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What Is Independence, Intuitively?

Two random variables x and y are
independent if they are uncorrelated:
the value of x gives no information
about the value or distribution of y.
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Things that are independent

Fresh random samples
I x is the result of a fair coin flip
I y is the result of another, “fresh” coin flip
I More generally: “separate” sources of randomness

Uncorrelated things
I x is today’s winning lottery number
I y is the closing price of the stock market
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Things that are not independent

Re-used samples
I x is the result of a fair coin flip
I y is the result of the same coin flip

Common cause
I x is today’s ice cream sales
I y is today’s sunglasses sales
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What Is Independence, Formally?

Definition
Two random variables x and y are independent (in some
implicit distribution over x and y) if for all values a and b:

Pr(x = a ∧ y = b) = Pr(x = a) · Pr(y = b)

That is, the distribution over (x, y) is the product of a
distribution over x and a distribution over y.
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Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs
I A “fresh” random sample is independent of the state.

Simplifies reasoning about groups of variables
I Complicated: general distribution over many variables
I Simple: product of distributions over each variable

Preserved under common program operations
I Local operations independent of “separate” randomness
I Behaves well under conditioning (prob. control flow)
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Reasoning about Independence: Challenges

Formal definition isn’t very promising
I Quantification over all values: lots of probabilities!
I Computing exact probabilities: o�en di�icult

How can we leverage the intuition
behind probabilistic independence?
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Main Observation: Independence is Separation

Two variables x and y in a distribution
µ are independent if µ is the product of
two distributions µx and µy with
disjoint domains, containing x and y.

Leverage separation logic to reason about independence
I Pioneered by O’Hearn, Reynolds, and Yang
I Highly developed area of program verification research
I Rich logical theory, automated tools, etc.
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Our Approach: Two Ingredients

• Develop a probabilistic
model of the logic BI

• Design a probabilistic
separation logic PSL
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Recap: Bunched Implications
and Separation Logics
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What Goes into a Separation Logic?

1. Programs
I Transform input states to output states

2. Assertions
I Formulas describe pieces of program states
I Semantics defined by a model of BI (Pym and O’Hearn)

3. Program logic
I Formulas describe programs
I Assertions specify pre- and post-conditions
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Classical Setting: Heaps

Program states (s, h)
I A store s : X → V , map from variables to values
I A heap h : N⇀ V , partial map from addresses to values

Heap-manipulating programs
I Control flow: sequence, if-then-else, loops
I Read/write addresses in heap
I Allocate/free heap cells
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Assertion Logic: Bunched Implications (BI)

Substructural logic (O’Hearn and Pym)
I Start with regular propositional logic (>,⊥,∧,∨,→)
I Add a new conjunction (“star”): P ∗ Q
I Add a new implication (“magic wand”): P −∗ Q

Star is a multiplicative conjunction
I P ∧Q: P and Q hold on the entire state
I P ∗ Q: P and Q hold on disjoint parts of the entire state
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Resource Semantics of BI (O’Hearn and Pym)
Suppose states form a pre-ordered, partial monoid
I Set S of states, pre-order v on S
I Partial operation ◦ : S × S ⇀ S (assoc., comm., . . . )

Inductively define states that satisfy formulas

s |= > always
s |= ⊥ never
s |= P ∧Q i� s |= P and s |= Q

s |= P ∗ Q i� s1 ◦ s2 v s with s1 |= P and s2 |= Q

State s can be split into two “disjoint” states,
one satisfying P and one satisfying Q
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Example: Heap Model of BI

Set of states: heaps
I S = N⇀ V , partial maps from addresses to values

Monoid operation: combine disjoint heaps
I s1 ◦ s2 is defined to be union i� dom(s1) ∩ dom(s2) = ∅

Pre-order: extend/project heaps
I s1 v s2 i� dom(s1) ⊆ dom(s2), and s1, s2 agree on dom(s1)
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Propositions for Heaps

Atomic propositions: “points-to”
I x 7→ v holds in heap s i� x ∈ dom(s) and s(x) = v

Example axioms (not complete)
I Deterministic: x 7→ v ∧ y 7→ w ∧ x = y → v = w

I Disjoint: x 7→ v ∗ y 7→ w → x 6= y
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The Separation Logic Proper

Programs c from a basic imperative language
I Read from location: x := ∗e
I Write to location: ∗e := e′

Program logic judgments

{P} c {Q}
Reading
Executing c on any input state satisfying P leads to an output
state satisfying Q, without invalid reads or writes.
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Basic Proof Rules

Reading a location

{x 7→ v} y := ∗x {x 7→ v ∧ y = v}
Read

Writing a location

{x 7→ v} ∗x := e {x 7→ e}
Write
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The Frame Rule

Properties about unmodified heaps are preserved

{P} c {Q} c doesn’t modify FV (R)
{P ∗ R} c {Q ∗ R}

Frame

So-called “local reasoning” in SL
I Only need to reason about part of heap used by c
I Note: doesn’t hold if ∗ replaced by ∧, due to aliasing!
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A Probabilistic Model of BI
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States: Distributions over Memories

Memories (not heaps)
I Fix sets X of variables and V of values
I Memories indexed by domains A ⊆ X :M(A) = A→ V

Program states: randomized memories
I States are distributions over memories with same domain
I Formally: S = {s | s ∈ Distr(M(A)), A ⊆ X}
I When s ∈ Distr(M(A)), write dom(s) for A
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Monoid: “Disjoint” Product Distribution

Intuition
I Two distributions can be combined i� domains are disjoint
I Combine by taking product distribution, union of domains

More formally...
Suppose that s ∈ Distr(M(A)) and s′ ∈ Distr(M(B)). If A,B
are disjoint, then:

(s ◦ s′)(m ∪m′) = s(m) · s′(m′)

for m ∈M(A) and m′ ∈M(B). Otherwise, s ◦ s′ is undefined.
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Pre-Order: Extension/Projection

Intuition
I Define s v s′ if s “has less information than” s′

I In probabilistic setting: s is a projection of s′

More formally...
Suppose that s ∈ Distr(M(A)) and s′ ∈ Distr(M(B)). Then
s v s′ i� A ⊆ B, and for all m ∈M(A), we have:

s(m) =
∑

m′∈M(B)
s′(m ∪m′).

That is, s is obtained from s′ by marginalizing variables in B \A.
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Atomic Formulas

Equalities
I e = e′ holds in s i� all variables FV (e, e′) ⊆ dom(s), and e

is equal to e′ with probability 1 in s

Distribution laws
I e ∼ Unif holds in s i� FV (e) ⊆ dom(s), and e is uniformly

distributed (e.g., fair coin flip)
I e ∼ D holds in s i� all variables in FV (e) ⊆ dom(s)
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Example Axioms (not complete)

Distribution operations
I x ∼ D ∧ y ∼ D→ x ∧ y ∼ D

Equality and distributions
I x = y ∧ x ∼ Unif → y ∼ Unif

Uniformity and products
I (x ∼ Unif ∗ y ∼ Unif)→ (x, y) ∼ UnifB×B

Uniformity and exclusive-or (⊕)
I x ∼ Unif ∗ y ∼ D ∧ z = x⊕ y → z ∼ Unif ∗ y ∼ D
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Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)
I Pre-order is discrete (trivial)
I Benefits: can describe heap domain exactly (e.g., empty)
I Drawbacks: must describe the entire heap

Our probabilistic model is for intuitionistic BI
I Pre-order is nontrivial
I Benefits: can describe a subset of the variables
I Necessary: other variables might not be independent!

27



Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)
I Pre-order is discrete (trivial)
I Benefits: can describe heap domain exactly (e.g., empty)
I Drawbacks: must describe the entire heap

Our probabilistic model is for intuitionistic BI
I Pre-order is nontrivial
I Benefits: can describe a subset of the variables
I Necessary: other variables might not be independent!

27



Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)
I Pre-order is discrete (trivial)
I Benefits: can describe heap domain exactly (e.g., empty)
I Drawbacks: must describe the entire heap

Our probabilistic model is for intuitionistic BI
I Pre-order is nontrivial
I Benefits: can describe a subset of the variables
I Necessary: other variables might not be independent!

27



A Probabilistic Separation Logic
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A Toy Probabilistic Language

Program syntax

Exp 3 e ::= x ∈ X | tt | ff | e ∧ e′ | e ∨ e′ | · · ·
Com 3 c ::= skip | x← e | x $← Unif | c; c′ | if e then c else c′

Semantics: distribution transformers (Kozen)

JcK : Distr(M(X ))→ Distr(M(X ))
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Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

{P} c {Q}

Validity
For all input states s ∈ Distr(M(X )) satisfying the
pre-condition s |= P , the output state JcKs satisfies the
post-condition JcKs |= Q.
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Basic Proof Rules in PSL

Assignment

x /∈ FV (e)
{>} x← e {x = e}

Assn

Sampling

{>} x $← Unif {x ∼ Unif}
Samp
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Conditional Rule in PSL

Q is “supported”
{e = tt ∗ P} c {e = tt ∗ Q}
{e = ff ∗ P} c′ {e = ff ∗ Q}

{e ∼ D ∗ P} if e then c else c′ {e ∼ D ∗ Q}
Cond

Pre-conditions
I Inputs to branches derived from conditioning on e
I Independence ensures that P holds a�er conditioning

Post-conditions
I Not all post-conditions Q can be soundly combined
I “Supported”: Q describes unique distribution (Reynolds)
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The Frame Rule in PSL

{P} c {Q} FV (R) ∩MV (c) = ∅
|= P → RV (c) ∼ D FV (Q) ⊆ RV (c) ∪WV (c)

{P ∗ R} c {Q ∗ R}
Frame

Side conditions

1. Variables in R are not modified (standard in SL)
2. P describes all variables that might be read
3. Everything in Q is freshly written, or in P

Variables in the post Q were independent of
R, or are newly independent of R
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Example: Deriving a Better Sampling Rule

Given rules:

{P} c {Q} FV (R) ∩MV (c) = ∅
|= P → RV (c) ∼ D FV (Q) ⊆ RV (c) ∪WV (c)

{P ∗ R} c {Q ∗ R}
Frame

{>} x $← Unif {x ∼ Unif}
Samp

Can derive:

x /∈ FV (R)
{R} x $← Unif {x ∼ Unif ∗ R}

Samp*

Intuitively: fresh random sample is independent of everything
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Key Property for Soundness: Restriction

Theorem (Restriction)
Let P be any formula of probabilistic BI, and suppose that
s |= P . Then there exists s′ v s such that s′ |= P and
dom(s′) = dom(s) ∩ FV (P ).

Intuition
I The only variables that “matter” for P are FV (P )
I Tricky for implications; proof “glues” distributions
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Verifying an Example
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One-Time-Pad (OTP)

Possibly the simplest encryption scheme
I Input: a message m ∈ B
I Output: a ciphertext c ∈ B
I Idea: encrypt by taking xor with a uniformly random key k

The encoding program:

k $← Unif #
c← k ⊕m

37
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How to Formalize Security?

Method 1: Uniformity
I Show that c is uniformly distributed
I Always the same, no matter what the message m is

Method 2: Input-output independence
I Assume that m is drawn from some (unknown) distribution
I Show that c and m are independent
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Proving Input-Output Independence for OTP in PSL

{m ∼ D} assumption

k $← Unif #

{m ∼ D ∗ k ∼ Unif} [Samp*]

c← k ⊕m

{m ∼ D ∗ k ∼ Unif ∧ c = k ⊕m} [Assn*]

{m ∼ D ∗ c ∼ Unif} XOR axiom
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Recent Directions:
Conditional Independence

40



What is Conditional Independence (CI)?

Two random variables x and y are
independent conditioned on z if they
are only correlated through z: fixing
any value of z, the value of x gives no
information about the value of y.
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Main Idea: Li� to Markov Kernels

Maps of typeM(S)→ Distr(M(T ))
I S ⊆ T : maps must “preserve input to output”
I Plain distributions encoded asM(∅)→ Distr(M(T ))

CI expressible in terms of kernels
Let � be Kleisli composition and ⊗ be “parallel” composition. If
we can decompose:

µ = µz � (µx ⊗ µy)

with µx :M(z)→ Distr(M(x, z)), µy :M(z)→ Distr(M(y, z)),
then x and y are independent conditioned on z.
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DIBI: Dependent and Independent BI

Main idea: add a non-commutative conjunction P #Q
I States are now kernels
I P ∗ Q: parallel composition of kernels
I P #Q: Kleisli composition of kernels

Interaction: reverse exchange law
(P #Q) ∗ (R # S) ` (P ∗ R) # (Q ∗ S)

Reverse of the usual direction (cf. Concurrent Kleene Algebra)
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See the Papers for More Details

A Probabilistic Separation Logic (POPL 2020)
I Extensions to PSL: deterministic variables, loops, etc.
I Many examples from cryptography, security of ORAM
I arXiv: https://arxiv.org/abs/1907.10708

A Logic to Reason about Dependence and Independence
I Details about DIBI, sound and complete Hilbert system
I Models capturing join dependency in relational algebra
I A separation logic (CPSL) based on DIBI
I arXiv: available soon, or send an email
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