A Probabilistic Separation Logic

Justin Hsu UW–Madison Computer Sciences

Brilliant Collaborators

Gilles Barthe

Kevin Liao

Jialu Bao

Simon Docherty

Alexandra Silva

What Is Independence, Intuitively?

Two random variables x and y are independent if they are uncorrelated: the value of x gives no information about the value or distribution of y.

Things that are independent

Fresh random samples

- ightharpoonup x is the result of a fair coin flip
- ▶ y is the result of another, "fresh" coin flip
- ► More generally: "separate" sources of randomness

Uncorrelated things

- ightharpoonup x is today's winning lottery number
- ightharpoonup y is the closing price of the stock market

Things that are not independent

Re-used samples

- ightharpoonup x is the result of a fair coin flip
- ightharpoonup y is the result of the same coin flip

Common cause

- ightharpoonup x is today's ice cream sales
- ► y is today's sunglasses sales

What Is Independence, Formally?

Definition

Two random variables x and y are independent (in some implicit distribution over x and y) if for all values a and b:

$$Pr(x = a \land y = b) = Pr(x = a) \cdot Pr(y = b)$$

That is, the distribution over (x, y) is the product of a distribution over x and a distribution over y.

Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs

► A "fresh" random sample is independent of the state.

Simplifies reasoning about groups of variables

- ► Complicated: general distribution over many variables
- ► Simple: product of distributions over each variable

Preserved under common program operations

- ► Local operations independent of "separate" randomness
- ► Behaves well under conditioning (prob. control flow)

Reasoning about Independence: Challenges

Formal definition isn't very promising

- Quantification over all values: lots of probabilities!
- Computing exact probabilities: often difficult

How can we leverage the intuition behind probabilistic independence?

Main Observation: Independence is Separation

Two variables x and y in a distribution μ are independent if μ is the product of two distributions μ_x and μ_y with disjoint domains, containing x and y.

Leverage separation logic to reason about independence

- Pioneered by O'Hearn, Reynolds, and Yang
- Highly developed area of program verification research
- Rich logical theory, automated tools, etc.

Our Approach: Two Ingredients

- Develop a probabilistic model of the logic BI
- Design a probabilistic separation logic PSL

Recap: Bunched Implications and Separation Logics

1. Programs

► Transform input states to output states

1. Programs

► Transform input states to output states

2. Assertions

- Formulas describe pieces of program states
- Semantics defined by a model of BI (Pym and O'Hearn)

1. Programs

► Transform input states to output states

2. Assertions

- Formulas describe pieces of program states
- Semantics defined by a model of BI (Pym and O'Hearn)

3. Program logic

- ► Formulas describe programs
- Assertions specify pre- and post-conditions

Classical Setting: Heaps

Program states (s, h)

- lacktriangle A store $s:\mathcal{X}
 ightarrow \mathcal{V}$, map from variables to values
- lacktriangle A heap $h: \mathbb{N} \longrightarrow \mathcal{V}$, partial map from addresses to values

Classical Setting: Heaps

Program states (s, h)

- lacktriangle A store $s:\mathcal{X} \to \mathcal{V}$, map from variables to values
- ightharpoonup A heap $h: \mathbb{N} \rightharpoonup \mathcal{V}$, partial map from addresses to values

Heap-manipulating programs

- ► Control flow: sequence, if-then-else, loops
- Read/write addresses in heap
- ► Allocate/free heap cells

Assertion Logic: Bunched Implications (BI)

Substructural logic (O'Hearn and Pym)

- ► Start with regular propositional logic $(\top, \bot, \land, \lor, \rightarrow)$
- ▶ Add a new conjunction ("star"): P * Q
- ► Add a new implication ("magic wand"): $P \rightarrow Q$

Assertion Logic: Bunched Implications (BI)

Substructural logic (O'Hearn and Pym)

- ▶ Start with regular propositional logic $(\top, \bot, \land, \lor, \rightarrow)$
- ▶ Add a new conjunction ("star"): P * Q
- ► Add a new implication ("magic wand"): $P \rightarrow Q$

Star is a multiplicative conjunction

- ▶ $P \land Q$: P and Q hold on the entire state
- ightharpoonup P * Q: P and Q hold on disjoint parts of the entire state

Suppose states form a pre-ordered, partial monoid

- ightharpoonup Set S of states, pre-order \sqsubseteq on S
- ightharpoonup Partial operation $\circ: S \times S \rightharpoonup S$ (assoc., comm., ...)

Suppose states form a pre-ordered, partial monoid

- ightharpoonup Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ: S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

Suppose states form a pre-ordered, partial monoid

- ightharpoonup Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ: S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

 $s \models \top$ always

 $s \models \bot$

never

Suppose states form a pre-ordered, partial monoid

- ▶ Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ: S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

```
egin{aligned} s &\models \top & & \text{always} \\ s &\models \bot & & \text{never} \\ s &\models P \land Q & & \text{iff } s \models P \text{ and } s \models Q \end{aligned}
```

Suppose states form a pre-ordered, partial monoid

- ▶ Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ: S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

```
\begin{array}{ll} s \models \top & \text{always} \\ s \models \bot & \text{never} \\ s \models P \land Q & \text{iff } s \models P \text{ and } s \models Q \\ s \models P \ast Q & \text{iff } s_1 \circ s_2 \sqsubseteq s \text{ with } s_1 \models P \text{ and } s_2 \models Q \end{array}
```

State s can be split into two "disjoint" states, one satisfying P and one satisfying Q

Example: Heap Model of BI

Set of states: heaps

 $ightharpoonup S=\mathbb{N}
ightharpoonup \mathcal{V}$, partial maps from addresses to values

Example: Heap Model of BI

Set of states: heaps

 $ightharpoonup S=\mathbb{N}
ightharpoonup \mathcal{V}$, partial maps from addresses to values

Monoid operation: combine disjoint heaps

 $ightharpoonup s_1 \circ s_2$ is defined to be union iff $\mathsf{dom}(s_1) \cap \mathsf{dom}(s_2) = \emptyset$

Example: Heap Model of BI

Set of states: heaps

 $ightharpoonup S=\mathbb{N}
ightharpoonup \mathcal{V}$, partial maps from addresses to values

Monoid operation: combine disjoint heaps

▶ $s_1 \circ s_2$ is defined to be union iff $dom(s_1) \cap dom(s_2) = \emptyset$

Pre-order: extend/project heaps

 $ightharpoonup s_1 \sqsubseteq s_2 ext{ iff } \mathsf{dom}(s_1) \subseteq \mathsf{dom}(s_2)$, and s_1, s_2 agree on $\mathsf{dom}(s_1)$

Propositions for Heaps

Atomic propositions: "points-to"

 $ightharpoonup x\mapsto v ext{ holds in heap } s ext{ iff } x\in ext{dom}(s) ext{ and } s(x)=v$

Example axioms (not complete)

- ▶ Deterministic: $x \mapsto v \land y \mapsto w \land x = y \rightarrow v = w$
- ▶ Disjoint: $x \mapsto v + y \mapsto w \rightarrow x \neq y$

The Separation Logic Proper

Programs c from a basic imperative language

- ightharpoonup Read from location: x := *e
- ightharpoonup Write to location: *e := e'

The Separation Logic Proper

Programs c from a basic imperative language

- ightharpoonup Read from location: x := *e
- ▶ Write to location: *e := e'

Program logic judgments

$$\{P\}\ c\ \{Q\}$$

Reading

Executing c on any input state satisfying P leads to an output state satisfying Q, without invalid reads or writes.

Basic Proof Rules

Basic Proof Rules

Reading a location

$$\overline{\{x\mapsto v\}\;y:=*x\;\{x\mapsto v\wedge y=v\}}$$
 Read

Basic Proof Rules

Reading a location

$$\overline{\{x\mapsto v\}\;y:=*x\;\{x\mapsto v\wedge y=v\}}$$
 READ

Writing a location

$$\frac{}{\{x\mapsto v\}*x:=e\;\{x\mapsto e\}}\;\mathrm{Write}$$

The Frame Rule

Properties about unmodified heaps are preserved

$$\frac{\{P\}\;c\;\{Q\}}{\{P*R\}\;c\;\{Q*R\}}\;\text{FRAME}$$

The Frame Rule

Properties about unmodified heaps are preserved

$$\frac{\{P\}\;c\;\{Q\}}{\{P*R\}\;c\;\{Q*R\}}\;\text{FRAME}$$

So-called "local reasoning" in SL

- ightharpoonup Only need to reason about part of heap used by c
- ► Note: doesn't hold if * replaced by ∧, due to aliasing!

A Probabilistic Model of BI

States: Distributions over Memories

States: Distributions over Memories

Memories (not heaps)

- \blacktriangleright Fix sets \mathcal{X} of variables and \mathcal{V} of values
- ▶ Memories indexed by domains $A \subseteq \mathcal{X}$: $\mathcal{M}(A) = A \rightarrow \mathcal{V}$

States: Distributions over Memories

Memories (not heaps)

- \blacktriangleright Fix sets \mathcal{X} of variables and \mathcal{V} of values
- ▶ Memories indexed by domains $A \subseteq \mathcal{X}$: $\mathcal{M}(A) = A \rightarrow \mathcal{V}$

Program states: randomized memories

- States are distributions over memories with same domain
- ▶ Formally: $S = \{s \mid s \in \mathsf{Distr}(\mathcal{M}(A)), A \subseteq \mathcal{X}\}$
- ▶ When $s \in \mathsf{Distr}(\mathcal{M}(A))$, write dom(s) for A

Monoid: "Disjoint" Product Distribution

Intuition

- ► Two distributions can be combined iff domains are disjoint
- Combine by taking product distribution, union of domains

Monoid: "Disjoint" Product Distribution

Intuition

- ► Two distributions can be combined iff domains are disjoint
- Combine by taking product distribution, union of domains

More formally...

Suppose that $s\in {\sf Distr}(\mathcal{M}(A))$ and $s'\in {\sf Distr}(\mathcal{M}(B)).$ If A,B are disjoint, then:

$$(s \circ s')(m \cup m') = s(m) \cdot s'(m')$$

for $m \in \mathcal{M}(A)$ and $m' \in \mathcal{M}(B)$. Otherwise, $s \circ s'$ is undefined.

Pre-Order: Extension/Projection

Intuition

- ▶ Define $s \sqsubseteq s'$ if s "has less information than" s'
- lacktriangle In probabilistic setting: s is a projection of s'

Pre-Order: Extension/Projection

Intuition

- ▶ Define $s \sqsubseteq s'$ if s "has less information than" s'
- ightharpoonup In probabilistic setting: s is a projection of s'

More formally...

Suppose that $s \in \mathsf{Distr}(\mathcal{M}(A))$ and $s' \in \mathsf{Distr}(\mathcal{M}(B))$. Then $s \sqsubseteq s'$ iff $A \subseteq B$, and for all $m \in \mathcal{M}(A)$, we have:

$$s(m) = \sum_{m' \in \mathcal{M}(B)} s'(m \cup m').$$

That is, s is obtained from s' by marginalizing variables in $B \setminus A$.

Atomic Formulas

Equalities

 $lackbox{ } e=e' \ \mbox{holds in } s \ \mbox{iff all variables} \ FV(e,e')\subseteq \mbox{dom}(s) \mbox{, and } e \ \mbox{ is equal to } e' \ \mbox{with probability} \ 1 \ \mbox{in } s$

Atomic Formulas

Equalities

 $lackbox{ } e=e' \ \mbox{holds in } s \ \mbox{iff all variables } FV(e,e')\subseteq \mbox{dom}(s) \mbox{, and } e \ \mbox{ is equal to } e' \ \mbox{with probability } 1 \ \mbox{in } s$

Distribution laws

- ▶ $e \sim \mathbf{Unif}$ holds in s iff $FV(e) \subseteq \mathsf{dom}(s)$, and e is uniformly distributed (e.g., fair coin flip)
- $ightharpoonup e \sim \mathbf{D}$ holds in s iff all variables in $FV(e) \subseteq \mathsf{dom}(s)$

Distribution operations

 $\blacktriangleright x \sim \overline{\mathbf{D}} \wedge y \sim \mathbf{D} \rightarrow x \wedge y \sim \overline{\mathbf{D}}$

Distribution operations

 $ightharpoonup x \sim \mathbf{D} \wedge y \sim \mathbf{D} \rightarrow x \wedge y \sim \mathbf{D}$

Equality and distributions

▶ $x = y \land x \sim \mathbf{Unif} \rightarrow y \sim \mathbf{Unif}$

Distribution operations

 $\blacktriangleright x \sim \mathbf{D} \land y \sim \mathbf{D} \rightarrow x \land y \sim \mathbf{D}$

Equality and distributions

 $ightharpoonup x = y \wedge x \sim \mathbf{Unif} \rightarrow y \sim \mathbf{Unif}$

Uniformity and products

Distribution operations

 $ightharpoonup x \sim \mathbf{D} \wedge y \sim \mathbf{D} \rightarrow x \wedge y \sim \mathbf{D}$

Equality and distributions

 $ightharpoonup x = y \land x \sim \mathbf{Unif} \rightarrow y \sim \mathbf{Unif}$

Uniformity and products

 $(x \sim \mathbf{Unif} * y \sim \mathbf{Unif}) \rightarrow (x, y) \sim \mathbf{Unif}_{\mathbb{B} \times \mathbb{B}}$

Uniformity and exclusive-or (\oplus)

 \blacktriangleright $x \sim \text{Unif} * y \sim \mathbf{D} \land z = x \oplus y \rightarrow z \sim \text{Unif} * y \sim \mathbf{D}$

Intuitionistic, or Classical?

Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)

- ► Pre-order is discrete (trivial)
- ► Benefits: can describe heap domain exactly (e.g., empty)
- Drawbacks: must describe the entire heap

Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)

- ► Pre-order is discrete (trivial)
- Benefits: can describe heap domain exactly (e.g., empty)
- Drawbacks: must describe the entire heap

Our probabilistic model is for intuitionistic BI

- Pre-order is nontrivial
- ▶ Benefits: can describe a subset of the variables
- Necessary: other variables might not be independent!

A Probabilistic Separation Logic

A Toy Probabilistic Language

Program syntax

```
\mathsf{Exp} \ni e ::= x \in \mathcal{X} \mid tt \mid ff \mid e \land e' \mid e \lor e' \mid \cdots \mathsf{Com} \ni c ::= \mathsf{skip} \mid x \leftarrow e \mid x \not \triangleq \mathbf{Unif} \mid c; \ c' \mid \mathsf{if} \ e \ \mathsf{then} \ c \ \mathsf{else} \ c'
```

A Toy Probabilistic Language

Program syntax

```
\mathsf{Exp} \ni e ::= x \in \mathcal{X} \mid tt \mid ff \mid e \land e' \mid e \lor e' \mid \cdots \mathsf{Com} \ni c ::= \mathsf{skip} \mid x \leftarrow e \mid x \not \triangleq \mathbf{Unif} \mid c; \ c' \mid \mathsf{if} \ e \ \mathsf{then} \ c \ \mathsf{else} \ c'
```

A Toy Probabilistic Language

Program syntax

$$\mathsf{Exp} \ni e ::= x \in \mathcal{X} \mid tt \mid ff \mid e \land e' \mid e \lor e' \mid \cdots$$

$$\mathsf{Com} \ni c ::= \mathsf{skip} \mid x \leftarrow e \mid x \not \triangleq \mathbf{Unif} \mid c; \ c' \mid \mathsf{if} \ e \ \mathsf{then} \ c \ \mathsf{else} \ c'$$

Semantics: distribution transformers (Kozen)

$$\llbracket c \rrbracket : \mathsf{Distr}(\mathcal{M}(\mathcal{X})) o \mathsf{Distr}(\mathcal{M}(\mathcal{X}))$$

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

$$\{P\}\ c\ \{Q\}$$

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

$$\{P\}\ c\ \{Q\}$$

Validity

For all input states $s \in \operatorname{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $[\![c]\!]s$ satisfies the post-condition $[\![c]\!]s \models Q$.

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

$$\{P\}\ c\ \{Q\}$$

Validity

For all input states $s \in \operatorname{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $[\![c]\!]s$ satisfies the post-condition $[\![c]\!]s \models Q$.

Basic Proof Rules in PSL

Basic Proof Rules in PSL

Assignment

$$\frac{x \notin FV(e)}{\{\top\} \; x \leftarrow e \; \{x = e\}} \; \mathrm{Assn}$$

Basic Proof Rules in PSL

Assignment

$$\frac{x \notin FV(e)}{\{\top\} \; x \leftarrow e \; \{x = e\}} \; \mathrm{ASSN}$$

Sampling

$$\overline{\{\top\}\; x \not \in \mathbf{Unif}\; \{x \sim \mathbf{Unif}\}} \; \mathsf{SAMP}$$

Conditional Rule in PSL

$$Q \text{ is "supported"} \\ \{e=tt*P\} \ c \ \{e=tt*Q\} \\ \frac{\{e=f\!f*P\} \ c' \ \{e=f\!f*Q\}}{\{e\sim\mathbf{D}*P\} \text{ if } e \text{ then } c \text{ else } c' \ \{e\sim\mathbf{D}*Q\}} \text{ COND}$$

Conditional Rule in PSL

$$\begin{aligned} &Q \text{ is "supported"} \\ &\{e = tt * P\} \ c \ \{e = tt * Q\} \\ &\{e = f\!f * P\} \ c' \ \{e = f\!f * Q\} \\ &\overline{\{e \sim \mathbf{D} * P\}} \text{ if } e \text{ then } c \text{ else } c' \ \{e \sim \mathbf{D} * Q\} \end{aligned} \text{COND}$$

Pre-conditions

- lacktriangle Inputs to branches derived from conditioning on e
- ► Independence ensures that P holds after conditioning

Conditional Rule in PSL

$$Q \text{ is "supported"} \\ \{e=tt*P\} \ c \ \{e=tt*Q\} \\ \{e=f\!f*P\} \ c' \ \{e=f\!f*Q\} \\ \hline \{e\sim \mathbf{D}*P\} \text{ if } e \text{ then } c \text{ else } c' \ \{e\sim \mathbf{D}*Q\} } \\ \end{bmatrix} \text{COND}$$

Pre-conditions

- lacktriangle Inputs to branches derived from conditioning on e
- Independence ensures that P holds after conditioning

Post-conditions

- ightharpoonup Not all post-conditions Q can be soundly combined
- "Supported": Q describes unique distribution (Reynolds)

$$\frac{\{P\} \ c \ \{Q\} \qquad FV(R) \cap MV(c) = \emptyset}{ FV(C) \sim \mathbf{D} \qquad FV(Q) \subseteq RV(c) \cup WV(c) } \ \text{Frame}$$

$$\frac{\{P*R\} \ c \ \{Q*R\} \}}{ FRAME}$$

Side conditions

$$\frac{\{P\}\ c\ \{Q\} \qquad FV(R)\cap MV(c)=\emptyset}{\models P\to RV(c)\sim \mathbf{D} \qquad FV(Q)\subseteq RV(c)\cup WV(c)} \text{ frame } \\ \frac{\{P*R\}\ c\ \{Q*R\}}$$

Side conditions

1. Variables in R are not modified (standard in SL)

$$\frac{\{P\} \ c \ \{Q\} \qquad FV(R) \cap MV(c) = \emptyset}{ FV(C) \sim \mathbf{D} \qquad FV(Q) \subseteq RV(c) \cup WV(c) } \ \text{Frame}$$

Side conditions

- 1. Variables in R are not modified (standard in SL)
- 2. P describes all variables that might be read

$$\frac{\{P\}\ c\ \{Q\} \qquad FV(R)\cap MV(c)=\emptyset}{ =P\to RV(c)\sim \mathbf{D} \qquad FV(Q)\subseteq RV(c)\cup WV(c)} \text{ frame } \\ \frac{\{P*R\}\ c\ \{Q*R\}}{}$$

Side conditions

- 1. Variables in R are not modified (standard in SL)
- 2. P describes all variables that might be read
- 3. Everything in Q is freshly written, or in P

$$\frac{\{P\}\ c\ \{Q\} \qquad FV(R)\cap MV(c)=\emptyset}{ \frac{|=P\rightarrow RV(c)\sim \mathbf{D} \qquad FV(Q)\subseteq RV(c)\cup WV(c)}{\{P*R\}\ c\ \{Q*R\}}}\ \mathsf{Frame}$$

Side conditions

- 1. Variables in R are not modified (standard in SL)
- 2. P describes all variables that might be read
- 3. Everything in Q is freshly written, or in P

Variables in the post Q were independent of R, or are newly independent of R

Example: Deriving a Better Sampling Rule

Given rules:

$$\begin{split} &\{P\} \ c \ \{Q\} & FV(R) \cap MV(c) = \emptyset \\ & \models P \rightarrow RV(c) \sim \mathbf{D} & FV(Q) \subseteq RV(c) \cup WV(c) \\ & \hline &\{P*R\} \ c \ \{Q*R\} \end{split} \quad \text{Frame} \\ & \hline \\ & \overline{\{\top\} \ x \not \triangleq \mathbf{Unif} \ \{x \sim \mathbf{Unif}\}} \ \mathsf{SAMP} \end{split}$$

Example: Deriving a Better Sampling Rule

Given rules:

$$\begin{split} &\{P\} \ c \ \{Q\} & FV(R) \cap MV(c) = \emptyset \\ & \biguplus P \to RV(c) \sim \mathbf{D} & FV(Q) \subseteq RV(c) \cup WV(c) \\ & & \{P*R\} \ c \ \{Q*R\} \end{split} \quad \text{Frame} \\ & \frac{}{\{\top\} \ x \not \triangleq \mathbf{Unif} \ \{x \sim \mathbf{Unif}\}} \ \mathsf{SAMP} \end{split}$$

Can derive:

$$\frac{x \notin FV(R)}{\{R\} \; x \not \triangleq \mathbf{Unif} \; \{x \sim \mathbf{Unif} * R\}} \; \mathsf{SAMP*}$$

Example: Deriving a Better Sampling Rule

Given rules:

$$\begin{split} &\{P\} \ c \ \{Q\} \qquad FV(R) \cap MV(c) = \emptyset \\ & \stackrel{}{=} P \rightarrow RV(c) \sim \mathbf{D} \qquad FV(Q) \subseteq RV(c) \cup WV(c)} \\ & \frac{\{P*R\} \ c \ \{Q*R\} \}} {\{\top\} \ x \not \triangleq \mathbf{Unif} \ \{x \sim \mathbf{Unif}\}} \ \mathsf{SAMP} \end{split}$$

Can derive:

$$\frac{x \notin FV(R)}{\{R\} \ x \not \in \mathbf{Unif} \ \{x \sim \mathbf{Unif} \ *R\}} \mathsf{SAMP}^*$$

Intuitively: fresh random sample is independent of everything

Key Property for Soundness: Restriction

Theorem (Restriction)

Let P be any formula of probabilistic BI, and suppose that $s \models P$. Then there exists $s' \sqsubseteq s$ such that $s' \models P$ and $\mathsf{dom}(s') = \mathsf{dom}(s) \cap FV(P)$.

Intuition

- ▶ The only variables that "matter" for P are FV(P)
- Tricky for implications; proof "glues" distributions

Verifying an Example

One-Time-Pad (OTP)

Possibly the simplest encryption scheme

- ▶ Input: a message $m \in \mathbb{B}$
- ▶ Output: a ciphertext $c \in \mathbb{B}$
- ightharpoonup Idea: encrypt by taking xor with a uniformly random key k

One-Time-Pad (OTP)

Possibly the simplest encryption scheme

- ▶ Input: a message $m \in \mathbb{B}$
- ▶ Output: a ciphertext $c \in \mathbb{B}$
- ightharpoonup Idea: encrypt by taking xor with a uniformly random key k

The encoding program:

$$k \not \in \mathbf{Unif};$$
 $c \leftarrow k \oplus m$

How to Formalize Security?

How to Formalize Security?

Method 1: Uniformity

- ► Show that c is uniformly distributed
- lacktriangle Always the same, no matter what the message m is

How to Formalize Security?

Method 1: Uniformity

- ► Show that *c* is uniformly distributed
- lacktriangle Always the same, no matter what the message m is

Method 2: Input-output independence

- lacktriangle Assume that m is drawn from some (unknown) distribution
- Show that c and m are independent

$$k \not = \mathbf{Unif}_{\theta}^{\circ}$$

$$c \leftarrow k \oplus m$$

$$\{m \sim \mathbf{D}\}$$

assumption

$$k \Leftarrow \mathbf{Unif} \S$$

$$c \leftarrow k \oplus m$$

$$\{m \sim \mathbf{D}\}$$
 assumption $k \not \in \mathbf{Unif}_7^\circ$ $\{m \sim \mathbf{D} * k \sim \mathbf{Unif}\}$ [SAMP*] $c \leftarrow k \oplus m$

$$\{m \sim \mathbf{D}\}$$
 assumption $k \not \in \mathbf{Unif};$ $\{m \sim \mathbf{D} * k \sim \mathbf{Unif}\}$ [SAMP*] $c \leftarrow k \oplus m$ $\{m \sim \mathbf{D} * k \sim \mathbf{Unif} \land c = k \oplus m\}$ [ASSN*]

$$\{m \sim \mathbf{D}\}$$
 assumption $k \not \in \mathbf{Unif};$ $\{m \sim \mathbf{D} * k \sim \mathbf{Unif}\}$ [SAMP*] $c \leftarrow k \oplus m$ $\{m \sim \mathbf{D} * k \sim \mathbf{Unif} \land c = k \oplus m\}$ [ASSN*] $\{m \sim \mathbf{D} * c \sim \mathbf{Unif}\}$ XOR axiom

Recent Directions: Conditional Independence

What is Conditional Independence (CI)?

Two random variables x and y are independent conditioned on z if they are only correlated through z: fixing any value of z, the value of x gives no information about the value of y.

Main Idea: Lift to Markov Kernels

Maps of type $\mathcal{M}(S) \to \mathsf{Distr}(\mathcal{M}(T))$

- $ightharpoonup S \subseteq T$: maps must "preserve input to output"
- ▶ Plain distributions encoded as $\mathcal{M}(\emptyset) \to \mathsf{Distr}(\mathcal{M}(T))$

Main Idea: Lift to Markov Kernels

Maps of type $\mathcal{M}(S) \to \mathsf{Distr}(\mathcal{M}(T))$

- $ightharpoonup S \subseteq T$: maps must "preserve input to output"
- ▶ Plain distributions encoded as $\mathcal{M}(\emptyset) \to \mathsf{Distr}(\mathcal{M}(T))$

CI expressible in terms of kernels

Let \odot be Kleisli composition and \otimes be "parallel" composition. If we can decompose:

$$\mu = \mu_z \odot (\mu_x \otimes \mu_y)$$

with $\mu_x: \mathcal{M}(z) \to \mathsf{Distr}(\mathcal{M}(x,z)), \mu_y: \mathcal{M}(z) \to \mathsf{Distr}(\mathcal{M}(y,z))$, then x and y are independent conditioned on z.

DIBI: Dependent and Independent BI

DIBI: Dependent and Independent BI

Main idea: add a non-commutative conjunction $P \ ; Q$

- States are now kernels
- ightharpoonup P * Q: parallel composition of kernels
- $ightharpoonup P \ ^\circ_{
 ightharpoonup} Q$: Kleisli composition of kernels

DIBI: Dependent and Independent BI

Main idea: add a non-commutative conjunction $P \ ; Q$

- States are now kernels
- ightharpoonup P * Q: parallel composition of kernels
- $ightharpoonup P \ ; Q$: Kleisli composition of kernels

Interaction: reverse exchange law

$$(P \circ Q) * (R \circ S) \vdash (P * R) \circ (Q * S)$$

Reverse of the usual direction (cf. Concurrent Kleene Algebra)

See the Papers for More Details

A Probabilistic Separation Logic (POPL 2020)

- Extensions to PSL: deterministic variables, loops, etc.
- Many examples from cryptography, security of ORAM
- ► arXiv: https://arxiv.org/abs/1907.10708

A Logic to Reason about Dependence and Independence

- ▶ Details about DIBI, sound and complete Hilbert system
- Models capturing join dependency in relational algebra
- A separation logic (CPSL) based on DIBI
- arXiv: available soon, or send an email

A Probabilistic Separation Logic

Justin Hsu UW–Madison Computer Sciences