An Assertion-Based Program Logic
for Probabilistic Programs

Gilles Barthe, Thomas Espitau, Marco Gaboardi,
Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

Randomized algorithms are everywhere!

Probability and Computing

Random s

Random!

The Foundation of Cryptography

Complex programs

Algorithm 1 Joint Differentially Private Convex Solver: PrivDude(O, o, 7, w,¢,4, 3)
Input: Convex problem O = (S,v,¢,b) with n agents and k coupling constraints, gradient
sensitivity bounded by o, a dual bound 7, width bounded by w, and privacy parameters ¢ >
0,4 € (0, 1), confidence parameter 3 € (0, 1).
Initialize:

' 24

(1) . 2
A7 =0 f € [k], T :=w?, =,
g or j € K v £ T RT(2/s)

T A= DA eRE | Moo < 20},

EdET6)

for iteration¢t=1...7T
for each agenti=0...n
Compute personal best response:

k
zgz) = argmaxv(i) (z) — ZA;t)E(i)(z).
zeS®) j=1

for each constraint j=1...k
Compute noisy gradient:

N 202 log (1.25/6'
0= (E 0 (z?))) ~by4 (0, 2ECBI),
i=0

Do gradient descent update:

Complex proofs

Proof. Let vy denote the noise vector we have in round ¢, we can decompose the regret into several
parts

T

1 .
(pt,) — T Win 2 (p, 1)

We will bound the three terms separately. By the no-regret guarantee of online gradient descent
in Lemma 13, we have the following the regret guarantee w.r.t the noisy losses if we set n = %T%lﬁ
T T 5 5
5 _1 - 1 ~y < P12l Xl _ Pl
Rr=—= — — < = Ar 1
T T;(pmrt) mig 7 :l(p,m, ol T 2 Nl
where ||P|| and || X]| denote the bound on the £ norm of the vectors {p;} and {Z;} respectively.
Recall that for any random variable Y sampled from the Gaussian distribution N (0,0?), we

A simple randomized algorithm and property
Noisy sum

sum < 0;
fori=1,...,ndo
toss & flip(p);
sum <— sum + toss;
return(sum)

A simple randomized algorithm and property

Noisy sum
To show: sum not too small
sum < 0;
fori =1,...,ndo Prlsum < n-p—4,/7-p]
toss & flip(p); is at most 0.0005

sum <— sum + toss;

return(sum)

A simple randomized algorithm and property

Noisy sum
To show: sum not too small
sum < 0;
forizl,....,ndo Pr(sum <n-p—4n-p)
toss & flip(p); is at most 0.0005
sum <— sum + toss;
return(sum)

Proof of correctness, on paper?

1. sum is sum of n independent p-biased coins.
2. Apply standard concentration bound, done.

Deductive verification? Not so easy.

Expectation-based approaches

» Rules manipulate single expected value/probability
» Can't directly express properties like independence
» Kozen’s PPDL (1985); Morgan, Mclver, Seidel’s PGCL (1996)

Deductive verification? Not so easy.

Expectation-based approaches

» Rules manipulate single expected value/probability
» Can't directly express properties like independence
» Kozen’s PPDL (1985); Morgan, Mclver, Seidel’s PGCL (1996)

Program logic (assertion-based) approaches

» Use general boolean assertions on distributions
» Complex loop rules, more limited programming languages
» Chadha et al. (2007); Rand and Zdancewic (2015)

Overall goal: Narrow this gap

Work with higher-level properties as much as possible

» Minimize reasoning about single probabilities

Avoid reasoning at level of program semantics

» Side-conditions should be easy to check

Incorporate proof methods from paper proofs

» Structure the proof, abstract away unimportant details

More concretely: Our contributions
e A new program logic
for probabilistic programs

e Embeddings of several
specialized proof techniques

e Implementation and
formalized examples

The ELLORA Framework:
A Lightning Tour

The core: A program logic for probabilistic programs

The pWhile imperative language

ci=x<+e| x&d |c clif ethencelse c | whileedoc

10

The core: A program logic for probabilistic programs

The pWhile imperative language

c::::z:%e|-]c;c[ifethencelsec|whi|eedoc

Sample from primitive distributions

» Biased coin flips, uniform distribution, ...
» Geometric distribution, Laplace distribution, ...

10

The core: A program logic for probabilistic programs

The pWhile imperative language
ci=x<+e| x&d |c clif ethencelse c | whileedoc

Sample from primitive distributions

» Biased coin flips, uniform distribution, ...
» Geometric distribution, Laplace distribution, ...

Commands transform (sub-)distributions over memories

» Distribution over inputs — Distribution over outputs

10

Assertion language: two layers

State assertions: model memories

o, = e=¢€le<e|...

1"

Assertion language: two layers

State assertions: model memories
o, = e=¢€le<e|...

Distribution assertions: model distributions

0 = Ele]=E[]|E]<E[F]]...

1

Assertion language: two layers

State assertions: model memories

b, = e=¢€le<e|...
Distribution assertions: model distributions
o,V = Ele|=E[¢]|E[]<E[F]]...
Examples: defined notation

Plg] 2 E[1,) O¢ 2 Plg] = 1

1"

Proof system
Typical program logic judgment

12} c ¥}

12

Proof system

12} eV}

o = M {m} s {n2} N2 = 13 Vo : T.{n} s {n'}

{no} s {n3} [Consral {3z :T.n} s {1} [ExisTs]

7 iz « €]
'}z e{n}

m [ABORT]| [Asscn| m [Skip|

0 = [z & g]) (SapLE] {mo} si{m} {m} s2 {2}

'Yz & g{n {no} s1;s2 {n2}

{mAQe} s {fm} {2 AO=e} s> {ns}
{(m AOe) @ (n2 AO=e)} if e then s; else sz {n) © 75}

[SEq]

[Conp|

{m}ys{m} {m}s{m}

SPLIT
{m @ n2} s {nh ® 2} [:

12

How to reason about loops?

Well-known pitfall: naive rule unsound!

» Always have:
{P[T] =1} skip {P[T] = 1}
» But not:

{P[T] = 1} while true do skip {P[T] =1}

13

How to reason about loops?

Well-known pitfall: naive rule unsound!

» Always have:
{P[T] =1} skip {P[T] = 1}
» But not:

{P[T] = 1} while true do skip {P[T] =1}

Tradeoff

Generality of invariants/allowed termination behavior

13

Our solution: A family of loop rules

(& A DD} ¢ {®)

{®} while bdo ¢ {® A O-b}

14

Our solution: A family of loop rules

{® AOD} c{D}
{®} while bdo ¢ {® A O-b}

Loop: Bounded number of iterations (“for-loops”)

» Invariant ®: arbitrary predicate

14

Our solution: A family of loop rules

{® AOD} c{D}
{®} while bdo ¢ {® A O-b}

Loop: Bounded number of iterations (“for-loops”)

» Invariant ®: arbitrary predicate

Loop: Terminates with probability 1
» Invariant ®: “topologically closed” (e.g., P[¢] = 1/2)

14

Our solution: A family of loop rules

{® AOD} c{D}
{®} while bdo ¢ {® A O-b}

Loop: Bounded number of iterations (“for-loops”)

» Invariant ®: arbitrary predicate

Loop: Terminates with probability 1
» Invariant ®: “topologically closed” (e.g., P[¢] = 1/2)

Loop: Arbitrary termination

» Invariant ®: “downwards closed” (e.g., P[¢] < 1/2)

14

Adding to the Toolbox:
Specialized Proof Techniques

Two common properties in paper proofs

Probabilistic independence

» In our assertions:

e# e =Va,b.Ple=aANe =b =Ple=a] Pl

16

Two common properties in paper proofs

Probabilistic independence

» In our assertions:

e# e =Va,b.Ple=aANe =b =Ple=a] Pl

Distribution laws

» In our assertions:

e ~ Unif(A) 2 Va € A.Ple = a] = 1/|A|

16

Reasoning about independence and distribution laws

Useful facts about independence
(e1,e2) # e3 = (e1 # e3) A (e # e3)

Combining independence and uniformity

e ~ Unif(A) A’ ~ Unif(A)A (e # ¢) = (e, €') ~ Unif(A x A')

Incorporating this reasoning in ELLORA

Build a program logic IL around these assertions,
soundness by embedding into core program logic.

17

Other tools available in ELLORA

Prior work: union bound logic [ICALP 2016]

» Designed for proving proeprties of the form P[¢] < 8

Precondition calculus

» Similar to Morgan and Mclver’s weakest pre-expectations
» Defined on syntax of assertions

18

Implementation
and Formalized Examples

Implementation

Part of the EASYCRYPT system

» Tactic-based proofs, SMT support

Formalization of basic discrete probability theory

» Definitions: independence, basic distributions, ...
» Theorems: Markov inequality, Chernoff bound, ...

pie]

Examples: Nine verified algorithms

Name Lines of Code Lines of Proof
hypercube 100 1140
coupon 27 184
vertex—-cover 30 61
pairwise-indep 30 231
private-sums 22 80
poly-id-test 22 32
random-walk 16 42
dice-sampling y[o] 64

matrix-prod-test 20 75

Examples: Nine verified algorithms

Name Lines of Code Lines of Proof
hypercube 100 1140
coupon 27 184
vertex—-cover 30 61
pairwise-indep 30 231
private-sums 22 80
poly-id-test 22 32
random-walk 16 42
dice-sampling y[o] 64

matrix-prod-test 20 75

A classic example: Valiant's hypercube routing

Hypergraph network

\{

Nodes: {0, 1}¢

» Given: permutation =
Edge capacity 1

Goal: route i to 7 (7)

\{

v

P

A classic example: Valiant's hypercube routing

Nodes: {0,1}¢

» Given: permutation 7
Edge capacity 1

Goal: route i to 7 (i)

\{

v

v

22

A classic example: Valiant's hypercube routing

\{

Nodes: {0,1}¢

» Given: permutation 7
Edge capacity 1

Goal: route i to 7 (i)

v

v

\{

Uniformly random p(i)

v

Route: i — p(i) — m(7)

22

A classic example: Valiant's hypercube routing

\{

Nodes: {0,1}¢

Given: permutation 7
Edge capacity 1

Goal: route i to 7 (i)

\{

v

v

\{

Uniformly random p(i)

v

Route: i — p(i) — m(7)

22

Future Directions
and Open Design Questions

The story so far

Ellora

24

The story so far

Union

P

24

Next steps?

EasyCrypt

Next steps?

i 4

ttt!
___ EasyOpt

PHOPY
!

EasyCrypt

Next steps?

Open design questions

How to structure the assertion language?

» Need help managing large assertions and invariants

26

Open design questions

How to structure the assertion language?

» Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?

» Deterministic gives simpler but less flexible pre-conditions

26

Open design questions

How to structure the assertion language?

» Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?

» Deterministic gives simpler but less flexible pre-conditions

How to combine different proof techniques?

» Want to support many tools, but not all can be freely mixed

26

Open design questions

How to structure the assertion language?

» Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?

» Deterministic gives simpler but less flexible pre-conditions

How to combine different proof techniques?

» Want to support many tools, but not all can be freely mixed

Should reasoning be code-directed?

» Maybe easier: lift random sampling instructions out

26

An Assertion-Based Program Logic
for Probabilistic Programs

Gilles Barthe, Thomas Espitau, Marco Gaboardi,
Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

27

