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What Is Independence, Intuitively?

Two random variables x and y are
independent if they are uncorrelated:
the value of z gives no information
about the value or distribution of v.



Things that are independent

Fresh random samples

» 2 is the result of a fair coin flip
» 4 is the result of another, “fresh” coin flip
» More generally: “separate” sources of randomness

Uncorrelated things

» 2 is today’s winning lottery number
» 4 is the closing price of the stock market



Things that are not independent

Re-used samples

» zis the result of a fair coin flip
» 4 is the result of the same coin flip

Common cause
» 1z is today’s ice cream sales
» 4 is today’s sunglasses sales



What Is Independence, Formally?

Definition
Two random variables z and y are independent (in some
implicit distribution over z and ) if for all values « and b:

Pr(z =aANy=0>b) =Pr(z =a)-Pr(y =b)

That is, the distribution over (z,y) is the product of a
distribution over z and a distribution over y.



Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs

» A “fresh” random sample is independent of the state.

Simplifies reasoning about groups of variables

» Complicated: general distribution over many variables
» Simple: product of distributions over each variable

Preserved under common program operations

» Local operations independent of “separate” randomness
» Behaves well under conditioning (prob. control flow)



Reasoning about Independence: Challenges

Formal definition isn’t very promising

» Quantification over all values: lots of probabilities!
» Computing exact probabilities: often difficult

How can we leverage the intuition
behind probabilistic independence?




Main Observation: Independence is Separation

Two variables z and y in a distribution
w are independent if u is the product of
two distributions ., and p, with

disjoint domains, containing = and y.

Leverage separation logic to reason about independence
» Pioneered by O’Hearn, Reynolds, and Yang

» Highly developed area of program verification research
» Rich logical theory, automated tools, etc.



Our Approach: Two Ingredients

e Develop a probabilistic
model of the logic B

e Design a probabilistic
separation logic PSL



Recap: Bunched Implications
and Separation Logics
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What Goes into a Separation Logic?
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What Goes into a Separation Logic?

1. Programs

» Transform input states to output states

2. Assertions
» Formulas describe pieces of program states
» Semantics defined by a model of Bl (Pym and O’Hearn)

3. Program logic

» Formulas describe programs
» Assertions specify pre- and post-conditions
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Classical Setting: Heaps

Program states (s, h)

» Astores: X — V, map from variables to values
» Aheap h: N — Y, partial map from addresses to values
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Classical Setting: Heaps

Program states (s, h)

» Astores: X — V, map from variables to values
» Aheap h: N — Y, partial map from addresses to values

Heap-manipulating programs
» Control flow: sequence, if-then-else, loops
» Read/write addresses in heap
» Allocate/free heap cells
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Assertion Logic: Bunched Implications (BI)

Substructural logic (O’'Hearn and Pym)
» Start with regular propositional logic (T, L, A, V,—)
» Add a new conjunction (“star”): P x Q
» Add a new implication (“magic wand”): P =« Q
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Assertion Logic: Bunched Implications (BI)

Substructural logic (O’'Hearn and Pym)
» Start with regular propositional logic (T, L, A, V,—)
» Add a new conjunction (“star”): P x Q
» Add a new implication (“magic wand”): P =« Q

Star is a multiplicative conjunction

» P AQ: PandQ hold on the entire state
» P x@Q: Pand Q@ hold on disjoint parts of the entire state
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Resource Semantics of Bl (O’Hearn and Pym)
Suppose states form a pre-ordered, partial monoid

» Set S of states, pre-order C on S
» Partial operationo: S x S — S (assoc., comm,, ...)

15



Resource Semantics of Bl (O’Hearn and Pym)
Suppose states form a pre-ordered, partial monoid

» Set S of states, pre-order C on S
» Partial operationo: S x S — S (assoc., comm,, ...)

Inductively define states that satisfy formulas

15



Resource Semantics of Bl (O’Hearn and Pym)
Suppose states form a pre-ordered, partial monoid

» Set S of states, pre-order C on S
» Partial operationo: S x S — S (assoc., comm,, ...)

Inductively define states that satisfy formulas

sET always
sEL never

15



Resource Semantics of Bl (O’Hearn and Pym)
Suppose states form a pre-ordered, partial monoid

» Set S of states, pre-order C on S
» Partial operationo: S x S — S (assoc., comm,, ...)

Inductively define states that satisfy formulas

sET always
sEL never

sEPAQ iffsEPandsE=Q

15



Resource Semantics of Bl (O’Hearn and Pym)
Suppose states form a pre-ordered, partial monoid

» Set S of states, pre-order C on S
» Partial operationo: S x S — S (assoc., comm,, ...)

Inductively define states that satisfy formulas

sET always

sEL never

sEPAQ iffs=EPandsEQ

sEPxQ iff s108 C swiths; = Pandsy =Q

State s can be split into two “disjoint” states,
one satisfying P and one satisfying )

15



Example: Heap Model of Bl

Set of states: heaps
» S =N —V, partial maps from addresses to values
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Example: Heap Model of Bl

Set of states: heaps
» S =N —V, partial maps from addresses to values

Monoid operation: combine disjoint heaps

> s 09 is defined to be union iff dom(s;) Ndom(sy) =0

Pre-order: extend/project heaps
> s1 C so iff dom(s;) € dom(sz), and si, so agree on dom(sy)

16



Propositions for Heaps

Atomic propositions: “points-to”

» = — v holds in heap s iff z € dom(s) and s(z) = v

Example axioms (not complete)

» Deterministic: z wvAy—~wAT =y —>v=w
» Disjointt z —wv*xy—w—ax#y

17



The Separation Logic Proper

Programs c from a basic imperative language

» Read from location: z := xe
» Write to location: e := ¢’
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The Separation Logic Proper

Programs c from a basic imperative language

» Read from location: z := xe
» Write to location: e := ¢’

Program logic judgments
{P}c{Q}

Reading

Executing c on any input state satisfying P leads to an output
state satisfying @, without invalid reads or writes.
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Basic Proof Rules
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Basic Proof Rules

Reading a location

{z—=v}ly=xx{x—vAy=1v}

READ
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Basic Proof Rules

Reading a location

READ

{z—=v}ly=xx{x—vAy=1v}

Writing a location

WRITE
{r—v}xx:=ef{z— e}

19



The Frame Rule

Properties about unmodified heaps are preserved

{P}c{Q}  cdoesn’'t modify FV(R)
{P % R} c{Q * R}

FRAME
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The Frame Rule

Properties about unmodified heaps are preserved

{P}c{Q}  cdoesn’'t modify FV(R)
{P % R} c{Q * R}

FRAME

So-called “local reasoning” in SL

» Only need to reason about part of heap used by ¢
» Note: doesn’t hold if x replaced by A, due to aliasing!

20



A Probabilistic Model of Bl




States: Distributions over Memories
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States: Distributions over Memories

Memories (not heaps)

» Fix sets X of variables and V of values
» Memories indexed by domains A C X: M(A)=A—V

Program states: randomized memories

> States are distributions over memories with same domain
» Formally: S = {s | s € Distr(M(A4)),A C X}
» When s € Distr(M(A)), write dom(s) for A
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Monoid: “Disjoint” Product Distribution

Intuition
» Two distributions can be combined iff domains are disjoint
» Combine by taking product distribution, union of domains
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Monoid: “Disjoint” Product Distribution

Intuition
» Two distributions can be combined iff domains are disjoint
» Combine by taking product distribution, union of domains

More formally...
Suppose that s € Distr(M(A)) and s’ € Distr(M(B)). If A, B
are disjoint, then:

(sos)(mum') =s(m)- s'(m)

for m € M(A) and m’ € M(B). Otherwise, s o s’ is undefined.
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Pre-Order: Extension/Projection

Intuition
» Define s C s’ if s “has less information than” s’
» In probabilistic setting: s is a projection of s’
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Pre-Order: Extension/Projection

Intuition
» Define s C s’ if s “has less information than” s’
» In probabilistic setting: s is a projection of s’

More formally...

Suppose that s € Distr(M(A)) and s’ € Distr(M(B)). Then
s C s iff A C B, and for all m € M(A), we have:

s(m) = Z s'(mum’).

m’e M(B)

That is, s is obtained from s’ by marginalizing variables in B\ A.

24



Atomic Formulas

Equalities

» ¢ = ¢ holds in s iff all variables F'V (e, e’) C dom(s), and e
is equal to ¢’ with probability 1 in s
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Atomic Formulas

Equalities

» ¢ = ¢ holds in s iff all variables F'V (e, e’) C dom(s), and e
is equal to ¢’ with probability 1 in s

Distribution laws

» e ~ Unif holds in s iff FV(e) C dom(s), and e is uniformly
distributed (e.g., fair coin flip)

» ¢ ~ D holds in s iff all variables in FV(e) C dom(s)
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Example Axioms (not complete)
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Distribution operations
> c~DAy~D —>2xAy~D
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Example Axioms (not complete)

Distribution operations
> c~DAy~D —>2xAy~D

Equality and distributions
» 2 =y Az~ Unif — y ~ Unif

Uniformity and products
» (z ~ Unif x y ~ Unif) — (z,y) ~ Unifg.p

Uniformity and exclusive-or ()
> z~Unif xy~DAz=a2x®y = 2z~ Unif xy~D

26



Intuitionistic, or Classical?
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Intuitionistic, or Classical?

Many SLs use classical version of Bl (Boolean BI)
» Pre-order is discrete (trivial)
» Benefits: can describe heap domain exactly (e.g., empty)
» Drawbacks: must describe the entire heap
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Intuitionistic, or Classical?

Many SLs use classical version of Bl (Boolean BI)

» Pre-order is discrete (trivial)
» Benefits: can describe heap domain exactly (e.g., empty)
» Drawbacks: must describe the entire heap

Our probabilistic model is for intuitionistic BI

» Pre-order is nontrivial
» Benefits: can describe a subset of the variables
» Necessary: other variables might not be independent!
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A Probabilistic Separation Logic
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A Toy Probabilistic Language

Program syntax

Expdeu=zec X |tt|fflene|eve |- -

Com > cu=skip|z <+ e| z & Unif | ¢ ¢ |if ethen celse ¢

29



A Toy Probabilistic Language
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Expdeu=zec X |tt|fflene|eve |- -

Comac:::skip|x<—e|-|c; c | if e then celse ¢
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A Toy Probabilistic Language

Program syntax

Expdeu=zec X |tt|fflene|eve |- -

Comac:::skip|x<—el-]c; c | if e then celse ¢

Semantics: distribution transformers (Kozen)

[c] : Distr(M(X)) — Distr(M (X))
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Program Logic Judgments in PSL

P and @ from probabilistic BI, ¢ a probabilistic program

1Py ciQ;
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Program Logic Judgments in PSL

P and @ from probabilistic BI, ¢ a probabilistic program
{P}c{Q;}
Validity

For all input states s € Distr(M (X)) satisfying the

pre-condition s = P, the output state [c]s satisfies the
post-condition [c]s = Q.
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Basic Proof Rules in PSL
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Basic Proof Rules in PSL

Assignment

x ¢ FV(e)

{Tlx+e{x=¢}

ASSN

31



Basic Proof Rules in PSL

Assignment

x ¢ FV(e)

{Tlx+e{x=¢} ASSN

Sampling

SAMP
{T} z & Unif {z ~ Unif}
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Conditional Rule in PSL

Q is “supported”
{e=1tt*x P} cl{e=ttxQ}
{e=fF+P}c {e=f*Q}

{e ~D x P}if ethen celse ¢ {e ~ D * Q}

ConD
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Conditional Rule in PSL

Q is “supported”
{e=1tt*x P} cl{e=ttxQ}
{e=ff P} {e=ff » Q}

{e ~D * P} if ethen celse ¢ {e ~ D x Q}

COND
Pre-conditions

» Inputs to branches derived from conditioning on ¢
» Independence ensures that P holds after conditioning
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Conditional Rule in PSL

Q is “supported”
{e=1tt*x P} cl{e=ttxQ}
{e=fF+P}c {e=f*Q}

COND
{e ~D x P}if ethen celse ¢ {e ~ D * Q}

Pre-conditions
» Inputs to branches derived from conditioning on ¢
» Independence ensures that P holds after conditioning

Post-conditions
» Not all post-conditions @ can be soundly combined
» “Supported”: @ describes unique distribution (Reynolds)
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The Frame Rule in PSL

{P}c{Q} FV(R)NMV(c)=0
EP—RV()~D  FV(Q) S RV(e) UWV(c)

{P * R} c{Q * R}

Side conditions

FRAME
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FRAME
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The Frame Rule in PSL

{P}c{Q} FV(RINMV(c)=0
=P RV()~D  FV(Q)C RV()UWV(c)

{P « R} c{Q % R} FRAME

Side conditions
1. Variables in R are not modified (standard in SL)
2. P describes all variables that might be read
3. Everything in Q is freshly written, or in P

Variables in the post ) were independent of
R, or are newly independent of R

33



Example: Deriving a Better Sampling Rule

Given rules:

{P}c{Q} FV(RINMV(c)=0
=P RV()~D  FV(Q) S RV(c)UWV(c)

{P * R} c{Q * R}

FRAME

SAMP

{T} z & Unif {z ~ Unif}

34



Example: Deriving a Better Sampling Rule

Given rules:

{P}c{Q} FV(RINMV(c)=0
=P RV()~D  FV(Q) S RV(c)UWV(c)

{P* R} c{Q * R}

FRAME

SAMP

{T} 2z & Unif {x ~ Unif}

Can derive:

z ¢ FV(R)
{R} = & Unif {x ~ Unif « R}

SAMP*
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Example: Deriving a Better Sampling Rule

Given rules:

{P}c{Q} FV(RINMV(c)=0
=P RV()~D  FV(Q) S RV(c)UWV(c)

{P* R} c{Q * R}

FRAME

SAMP

{T} 2z & Unif {x ~ Unif}

Can derive:

z ¢ FV(R)

SAMP*
{R} z & Unif {x ~ Unif « R}

Intuitively: fresh random sample is independent of everything
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Key Property for Soundness: Restriction

Theorem (Restriction)

Let P be any formula of probabilistic Bl, and suppose that
s = P. Then there exists s’ C s such that s’ = P and
dom(s') = dom(s) N FV(P).

Intuition

» The only variables that “matter” for P are FV (P)
» Tricky for implications; proof “glues” distributions
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Verifying an Example
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One-Time-Pad (OTP)

Possibly the simplest encryption scheme
» Input: a message m € B
» Output: a ciphertextc € B
» Idea: encrypt by taking xor with a uniformly random key &
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One-Time-Pad (OTP)

Possibly the simplest encryption scheme

» Input: a message m € B
» Output: a ciphertextc € B
» Idea: encrypt by taking xor with a uniformly random key &

The encoding program:
k & Unifs
c+—kd®m

37



How to Formalize Security?
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How to Formalize Security?

Method 1: Uniformity

» Show that c is uniformly distributed
» Always the same, no matter what the message m is
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How to Formalize Security?

Method 1: Uniformity

» Show that c is uniformly distributed
» Always the same, no matter what the message m is

Method 2: Input-output independence

» Assume that m is drawn from some (unknown) distribution
» Show that c and m are independent

38



Proving Input-Output Independence for OTP in PSL

k & Unif;

c—kdm
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Proving Input-Output Independence for OTP in PSL

{m ~ D} assumption
k & Unifs

c+—kdm
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Proving Input-Output Independence for OTP in PSL

{m ~ D} assumption
k & Unifs
{m ~ D * k ~ Unif} [SAmP*]

c+—kdm
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Proving Input-Output Independence for OTP in PSL

{m ~ D} assumption
k & Unifs
{m ~ D % k ~ Unif} [SAMP*]
ci—kdm

{m~Dsxk~Unif NA\c=k®dm} [AssSN*]
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Proving Input-Output Independence for OTP in PSL

{m ~ D} assumption
k & Unifs
{m ~ D % k ~ Unif} [SAMP*]
ci—kdm
{m ~D x k~Unif A\c =k m} [AsSN*]

{m ~ D % ¢ ~ Unif} XOR axiom

39



Recent Directions:
Conditional Independence




What is Conditional Independence (CI)?

Two random variables z and y are
independent conditioned on z if they
are only correlated through z: fixing
any value of z, the value of x gives no
information about the value of .

Al



Main ldea: Lift to Markov Kernels

Maps of type M(S) — Distr(M(T))
» S C T: maps must “preserve input to output”
» Plain distributions encoded as M()) — Distr(M(T))
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Main ldea: Lift to Markov Kernels

Maps of type M(S) — Distr(M(T))
» S C T: maps must “preserve input to output”
» Plain distributions encoded as M()) — Distr(M(T))

Cl expressible in terms of kernels

Let ® be Kleisli composition and ® be “parallel” composition. If
we can decompose:

p=piz O (pz @ fiy)

with g, : M(z) — Distr(M(x, 2)), gy : M(2) — Distr(M(y, z)),
then z and y are independent conditioned on z.
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DIBI: Dependent and Independent Bl
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Main idea: add a non-commutative conjunction P 5 Q
> States are now kernels
» P x (Q: parallel composition of kernels
» P Q: Kleisli composition of kernels
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DIBI: Dependent and Independent Bl

Main idea: add a non-commutative conjunction P 5 Q

> States are now kernels
» P x (Q: parallel composition of kernels
» P Q: Kleisli composition of kernels

Interaction: reverse exchange law
(P5Q)* (R3S)F(Px*R)s(QxS5)

Reverse of the usual direction (cf. Concurrent Kleene Algebra)
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See the Papers for More Details

A Probabilistic Separation Logic (POPL 2020)
» Extensions to PSL: deterministic variables, loops, etc.
» Many examples from cryptography, security of ORAM
» arXiv: https://arxiv.org/abs/1907.10708

A Logic to Reason about Dependence and Independence
» Details about DIBI, sound and complete Hilbert system
» Models capturing join dependency in relational algebra
» A separation logic (CPSL) based on DIBI
» arXiv: available soon, or send an email
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