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But what about typechecking?

Typechecking quantitative languages is tricky

• May need to solve numeric constraints
• Typechecking may not be decidable
• May need heuristics to make typechecking practical

Our goal

• Design and implement a typechecking algorithm for DFuzz, a
language for verifying differential privacy



But what about typechecking?

Typechecking quantitative languages is tricky

• May need to solve numeric constraints
• Typechecking may not be decidable
• May need heuristics to make typechecking practical

Our goal

• Design and implement a typechecking algorithm for DFuzz, a
language for verifying differential privacy



The plan today

• A DFuzz crash course
• The problem with standard approaches
• Modifying the DFuzz language to ease typechecking
• Decidability and heuristics



The quantitative property

Differential privacy [DMNS06]

• Rigorous definition of privacy for randomized programs
• Idea: random noise should “conceal” an individual’s data
• Quantitative: measure how private a program is
• Close connection to sensitivity analysis
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A language for differential privacy

DFuzz [GHHNP13]

• Type system for differentially private programs
• Use linear logic to model sensitivity
• Combine with (lightweight) dependent types
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Types

τ ::= N [R] | τ ⊕ τ | τ ⊗ τ | ! R τ ( τ | ∀i . τ

Contexts

Γ ::= · | Γ, x :
[R]

τ

Typing judgment

Γ ` e : τ
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Reading the types

Sensitivity reading

• Functions !Rτ1 ( τ2: R-sensitive functions
• Changing input by d changes output by at most R · d

Subtyping

• “A 1-sensitive function is also a 2-sensitive function”
• Subtyping: weaken sensitivity bound

!Rτ ( τ2 v !R′τ1 ( τ2 if R ≤ R ′

compare
polynomials
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variables over
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Sensitivity not known statically

• DFuzz is dependent!
• Sensitivity may depend on inputs (length of list, number of

iterations, etc.)

What does this mean for typechecking?

• Sensitivities are polynomials over reals and naturals
• How to check subtyping?
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! ?? τ1 ( τ2

annot.no annot. no annot.
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The typical approach

“Bottom-up” typechecking

• For each premise, compute best context and type
• Combine outputs from premises to get context and type

Example: function application
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“Minimal” context?

First try

• Have x :[R1] σ and x :[R2] σ

• Most precise context should be x :[max(R1,R2)] σ

• But DFuzz doesn’t have max(R1,R2)...

Max of two polynomials may not be polynomial!



The sensitivity language

Grammar

R ::= iR | iN | R | R + R | R · R

variables over
real/naturals

Sensitivity not known statically

• DFuzz is dependent!
• Sensitivity may depend on inputs (length of list, number of

iterations, etc.)

What does this mean for typechecking?

• Sensitivities are polynomials over reals and naturals
• How to check subtyping?



“Minimal” context?

First try

• Have x :[R1] σ and x :[R2] σ

• Most precise context should be x :[max(R1,R2)] σ

• But DFuzz doesn’t have max(R1,R2)...

Max of two polynomials may not be polynomial!



“Minimal” context?

First try

• Have x :[R1] σ and x :[R2] σ

• Most precise context should be x :[max(R1,R2)] σ

• But DFuzz doesn’t have max(R1,R2)...

Max of two polynomials may not be polynomial!



The idea: enrich DFuzz

EDFuzz: E(xtended) DFuzz

• Sensitivity language in DFuzz is “incomplete” for typechecking
• Add constructions like max(R1,R2) to sensitivity language
• Typecheck EDFuzz programs instead
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put x :[max(R1,R2)] σ in output context
• Return max(R1,R2) as context



How does this fix the problem?

Previously problematic rule

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

Now: no problem

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)

• For
x :[R1] σ ∈ Γ1 and x :[R2] σ ∈ Γ2,

put x :[max(R1,R2)] σ in output context
• Return max(R1,R2) as context



How does this fix the problem?

Previously problematic rule

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

Now: no problem

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)

• For
x :[R1] σ ∈ Γ1 and x :[R2] σ ∈ Γ2,

put x :[max(R1,R2)] σ in output context
• Return max(R1,R2) as context



How does this fix the problem?

Previously problematic rule

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

Now: no problem

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)

• For
x :[R1] σ ∈ Γ1 and x :[R2] σ ∈ Γ2,

put x :[max(R1,R2)] σ in output context
• Return max(R1,R2) as context



How does this fix the problem?

Previously problematic rule

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

Now: no problem

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)
• For

x :[R1] σ ∈ Γ1 and x :[R2] σ ∈ Γ2,

put x :[max(R1,R2)] σ in output context

• Return max(R1,R2) as context



How does this fix the problem?

Previously problematic rule

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

Now: no problem

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)
• For

x :[R1] σ ∈ Γ1 and x :[R2] σ ∈ Γ2,

put x :[max(R1,R2)] σ in output context
• Return max(R1,R2) as context



Decidability?

Bad news
• Must check inequalities over reals and natural polynomials
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• Problem for both DFuzz and EDFuzz
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Checking the constraints

Special structure of constraints

• Allow standard (DFuzz) annotations only
• Subtyping only needs to check

R ≥ R∗,

where R is a DFuzz sensitivity and R∗ is a EDFuzz sensitivity
• R understood by standard numeric solvers
• R∗ has extended terms like max(R1,R2), . . .



Checking the constraints

Idea: eliminate extended terms
• Change R ≥ max(R∗1 ,R∗2 ) to

R ≥ R∗1 ∧ R ≥ R∗2

• Recursively eliminate comparisons R ≥ R∗

• Similar technique for other new sensitivity constructions



About the implementation

It works!
• Dispatches numeric constraints to Why3
• Typechecks examples from the DFuzz paper with no problems
• Annotation burden light on these examples



Final thoughts

Lessons learned
• Typechecking with quantitative constraints is tricky
• Numeric solvers are quite good, even for undecidable problems
• Minor details in original language can have huge effects on

how easy it is to use standard solvers
• Keep typechecking in mind!

Open questions

• Does this technique of “completing” a language to ease
typechecking apply to other quantitative type systems?

• Can we remove the argument type annotation in functions?
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Emilio Jesús Gallego Arias1, Justin Hsu1

1University of Pennsylvania
2University of Dundee

October 2, 2014



Another example

Problematic rule

Γ ` e : σ i fresh in Γ
Γ ` Λi : κ. e : ∀i : κ. σ

Avoidance problem

• Running typechecker on (e, Γ•) yields (σ, Γ)
• For x :[R] σ ∈ Γ, want smallest R∗ bigger than R but

independent of i
• Again: R∗ may lie outside sensitivity language
• Add construction sup(R, i) to EDFuzz


