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Randomized algorithms are everywhere!

Probability and Computing
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The Foundation of Cryptography



Complex programs

Algorithm 1 Joint Differentially Private Convex Solver: PrivDude(O, o, 7, w,¢,4, 3)
Input: Convex problem O = (S,v,¢,b) with n agents and k coupling constraints, gradient
sensitivity bounded by o, a dual bound 7, width bounded by w, and privacy parameters ¢ >
0,4 € (0, 1), confidence parameter 3 € (0, 1).
Initialize:
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for iteration¢t=1...7T
for each agenti=0...n
Compute personal best response:
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for each constraint j=1...k
Compute noisy gradient:
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Do gradient descent update:




Complex proofs

Proof. Let vy denote the noise vector we have in round ¢, we can decompose the regret into several
parts
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We will bound the three terms separately. By the no-regret guarantee of online gradient descent
in Lemma 13, we have the following the regret guarantee w.r.t the noisy losses if we set n = %T%lﬁ
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where ||P|| and || X]| denote the bound on the £ norm of the vectors {p;} and {Z;} respectively.
Recall that for any random variable Y sampled from the Gaussian distribution N (0,0?), we




A simple randomized algorithm and property
Noisy sum

sum < 0;
fori=1,...,ndo
toss & flip(p);
sum <— sum + toss;
return(sum)
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To show: sum not too small
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A simple randomized algorithm and property

Noisy sum
To show: sum not too small
sum < 0;
forizl,....,ndo Pr(sum <n-p—4n-p)
toss & flip(p); is at most 0.0005
sum <— sum + toss;
return(sum)

Proof of correctness, on paper?

1. sum is sum of n independent p-biased coins.
2. Apply standard concentration bound, done.



Deductive verification? Not so easy.

Expectation-based approaches

» Rules manipulate single expected value/probability
» Can't directly express properties like independence
» Kozen’s PPDL (1985); Morgan, Mclver, Seidel’s PGCL (1996)



Deductive verification? Not so easy.

Expectation-based approaches

» Rules manipulate single expected value/probability
» Can't directly express properties like independence
» Kozen’s PPDL (1985); Morgan, Mclver, Seidel’s PGCL (1996)

Program logic (assertion-based) approaches

» Use general boolean assertions on distributions
» Complex loop rules, more limited programming languages
» Chadha et al. (2007); Rand and Zdancewic (2015)



Overall goal: Narrow this gap

Work with higher-level properties as much as possible

» Minimize reasoning about single probabilities

Avoid reasoning at level of program semantics

» Side-conditions should be easy to check

Incorporate proof methods from paper proofs

» Structure the proof, abstract away unimportant details



More concretely: Our contributions
e A new program logic
for probabilistic programs

e Embeddings of several
specialized proof techniques

e Implementation and
formalized examples



The ELLORA Framework:
A Lightning Tour



The core: A program logic for probabilistic programs

The pWhile imperative language

ci=x<+e| x&d |c clif ethencelse c | whileedoc
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The core: A program logic for probabilistic programs

The pWhile imperative language
ci=x<+e| x&d |c clif ethencelse c | whileedoc

Sample from primitive distributions

» Biased coin flips, uniform distribution, ...
» Geometric distribution, Laplace distribution, ...

Commands transform (sub-)distributions over memories

» Distribution over inputs — Distribution over outputs

10



Assertion language: two layers

State assertions: model memories

o, = e=¢€le<e|...
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Assertion language: two layers

State assertions: model memories
o, = e=¢€le<e|...

Distribution assertions: model distributions

0 = Ele]=E[]|E]<E[F]]...

1



Assertion language: two layers

State assertions: model memories

b, = e=¢€le<e|...
Distribution assertions: model distributions
o,V = Ele|=E[¢]|E[]<E[F]]...
Examples: defined notation

Plg] 2 E[1,) O¢ 2 Plg] = 1
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Proof system
Typical program logic judgment
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Proof system
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How to reason about loops?

Well-known pitfall: naive rule unsound!

» Always have:
{P[T] =1} skip {P[T] = 1}
» But not:

{P[T] = 1} while true do skip {P[T] =1}
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How to reason about loops?

Well-known pitfall: naive rule unsound!

» Always have:
{P[T] =1} skip {P[T] = 1}
» But not:

{P[T] = 1} while true do skip {P[T] =1}

Tradeoff

Generality of invariants/allowed termination behavior
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Our solution: A family of loop rules

(& A DD} ¢ {®)

{®} while bdo ¢ {® A O-b}
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Our solution: A family of loop rules

{® AOD} c{D}
{®} while bdo ¢ {® A O-b}

Loop: Bounded number of iterations (“for-loops”)

» Invariant ®: arbitrary predicate

Loop: Terminates with probability 1
» Invariant ®: “topologically closed” (e.g., P[¢] = 1/2)

Loop: Arbitrary termination

» Invariant ®: “downwards closed” (e.g., P[¢] < 1/2)

14



Adding to the Toolbox:
Specialized Proof Techniques




Two common properties in paper proofs

Probabilistic independence

» In our assertions:

e# e =Va,b.Ple=aANe =b =Ple=a] Pl
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Two common properties in paper proofs

Probabilistic independence

» In our assertions:

e# e =Va,b.Ple=aANe =b =Ple=a] Pl

Distribution laws

» In our assertions:

e ~ Unif(A) 2 Va € A.Ple = a] = 1/|A|
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Reasoning about independence and distribution laws

Useful facts about independence
(e1,e2) # e3 = (e1 # e3) A (e # e3)

Combining independence and uniformity

e ~ Unif(A) A’ ~ Unif(A)A (e # ¢) = (e, €') ~ Unif(A x A')

Incorporating this reasoning in ELLORA

Build a program logic IL around these assertions,
soundness by embedding into core program logic.
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Other tools available in ELLORA

Prior work: union bound logic [ICALP 2016]

» Designed for proving proeprties of the form P[¢] < 8

Precondition calculus

» Similar to Morgan and Mclver’s weakest pre-expectations
» Defined on syntax of assertions
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Implementation
and Formalized Examples




Implementation

Part of the EASYCRYPT system

» Tactic-based proofs, SMT support

Formalization of basic discrete probability theory

» Definitions: independence, basic distributions, ...
» Theorems: Markov inequality, Chernoff bound, ...

pie]



Examples: Nine verified algorithms

Name Lines of Code Lines of Proof
hypercube 100 1140
coupon 27 184
vertex—-cover 30 61
pairwise-indep 30 231
private-sums 22 80
poly-id-test 22 32
random-walk 16 42
dice-sampling y[o] 64

matrix-prod-test 20 75
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A classic example: Valiant's hypercube routing

Hypergraph network

\{

Nodes: {0, 1}¢

» Given: permutation =
Edge capacity 1

Goal: route i to 7 (7)

\{

v
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A classic example: Valiant's hypercube routing

\{

Nodes: {0,1}¢

» Given: permutation 7
Edge capacity 1

Goal: route i to 7 (i)

v

v

\{

Uniformly random p(i)

v

Route: i — p(i) — m(7)
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Future Directions
and Open Design Questions




The story so far

Ellora
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The story so far

Union

P
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Next steps?

EasyCrypt




Next steps?
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Next steps?




Open design questions

How to structure the assertion language?

» Need help managing large assertions and invariants
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Open design questions

How to structure the assertion language?

» Need help managing large assertions and invariants

Deterministic inputs or distribution over inputs?

» Deterministic gives simpler but less flexible pre-conditions

How to combine different proof techniques?

» Want to support many tools, but not all can be freely mixed

Should reasoning be code-directed?

» Maybe easier: lift random sampling instructions out
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