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How much will you pay?
Top bid pays top price?

= Simple rule $10 million!
= Can encourage
manipulation...
$10.1 million?
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What is Mechanism Design?

Algorithm design with strategic inputs

Rational agents

= Report data
= Care about output

= May lie, strategize

Goal: encourage “good” behavior
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Designing auctions

= Bidders each have personal value v : R for the item
= Bidder's happiness is function of price, v, whether they win

= Bidder reports a bid b : R to the mechanism

Property: agent always maximizes happiness with b = v
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A (very) simple auction

Fixed price auction

= Given a fixed price price

= Bidder bids bid, buys item if higher than price

What is the happiness function for a bidder?

fixedprice price value bid =
if bid > price then
value - price
else
0
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The verification strategy

Consider bidder's happiness function. . .

= First run: bidder bids b = v (honest)
= Second run: bidder bids arbitrarily (maybe not honest)

= Verify: happiness in first run is higher than in second run

fixedprice p v v = fixedprice p v b =
if v > p then if b > p then
o / se

else else
0 0

This is a relational property




Introducing HOARe?
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Refinement types

type predicate

Judgment

[—e:{x: T | ¢o(x)}

“e is a program of type T such that ¢(e) holds”
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Refinement types

Example

[—3:{x:Z| x>0}

“3 is a non-negative integer”
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Relational Reasoning

Relational Judgment

e {xaT|o( xq,x= )}

¢ mentions two runs of program e via x,, and x..

Example
{y 1 Z|ya <y}t eu{xZ|x4q<x=}
“If y increases, then e increases.”

Background
= First used in the RF* language, POPL 2014
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Happiness function
fixedprice price value bid =
if bid > price then
value - price
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0

Truthfulness in a type
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Typing truthfulness

Happiness function

fixedprice price value bid =
if bid > price then
value - price
else
0

Truthfulness in a type

{p:R|ps=p=} (Fixed price
—>{viR|vg=w} (Bidder value fixed
—{b:R|bs = vy} (Bid = value on <1 run
—>{uiR|ug = v} (Truthful

)
)
)
)
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Adding in randomness

A more complex auction

= Unlimited supply of items (e.g., music files)

Randomize!

= Want to use fixedprice, but for what price?
g1 g2
1< P2
optimal
price

Verify:  happiness higher when bid is true value

on average
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One key ingredient

Monotonicity of expectation

= (One) Distribution x over A
= Two functions 1, : A — R with

i x>=1hx forall x: A
= Then, fact about expected values:

E.[f] = E,[f]

fi bigger than
f> on average
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Relating Distributions

Probabilistic programs

= Reason about two runs of a probabilistic program

= Use type of probability distributions

Typing distributions
e Mool[{x T | P(xa,x=)}]

“e is a distribution over T, with two runs related by ¢

777



Equivalence of Distributions

e Mool{x T | dlxa, x=)}]

What does this mean?

= Convert relation ¢ to a relation ¢# on distributions over T

= Two runs of e related by ¢# (as distributions!)
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Equivalence of Distributions

Example
e Mool{x T | xq0=x=}]
“e is a distribution over T that is identical in both runs”

Background
= Proposed by Barthe, Képf, Olmedo, Zanella

= Generalizing 0,0 to £, models differential privacy

Our contribution

= Simplify and build into a type system
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Higher-Order Refinements

Refinements on functions
e {f:T—>U|¢}
“e is a function from T to U that satisfies ¢"

Our contribution

= Consistency by carefully handling termination

= Show naive treatment leads to inconsistency
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Expressing monotonicity of expectations

Want to show

Euh=Epuh
In HOARe?, type E as. ..
E:Moo[{x : A| xa = x=}] (Same distributions)
—{f A->R|Vx. 5 x> fo x} (Higher-order)

—{e:Rles>e} (Monotonic)



Much more in the paper

Semantics

= Soundness of the system

= Requires termination
Implementation

= Automated, low annotation burden

= Why3 and SMT solvers

Translation

= Embedding of DFuzz, a language for differential privacy

More complex examples

= Verify differential privacy
= Verify MD properties beyond truthfulness



Takeaway points
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Wrapping up

Four features, one system

= HOARe?: relational properties for randomized programs

= Combine features in a clean, usable way

Formal verification for mechanism design!

= Exciting, under-explored area for verification
= Tons of interesting properties, mechanisms

= Strong motivation besides (mere) correctness
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