
Gilles Barthe, Thomas Espitau, Marco Gaboardi,
Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

An Assertion-Based Program Logic
for Probabilistic Programs

1

Randomized algorithms are everywhere!

2

Complex programs

3

Complex proofs

4

A simple randomized algorithm and property

Noisy sum

sum← 0;
for i = 1, . . . , n do
toss $← flip(p);
sum← sum+ toss;

return(sum)

To show: sum not too small

Pr[sum ≤ n · p− 4√n · p]
is at most 0.0005

Proof of correctness, on paper?

1. sum is sum of n independent p-biased coins.
2. Apply standard concentration bound, done.

5

A simple randomized algorithm and property

Noisy sum

sum← 0;
for i = 1, . . . , n do
toss $← flip(p);
sum← sum+ toss;

return(sum)

To show: sum not too small

Pr[sum ≤ n · p− 4√n · p]
is at most 0.0005

Proof of correctness, on paper?

1. sum is sum of n independent p-biased coins.
2. Apply standard concentration bound, done.

5

A simple randomized algorithm and property

Noisy sum

sum← 0;
for i = 1, . . . , n do
toss $← flip(p);
sum← sum+ toss;

return(sum)

To show: sum not too small

Pr[sum ≤ n · p− 4√n · p]
is at most 0.0005

Proof of correctness, on paper?

1. sum is sum of n independent p-biased coins.
2. Apply standard concentration bound, done.

5

Deductive veri�cation? Not so easy.

Expectation-based approaches
I Rules manipulate single expected value/probability
I Can’t directly express properties like independence
I Kozen’s PPDL (1985); Morgan, McIver, Seidel’s pGCL (1996)

Program logic (assertion-based) approaches
I Use general boolean assertions on distributions
I Complex loop rules, more limited programming languages
I Chadha et al. (2007); Rand and Zdancewic (2015)

6

Deductive veri�cation? Not so easy.

Expectation-based approaches
I Rules manipulate single expected value/probability
I Can’t directly express properties like independence
I Kozen’s PPDL (1985); Morgan, McIver, Seidel’s pGCL (1996)

Program logic (assertion-based) approaches
I Use general boolean assertions on distributions
I Complex loop rules, more limited programming languages
I Chadha et al. (2007); Rand and Zdancewic (2015)

6

Overall goal: Narrow this gap

Work with higher-level properties as much as possible
I Minimize reasoning about single probabilities

Avoid reasoning at level of program semantics
I Side-conditions should be easy to check

Incorporate proof methods from paper proofs
I Structure the proof, abstract away unimportant details

7

More concretely: Our contributions

• A new program logic
for probabilistic programs

• Embeddings of several
specialized proof techniques

• Implementation and
formalized examples

8

The Ellora Framework:
A Lightning Tour

9

The core: A program logic for probabilistic programs

The pWhile imperative language

c ::= x← e | x $← d | c; c | if e then c else c | while e do c

Sample from primitive distributions
I Biased coin �ips, uniform distribution, . . .
I Geometric distribution, Laplace distribution, . . .

Commands transform (sub-)distributions over memories
I Distribution over inputs 7→ Distribution over outputs

10

The core: A program logic for probabilistic programs

The pWhile imperative language

c ::= x← e | x $← d | c; c | if e then c else c | while e do c

Sample from primitive distributions
I Biased coin �ips, uniform distribution, . . .
I Geometric distribution, Laplace distribution, . . .

Commands transform (sub-)distributions over memories
I Distribution over inputs 7→ Distribution over outputs

10

The core: A program logic for probabilistic programs

The pWhile imperative language

c ::= x← e | x $← d | c; c | if e then c else c | while e do c

Sample from primitive distributions
I Biased coin �ips, uniform distribution, . . .
I Geometric distribution, Laplace distribution, . . .

Commands transform (sub-)distributions over memories
I Distribution over inputs 7→ Distribution over outputs

10

Assertion language: two layers

State assertions: model memories

φ, ψ ::= e = e′ | e < e′ | . . .

Distribution assertions: model distributions

Φ,Ψ ::= E[e] = E[e′] | E[e] < E[e′] | . . .

Examples: de�ned notation

P[φ] , E[1φ] �φ , P[φ] = 1

11

Assertion language: two layers

State assertions: model memories

φ, ψ ::= e = e′ | e < e′ | . . .

Distribution assertions: model distributions

Φ,Ψ ::= E[e] = E[e′] | E[e] < E[e′] | . . .

Examples: de�ned notation

P[φ] , E[1φ] �φ , P[φ] = 1

11

Assertion language: two layers

State assertions: model memories

φ, ψ ::= e = e′ | e < e′ | . . .

Distribution assertions: model distributions

Φ,Ψ ::= E[e] = E[e′] | E[e] < E[e′] | . . .

Examples: de�ned notation

P[φ] , E[1φ] �φ , P[φ] = 1

11

Proof system
Typical program logic judgment

{Φ} c {Ψ}

System rules

12

Proof system
Typical program logic judgment

{Φ} c {Ψ}
System rules

12

How to reason about loops?

Well-known pitfall: naive rule unsound!
I Always have:

{P[>] = 1} skip {P[>] = 1}
I But not:

{P[>] = 1} while true do skip {P[>] = 1}

Tradeo�

Generality of invariants/allowed termination behavior

13

How to reason about loops?

Well-known pitfall: naive rule unsound!
I Always have:

{P[>] = 1} skip {P[>] = 1}
I But not:

{P[>] = 1} while true do skip {P[>] = 1}

Tradeo�

Generality of invariants/allowed termination behavior

13

Our solution: A family of loop rules

{Φ ∧�b} c {Φ}
{Φ} while b do c {Φ ∧�¬b}

Loop: Bounded number of iterations (“for-loops”)
I Invariant Φ: arbitrary predicate

Loop: Terminates with probability 1
I Invariant Φ: “topologically closed” (e.g., P[φ] = 1/2)

Loop: Arbitrary termination
I Invariant Φ: “downwards closed” (e.g., P[φ] < 1/2)

14

Our solution: A family of loop rules

{Φ ∧�b} c {Φ}
{Φ} while b do c {Φ ∧�¬b}

Loop: Bounded number of iterations (“for-loops”)
I Invariant Φ: arbitrary predicate

Loop: Terminates with probability 1
I Invariant Φ: “topologically closed” (e.g., P[φ] = 1/2)

Loop: Arbitrary termination
I Invariant Φ: “downwards closed” (e.g., P[φ] < 1/2)

14

Our solution: A family of loop rules

{Φ ∧�b} c {Φ}
{Φ} while b do c {Φ ∧�¬b}

Loop: Bounded number of iterations (“for-loops”)
I Invariant Φ: arbitrary predicate

Loop: Terminates with probability 1
I Invariant Φ: “topologically closed” (e.g., P[φ] = 1/2)

Loop: Arbitrary termination
I Invariant Φ: “downwards closed” (e.g., P[φ] < 1/2)

14

Our solution: A family of loop rules

{Φ ∧�b} c {Φ}
{Φ} while b do c {Φ ∧�¬b}

Loop: Bounded number of iterations (“for-loops”)
I Invariant Φ: arbitrary predicate

Loop: Terminates with probability 1
I Invariant Φ: “topologically closed” (e.g., P[φ] = 1/2)

Loop: Arbitrary termination
I Invariant Φ: “downwards closed” (e.g., P[φ] < 1/2)

14

Adding to the Toolbox:
Specialized Proof Techniques

15

Two common properties in paper proofs

Probabilistic independence
I In our assertions:

e # e′ , ∀a, b.P[e = a ∧ e′ = b] = P[e = a] · P[e′ = b]

Distribution laws
I In our assertions:

e ∼ Unif(A) , ∀a ∈ A.P[e = a] = 1/|A|

16

Two common properties in paper proofs

Probabilistic independence
I In our assertions:

e # e′ , ∀a, b.P[e = a ∧ e′ = b] = P[e = a] · P[e′ = b]

Distribution laws
I In our assertions:

e ∼ Unif(A) , ∀a ∈ A.P[e = a] = 1/|A|

16

Reasoning about independence and distribution laws
Useful facts about independence

(e1, e2) # e3 =⇒ (e1 # e3) ∧ (e2 # e3)

Combining independence and uniformity

e ∼ Unif(A)∧ e′ ∼ Unif(A′)∧ (e # e′) =⇒ (e, e′) ∼ Unif(A×A′)

Incorporating this reasoning in Ellora

Build a program logic IL around these assertions,
soundness by embedding into core program logic.

17

Other tools available in Ellora

Prior work: union bound logic [ICALP 2016]
I Designed for proving proeprties of the form P[φ] < β

Precondition calculus
I Similar to Morgan and McIver’s weakest pre-expectations
I De�ned on syntax of assertions

18

Implementation
and Formalized Examples

19

Implementation

Part of the EasyCrypt system
I Tactic-based proofs, SMT support

Formalization of basic discrete probability theory
I De�nitions: independence, basic distributions, . . .
I Theorems: Markov inequality, Cherno� bound, . . .

20

Examples: Nine veri�ed algorithms

Name Lines of Code Lines of Proof

hypercube 100 1140
coupon 27 184
vertex-cover 30 61
pairwise-indep 30 231
private-sums 22 80
poly-id-test 22 32
random-walk 16 42
dice-sampling 10 64
matrix-prod-test 20 75

21

Examples: Nine veri�ed algorithms

Name Lines of Code Lines of Proof

hypercube 100 1140
coupon 27 184
vertex-cover 30 61
pairwise-indep 30 231
private-sums 22 80
poly-id-test 22 32
random-walk 16 42
dice-sampling 10 64
matrix-prod-test 20 75

21

A classic example: Valiant’s hypercube routing

Hypergraph network
I Nodes: {0, 1}d

I Given: permutation π
I Edge capacity 1
I Goal: route i to π(i)

Valiant’s routing plan
I Uniformly random ρ(i)
I Route: i 7→ ρ(i) 7→ π(i)

Routing 111 to 100 (d = 3)

001 101

011

010

111

000 100

110

Show: with high probability,
routes all 2d packets in O(d) steps

22

A classic example: Valiant’s hypercube routing

Hypergraph network
I Nodes: {0, 1}d

I Given: permutation π
I Edge capacity 1
I Goal: route i to π(i)

Valiant’s routing plan
I Uniformly random ρ(i)
I Route: i 7→ ρ(i) 7→ π(i)

Routing 111 to 100 (d = 3)

001 101

011

010

111

000 100

110

Show: with high probability,
routes all 2d packets in O(d) steps

22

A classic example: Valiant’s hypercube routing

Hypergraph network
I Nodes: {0, 1}d

I Given: permutation π
I Edge capacity 1
I Goal: route i to π(i)

Valiant’s routing plan
I Uniformly random ρ(i)
I Route: i 7→ ρ(i) 7→ π(i)

Routing 111 to 100 (d = 3)

001 101

011

010

111

000 100

110

Show: with high probability,
routes all 2d packets in O(d) steps

22

A classic example: Valiant’s hypercube routing

Hypergraph network
I Nodes: {0, 1}d

I Given: permutation π
I Edge capacity 1
I Goal: route i to π(i)

Valiant’s routing plan
I Uniformly random ρ(i)
I Route: i 7→ ρ(i) 7→ π(i)

Routing 111 to 100 (d = 3)

001 101

011

010

111

000 100

110

Show: with high probability,
routes all 2d packets in O(d) steps

22

Future Directions
and Open Design Questions

23

The story so far

Ellora

24

The story so far

Ellora

Union
Bound WP IL

24

Next steps?

Ellora

Union
Bound WP IL

EasyCrypt

25

Next steps?

Ellora

Union
Bound WP IL

EasyCrypt

??? ???

25

Next steps?

Ellora

Union
Bound WP IL

EasyCrypt

??? ???

25

Open design questions

How to structure the assertion language?
I Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?
I Deterministic gives simpler but less �exible pre-conditions

How to combine di�erent proof techniques?
I Want to support many tools, but not all can be freely mixed

Should reasoning be code-directed?
I Maybe easier: lift random sampling instructions out

26

Open design questions

How to structure the assertion language?
I Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?
I Deterministic gives simpler but less �exible pre-conditions

How to combine di�erent proof techniques?
I Want to support many tools, but not all can be freely mixed

Should reasoning be code-directed?
I Maybe easier: lift random sampling instructions out

26

Open design questions

How to structure the assertion language?
I Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?
I Deterministic gives simpler but less �exible pre-conditions

How to combine di�erent proof techniques?
I Want to support many tools, but not all can be freely mixed

Should reasoning be code-directed?
I Maybe easier: lift random sampling instructions out

26

Open design questions

How to structure the assertion language?
I Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?
I Deterministic gives simpler but less �exible pre-conditions

How to combine di�erent proof techniques?
I Want to support many tools, but not all can be freely mixed

Should reasoning be code-directed?
I Maybe easier: lift random sampling instructions out

26

Gilles Barthe, Thomas Espitau, Marco Gaboardi,
Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

An Assertion-Based Program Logic
for Probabilistic Programs

27

