) ·x (i)+

∑
j
λj,t

(∑
i
g (i)

j · x
(i) − hj

)

I Can optimize separately:

max
x (i)∈S(i)

f (i) · x (i) +
∑

j
λj,t

(
g (i)

j · x
(i)
)

I Key point: optimization for x (i) depends only on λ and
functions of i ’s private data (S(i), f (i), g (i))

23

Private action: best response to dual variables

(Joint) privacy for the primal player

I Best response problem:

max
x∈S
L(x , λt) = max

x∈S

∑
i
f (i) ·x (i)+

∑
j
λj,t

(∑
i
g (i)

j · x
(i) − hj

)

I Can optimize separately:

max
x (i)∈S(i)

f (i) · x (i) +
∑

j
λj,t

(
g (i)

j · x
(i)
)

I Key point: optimization for x (i) depends only on λ and
functions of i ’s private data (S(i), f (i), g (i))

23

The algorithm: PrivDuDe

I For iterations t = 1, . . . ,T :

I For i = 1, . . . , n, compute best response:

x (i)
t = max

x∈S(i)
f (i) · x −

∑
j
λj,t(g (i)

j · x)

I For coupling constraints j = 1, . . . , k, compute noisy gradient:

ˆ̀j,t =
∑

i
g (i)

j · x
(i)
t − hj + Lap(∆/ε)

I Do gradient descent update:

λt+1 = λt − η · ˆ̀t

I Output: time averages 1
T
∑

t x
(i)
t to agent i

24

The algorithm: PrivDuDe

I For iterations t = 1, . . . ,T :
I For i = 1, . . . , n, compute best response:

x (i)
t = max

x∈S(i)
f (i) · x −

∑
j
λj,t(g (i)

j · x)

I For coupling constraints j = 1, . . . , k, compute noisy gradient:

ˆ̀j,t =
∑

i
g (i)

j · x
(i)
t − hj + Lap(∆/ε)

I Do gradient descent update:

λt+1 = λt − η · ˆ̀t

I Output: time averages 1
T
∑

t x
(i)
t to agent i

24

The algorithm: PrivDuDe

I For iterations t = 1, . . . ,T :
I For i = 1, . . . , n, compute best response:

x (i)
t = max

x∈S(i)
f (i) · x −

∑
j
λj,t(g (i)

j · x)

I For coupling constraints j = 1, . . . , k, compute noisy gradient:

ˆ̀j,t =
∑

i
g (i)

j · x
(i)
t − hj + Lap(∆/ε)

I Do gradient descent update:

λt+1 = λt − η · ˆ̀t

I Output: time averages 1
T
∑

t x
(i)
t to agent i

24

The algorithm: PrivDuDe

I For iterations t = 1, . . . ,T :
I For i = 1, . . . , n, compute best response:

x (i)
t = max

x∈S(i)
f (i) · x −

∑
j
λj,t(g (i)

j · x)

I For coupling constraints j = 1, . . . , k, compute noisy gradient:

ˆ̀j,t =
∑

i
g (i)

j · x
(i)
t − hj + Lap(∆/ε)

I Do gradient descent update:

λt+1 = λt − η · ˆ̀t

I Output: time averages 1
T
∑

t x
(i)
t to agent i

24

The algorithm: PrivDuDe

I For iterations t = 1, . . . ,T :
I For i = 1, . . . , n, compute best response:

x (i)
t = max

x∈S(i)
f (i) · x −

∑
j
λj,t(g (i)

j · x)

I For coupling constraints j = 1, . . . , k, compute noisy gradient:

ˆ̀j,t =
∑

i
g (i)

j · x
(i)
t − hj + Lap(∆/ε)

I Do gradient descent update:

λt+1 = λt − η · ˆ̀t

I Output: time averages 1
T
∑

t x
(i)
t to agent i

24

Privacy guarantee

Theorem
PrivDuDe satisfies (ε, δ)-joint differential privacy. The mechanism
that releases just the dual variables λt satisfies (ε, δ)-standard
differential privacy.

25

Accuracy guarantee

Theorem
PrivDuDe produces a solution x such that:

I it achieves objective at least OPT− α ;
I it satisfies all personal constraints ; and
I the total infeasibility over all coupling constraints is at most α ;

where α = Õ(σk log(1/δ)/ε), and σ measures the sensitivity of the
convex program.

26

Wrapping up

27

See paper for...

Approximate truthfulness

Exact feasibility

28

Conclusion

Main ideas
I Equilibrium ↔ solution to convex program
I Joint differential privacy for separable convex programs

PrivDuDe
I Approximately solve separable convex programs
I Satisfies (joint) differential privacy
I Error/infeasibility linear in number of coupling constraints

29

Open problems and future directions

Expanding the class of convex programs
I Can we handle something beyond separable convex programs?
I Terms depending on at most two agents?

Improving the accuracy
I Is linear dependence on number of constraints k necessary?
I What is the best dependence possible?

30

Jointly Private Convex Programming
“PrivDuDe”

Justin Hsu1, Zhiyi Huang2, Aaron Roth1, Steven Zhiwei Wu1

1University of Pennsylvania
2University of Hong Kong

January 10, 2016
31

