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Randomized algorithms are everywhere!
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Complex programs
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Complex proofs
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A simple randomized algorithm and property

Noisy sum

sum← 0;
for i = 1, . . . , n do
toss $← flip(p);
sum← sum+ toss;

return(sum)

To show: sum not too small

Pr[sum ≤ n · p− 4√n · p]
is at most 0.0005

Proof of correctness, on paper?

1. sum is sum of n independent p-biased coins.
2. Apply standard concentration bound, done.
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Deductive veri�cation? Not so easy.

Expectation-based approaches
I Rules manipulate single expected value/probability
I Can’t directly express properties like independence
I Kozen’s PPDL (1985); Morgan, McIver, Seidel’s pGCL (1996)

Program logic (assertion-based) approaches
I Use general boolean assertions on distributions
I Complex loop rules, more limited programming languages
I Chadha et al. (2007); Rand and Zdancewic (2015)
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Overall goal: Narrow this gap

Work with higher-level properties as much as possible
I Minimize reasoning about single probabilities

Avoid reasoning at level of program semantics
I Side-conditions should be easy to check

Incorporate proof methods from paper proofs
I Structure the proof, abstract away unimportant details
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More concretely: Our contributions

• A new program logic
for probabilistic programs

• Embeddings of several
specialized proof techniques

• Implementation and
formalized examples
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The Ellora Framework:
A Lightning Tour
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The core: A program logic for probabilistic programs

The pWhile imperative language

c ::= x← e | x $← d | c; c | if e then c else c | while e do c

Sample from primitive distributions
I Biased coin �ips, uniform distribution, . . .
I Geometric distribution, Laplace distribution, . . .

Commands transform (sub-)distributions over memories
I Distribution over inputs 7→ Distribution over outputs
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Assertion language: two layers

State assertions: model memories

φ, ψ ::= e = e′ | e < e′ | . . .

Distribution assertions: model distributions

Φ,Ψ ::= E[e] = E[e′] | E[e] < E[e′] | . . .

Examples: de�ned notation

P[φ] , E[1φ] �φ , P[φ] = 1
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Proof system
Typical program logic judgment

{Φ} c {Ψ}

System rules
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How to reason about loops?

Well-known pitfall: naive rule unsound!
I Always have:

{P[>] = 1} skip {P[>] = 1}
I But not:

{P[>] = 1} while true do skip {P[>] = 1}

Tradeo�

Generality of invariants/allowed termination behavior
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Our solution: A family of loop rules

{Φ ∧�b} c {Φ}
{Φ} while b do c {Φ ∧�¬b}

Loop: Bounded number of iterations (“for-loops”)
I Invariant Φ: arbitrary predicate

Loop: Terminates with probability 1
I Invariant Φ: “topologically closed” (e.g., P[φ] = 1/2)

Loop: Arbitrary termination
I Invariant Φ: “downwards closed” (e.g., P[φ] < 1/2)
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Adding to the Toolbox:
Specialized Proof Techniques
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Two common properties in paper proofs

Probabilistic independence
I In our assertions:

e # e′ , ∀a, b.P[e = a ∧ e′ = b] = P[e = a] · P[e′ = b]

Distribution laws
I In our assertions:

e ∼ Unif(A) , ∀a ∈ A.P[e = a] = 1/|A|
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Reasoning about independence and distribution laws
Useful facts about independence

(e1, e2) # e3 =⇒ (e1 # e3) ∧ (e2 # e3)

Combining independence and uniformity

e ∼ Unif(A)∧ e′ ∼ Unif(A′)∧ (e # e′) =⇒ (e, e′) ∼ Unif(A×A′)

Incorporating this reasoning in Ellora

Build a program logic IL around these assertions,
soundness by embedding into core program logic.
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Other tools available in Ellora

Prior work: union bound logic [ICALP 2016]
I Designed for proving proeprties of the form P[φ] < β

Precondition calculus
I Similar to Morgan and McIver’s weakest pre-expectations
I De�ned on syntax of assertions
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Implementation
and Formalized Examples

19



Implementation

Part of the EasyCrypt system
I Tactic-based proofs, SMT support

Formalization of basic discrete probability theory
I De�nitions: independence, basic distributions, . . .
I Theorems: Markov inequality, Cherno� bound, . . .
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Examples: Nine veri�ed algorithms

Name Lines of Code Lines of Proof

hypercube 100 1140
coupon 27 184
vertex-cover 30 61
pairwise-indep 30 231
private-sums 22 80
poly-id-test 22 32
random-walk 16 42
dice-sampling 10 64
matrix-prod-test 20 75
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A classic example: Valiant’s hypercube routing

Hypergraph network
I Nodes: {0, 1}d

I Given: permutation π
I Edge capacity 1
I Goal: route i to π(i)

Valiant’s routing plan
I Uniformly random ρ(i)
I Route: i 7→ ρ(i) 7→ π(i)

Routing 111 to 100 (d = 3)

001 101

011

010

111

000 100

110

Show: with high probability,
routes all 2d packets in O(d) steps
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Future Directions
and Open Design Questions
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The story so far

Ellora
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Ellora

Union 
Bound WP IL
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Next steps?
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EasyCrypt
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Open design questions

How to structure the assertion language?
I Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?
I Deterministic gives simpler but less �exible pre-conditions

How to combine di�erent proof techniques?
I Want to support many tools, but not all can be freely mixed

Should reasoning be code-directed?
I Maybe easier: lift random sampling instructions out
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