
Really Naturally Linear Indexed Type Checking

Arthur Azevedo de Amorim1, Marco Gaboardi2,
Emilio Jesús Gallego Arias1, Justin Hsu1

1University of Pennsylvania
2University of Dundee

October 2, 2014

In the beginning...

Check properties via types

• Type safety
• Parametricity
• Non-interference

In the beginning...

Check properties via types

• Type safety
• Parametricity
• Non-interference

In the beginning...

Check properties via types

• Type safety
• Parametricity
• Non-interference

More recently

Properties model quantitative information

• Numerical robustness how robust?
• Probabilistic assertions how likely?
• Differential privacy

how private?

Properties not just true or false

More recently

Properties model quantitative information

• Numerical robustness how robust?
• Probabilistic assertions how likely?
• Differential privacy

how private?

Properties not just true or false

More recently

Properties model quantitative information

• Numerical robustness how robust?
• Probabilistic assertions how likely?
• Differential privacy

how private?

Properties not just true or false

More recently

Properties model quantitative information

• Numerical robustness how robust?
• Probabilistic assertions how likely?
• Differential privacy

how private?

Properties not just true or false

More recently

Properties model quantitative information

• Numerical robustness how robust?
• Probabilistic assertions how likely?
• Differential privacy

how private?

Properties not just true or false

But what about typechecking?

Typechecking quantitative languages is tricky

• May need to solve numeric constraints
• Typechecking may not be decidable
• May need heuristics to make typechecking practical

Our goal

• Design and implement a typechecking algorithm for DFuzz, a
language for verifying differential privacy

But what about typechecking?

Typechecking quantitative languages is tricky

• May need to solve numeric constraints
• Typechecking may not be decidable
• May need heuristics to make typechecking practical

Our goal

• Design and implement a typechecking algorithm for DFuzz, a
language for verifying differential privacy

The plan today

• A DFuzz crash course
• The problem with standard approaches
• Modifying the DFuzz language to ease typechecking
• Decidability and heuristics

The quantitative property

Differential privacy [DMNS06]

• Rigorous definition of privacy for randomized programs
• Idea: random noise should “conceal” an individual’s data
• Quantitative: measure how private a program is
• Close connection to sensitivity analysis

Sensitivity analysis

R-sensitive function

Sensitivity analysis

R-sensitive function

f

Sensitivity analysis

R-sensitive function

f

Sensitivity analysis

R-sensitive function

f

Sensitivity analysis

R-sensitive function

f
d

Sensitivity analysis

R-sensitive function

f
d < R d

A language for differential privacy

DFuzz [GHHNP13]

• Type system for differentially private programs
• Use linear logic to model sensitivity
• Combine with (lightweight) dependent types

In a little more detail...

Types

τ ::= N [R] | τ ⊕ τ | τ ⊗ τ | ! R τ (τ | ∀i . τ

Contexts

Γ ::= · | Γ, x :
[R]

τ

Typing judgment

Γ ` e : τ

In a little more detail...

Types

τ ::= N [R] | τ ⊕ τ | τ ⊗ τ | ! R τ (τ | ∀i . τ

Contexts

Γ ::= · | Γ, x :
[R]

τ

Typing judgment

Γ ` e : τ

In a little more detail...

Types

τ ::= N [R] | τ ⊕ τ | τ ⊗ τ | ! R τ (τ | ∀i . τ

Contexts

Γ ::= · | Γ, x :
[R]

τ

Typing judgment

Γ ` e : τ

Reading the types

Sensitivity reading

• Functions !Rτ1 (τ2: R-sensitive functions
• Changing input by d changes output by at most R · d

Subtyping

• “A 1-sensitive function is also a 2-sensitive function”
• Subtyping: weaken sensitivity bound

!Rτ (τ2 v !R′τ1 (τ2 if R ≤ R ′

compare
polynomials

Sensitivity analysis

R-sensitive function

f
d < R d

Reading the types

Sensitivity reading

• Functions !Rτ1 (τ2: R-sensitive functions
• Changing input by d changes output by at most R · d

Subtyping

• “A 1-sensitive function is also a 2-sensitive function”
• Subtyping: weaken sensitivity bound

!Rτ (τ2 v !R′τ1 (τ2 if R ≤ R ′

compare
polynomials

Reading the types

Sensitivity reading

• Functions !Rτ1 (τ2: R-sensitive functions
• Changing input by d changes output by at most R · d

Subtyping

• “A 1-sensitive function is also a 2-sensitive function”
• Subtyping: weaken sensitivity bound

!Rτ (τ2 v !R′τ1 (τ2 if R ≤ R ′

compare
polynomials

In a little more detail...

Types

τ ::= N [R] | τ ⊕ τ | τ ⊗ τ | ! R τ (τ | ∀i . τ

Contexts

Γ ::= · | Γ, x :
[R]

τ

Typing judgment

Γ ` e : τ

In a little more detail...

Types

τ ::= N [R] | τ ⊕ τ | τ ⊗ τ | ! R τ (τ | ∀i . τ

Contexts

Γ ::= · | Γ, x :
[R]

τ

Typing judgment

Γ ` e : τ

The sensitivity language

Grammar

R ::= iR | iN | R | R + R | R · R

variables over
real/naturals

Sensitivity not known statically

• DFuzz is dependent!
• Sensitivity may depend on inputs (length of list, number of

iterations, etc.)

What does this mean for typechecking?

• Sensitivities are polynomials over reals and naturals
• How to check subtyping?

The sensitivity language

Grammar

R ::= iR | iN | R | R + R | R · R

variables over
real/naturals

Sensitivity not known statically

• DFuzz is dependent!
• Sensitivity may depend on inputs (length of list, number of

iterations, etc.)

What does this mean for typechecking?

• Sensitivities are polynomials over reals and naturals
• How to check subtyping?

The sensitivity language

Grammar

R ::= iR | iN | R | R + R | R · R

variables over
real/naturals

Sensitivity not known statically

• DFuzz is dependent!
• Sensitivity may depend on inputs (length of list, number of

iterations, etc.)

What does this mean for typechecking?

• Sensitivities are polynomials over reals and naturals
• How to check subtyping?

In a little more detail...

Types

τ ::= N [R] | τ ⊕ τ | τ ⊗ τ | ! R τ (τ | ∀i . τ

Contexts

Γ ::= · | Γ, x :
[R]

τ

Typing judgment

Γ ` e : τ

The sensitivity language

Grammar

R ::= iR | iN | R | R + R | R · R

variables over
real/naturals

Sensitivity not known statically

• DFuzz is dependent!
• Sensitivity may depend on inputs (length of list, number of

iterations, etc.)

What does this mean for typechecking?

• Sensitivities are polynomials over reals and naturals
• How to check subtyping?

The sensitivity language

Grammar

R ::= iR | iN | R | R + R | R · R

variables over
real/naturals

Sensitivity not known statically

• DFuzz is dependent!
• Sensitivity may depend on inputs (length of list, number of

iterations, etc.)

What does this mean for typechecking?

• Sensitivities are polynomials over reals and naturals
• How to check subtyping?

Reading the types

Sensitivity reading

• Functions !Rτ1 (τ2: R-sensitive functions
• Changing input by d changes output by at most R · d

Subtyping

• “A 1-sensitive function is also a 2-sensitive function”
• Subtyping: weaken sensitivity bound

!Rτ (τ2 v !R′τ1 (τ2 if R ≤ R ′

compare
polynomials

Reading the types

Sensitivity reading

• Functions !Rτ1 (τ2: R-sensitive functions
• Changing input by d changes output by at most R · d

Subtyping

• “A 1-sensitive function is also a 2-sensitive function”
• Subtyping: weaken sensitivity bound

!Rτ (τ2 v !R′τ1 (τ2 if R ≤ R ′

compare
polynomials

The typechecking problem

Assume
• Can extract type skeleton from term
• Given annotated term, compute best type

type without sensitivities

w.r.t. subtyping

Annotations
• We need: fully annotated argument types of all functions

! ?? τ1 (τ2

annot.no annot. no annot.

• Other more minor annotations

The typechecking problem

Assume
• Can extract type skeleton from term
• Given annotated term, compute best type

type without sensitivities

w.r.t. subtyping

Annotations
• We need: fully annotated argument types of all functions

! ?? τ1 (τ2

annot.no annot. no annot.

• Other more minor annotations

The typechecking problem

Assume
• Can extract type skeleton from term
• Given annotated term, compute best type

type without sensitivities

w.r.t. subtyping

Annotations
• We need: fully annotated argument types of all functions

! ?? τ1 (τ2

annot.no annot. no annot.

• Other more minor annotations

The typechecking problem

Assume
• Can extract type skeleton from term
• Given annotated term, compute best type

type without sensitivities

w.r.t. subtyping

Annotations
• We need: fully annotated argument types of all functions

! ?? τ1 (τ2

annot.no annot. no annot.

• Other more minor annotations

The typechecking problem

Assume
• Can extract type skeleton from term
• Given annotated term, compute best type

type without sensitivities

w.r.t. subtyping

Annotations
• We need: fully annotated argument types of all functions

! ?? τ1 (τ2

annot.no annot. no annot.

• Other more minor annotations

The typechecking problem

Assume
• Can extract type skeleton from term
• Given annotated term, compute best type

type without sensitivities

w.r.t. subtyping

Annotations
• We need: fully annotated argument types of all functions

! ?? τ1 (τ2

annot.no annot. no annot.

• Other more minor annotations

The typechecking problem

Assume
• Can extract type skeleton from term
• Given annotated term, compute best type

type without sensitivities

w.r.t. subtyping

Annotations
• We need: fully annotated argument types of all functions

! ?? τ1 (τ2

annot.no annot. no annot.

• Other more minor annotations

The typechecking problem

Assume
• Can extract type skeleton from term
• Given annotated term, compute best type

type without sensitivities

w.r.t. subtyping

Annotations
• We need: fully annotated argument types of all functions

! ?? τ1 (τ2

annot.no annot. no annot.

• Other more minor annotations

The typechecking problem

Assume
• Can extract type skeleton from term
• Given annotated term, compute best type

type without sensitivities

w.r.t. subtyping

Annotations
• We need: fully annotated argument types of all functions

! ?? τ1 (τ2

annot.no annot. no annot.

• Other more minor annotations

The typechecking problem

Assume
• Can extract type skeleton from term
• Given annotated term, compute best type

type without sensitivities

w.r.t. subtyping

Annotations
• We need: fully annotated argument types of all functions

! ?? τ1 (τ2

annot.no annot. no annot.

• Other more minor annotations

The typechecking problem

Input

• Annotated term e
• Annotated context skeleton Γ•:

x : ?? τ

no annot.
annot.

Output

• Type τ∗ and context Γ with Γ ` e : τ∗

• Most precise context and type (with respect to subtyping)

The typechecking problem

Input

• Annotated term e
• Annotated context skeleton Γ•:

x : ?? τ

no annot.
annot.

Output

• Type τ∗ and context Γ with Γ ` e : τ∗

• Most precise context and type (with respect to subtyping)

The typechecking problem

Input

• Annotated term e
• Annotated context skeleton Γ•:

x : ?? τ

no annot.
annot.

Output

• Type τ∗ and context Γ with Γ ` e : τ∗

• Most precise context and type (with respect to subtyping)

The typechecking problem

Input

• Annotated term e
• Annotated context skeleton Γ•:

x : ?? τ

no annot.
annot.

Output

• Type τ∗ and context Γ with Γ ` e : τ∗

• Most precise context and type (with respect to subtyping)

The typical approach

“Bottom-up” typechecking

• For each premise, compute best context and type
• Combine outputs from premises to get context and type

Example: function application

Γ ` e1 : !Rσ (τ ∆ ` e2 : σ

Γ + R ·∆ ` e1 e2 : τ

1 Given (e1 e2, Γ•)
2 Call typechecker on (e1, Γ•), get (!Rσ (τ, Γ)
3 Call typechecker on (e2,∆•), get (σ′,∆)
4 Check σ′ v σ, output (τ, Γ + R ·∆)

The typical approach

“Bottom-up” typechecking

• For each premise, compute best context and type
• Combine outputs from premises to get context and type

Example: function application

Γ ` e1 : !Rσ (τ ∆ ` e2 : σ

Γ + R ·∆ ` e1 e2 : τ

1 Given (e1 e2, Γ•)

2 Call typechecker on (e1, Γ•), get (!Rσ (τ, Γ)
3 Call typechecker on (e2,∆•), get (σ′,∆)
4 Check σ′ v σ, output (τ, Γ + R ·∆)

The typical approach

“Bottom-up” typechecking

• For each premise, compute best context and type
• Combine outputs from premises to get context and type

Example: function application

Γ ` e1 : !Rσ (τ ∆ ` e2 : σ

Γ + R ·∆ ` e1 e2 : τ

1 Given (e1 e2, Γ•)
2 Call typechecker on (e1, Γ•), get (!Rσ (τ, Γ)

3 Call typechecker on (e2,∆•), get (σ′,∆)
4 Check σ′ v σ, output (τ, Γ + R ·∆)

The typical approach

“Bottom-up” typechecking

• For each premise, compute best context and type
• Combine outputs from premises to get context and type

Example: function application

Γ ` e1 : !Rσ (τ ∆ ` e2 : σ

Γ + R ·∆ ` e1 e2 : τ

1 Given (e1 e2, Γ•)
2 Call typechecker on (e1, Γ•), get (!Rσ (τ, Γ)
3 Call typechecker on (e2,∆•), get (σ′,∆)

4 Check σ′ v σ, output (τ, Γ + R ·∆)

The typical approach

“Bottom-up” typechecking

• For each premise, compute best context and type
• Combine outputs from premises to get context and type

Example: function application

Γ ` e1 : !Rσ (τ ∆ ` e2 : σ

Γ + R ·∆ ` e1 e2 : τ

1 Given (e1 e2, Γ•)
2 Call typechecker on (e1, Γ•), get (!Rσ (τ, Γ)
3 Call typechecker on (e2,∆•), get (σ′,∆)
4 Check σ′ v σ, output (τ, Γ + R ·∆)

“Minimal” types?

A problem with the bottom-up approach

• Some DFuzz rules have form

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)
• But what context do we output?

“Minimal” types?

A problem with the bottom-up approach

• Some DFuzz rules have form

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)
• But what context do we output?

“Minimal” types?

A problem with the bottom-up approach

• Some DFuzz rules have form

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)
• But what context do we output?

“Minimal” types?

A problem with the bottom-up approach

• Some DFuzz rules have form

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)

• But what context do we output?

“Minimal” types?

A problem with the bottom-up approach

• Some DFuzz rules have form

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)
• But what context do we output?

“Minimal” context?

First try

• Have x :[R1] σ and x :[R2] σ

• Most precise context should be x :[max(R1,R2)] σ

• But DFuzz doesn’t have max(R1,R2)...

Max of two polynomials may not be polynomial!

The sensitivity language

Grammar

R ::= iR | iN | R | R + R | R · R

variables over
real/naturals

Sensitivity not known statically

• DFuzz is dependent!
• Sensitivity may depend on inputs (length of list, number of

iterations, etc.)

What does this mean for typechecking?

• Sensitivities are polynomials over reals and naturals
• How to check subtyping?

“Minimal” context?

First try

• Have x :[R1] σ and x :[R2] σ

• Most precise context should be x :[max(R1,R2)] σ

• But DFuzz doesn’t have max(R1,R2)...

Max of two polynomials may not be polynomial!

“Minimal” context?

First try

• Have x :[R1] σ and x :[R2] σ

• Most precise context should be x :[max(R1,R2)] σ

• But DFuzz doesn’t have max(R1,R2)...

Max of two polynomials may not be polynomial!

The idea: enrich DFuzz

EDFuzz: E(xtended) DFuzz

• Sensitivity language in DFuzz is “incomplete” for typechecking
• Add constructions like max(R1,R2) to sensitivity language
• Typecheck EDFuzz programs instead

Relation with DFuzz
• Extension: all DFuzz programs still valid EDFuzz programs
• Preserve metatheory
• Bottom-up typechecking simple, works

The idea: enrich DFuzz

EDFuzz: E(xtended) DFuzz

• Sensitivity language in DFuzz is “incomplete” for typechecking
• Add constructions like max(R1,R2) to sensitivity language
• Typecheck EDFuzz programs instead

Relation with DFuzz
• Extension: all DFuzz programs still valid EDFuzz programs
• Preserve metatheory
• Bottom-up typechecking simple, works

How does this fix the problem?

Previously problematic rule

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

Now: no problem

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)
• For

x :[R1] σ ∈ Γ1 and x :[R2] σ ∈ Γ2,

put x :[max(R1,R2)] σ in output context
• Return max(R1,R2) as context

How does this fix the problem?

Previously problematic rule

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

Now: no problem

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)

• For
x :[R1] σ ∈ Γ1 and x :[R2] σ ∈ Γ2,

put x :[max(R1,R2)] σ in output context
• Return max(R1,R2) as context

How does this fix the problem?

Previously problematic rule

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

Now: no problem

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)

• For
x :[R1] σ ∈ Γ1 and x :[R2] σ ∈ Γ2,

put x :[max(R1,R2)] σ in output context
• Return max(R1,R2) as context

How does this fix the problem?

Previously problematic rule

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

Now: no problem

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)

• For
x :[R1] σ ∈ Γ1 and x :[R2] σ ∈ Γ2,

put x :[max(R1,R2)] σ in output context
• Return max(R1,R2) as context

How does this fix the problem?

Previously problematic rule

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

Now: no problem

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)
• For

x :[R1] σ ∈ Γ1 and x :[R2] σ ∈ Γ2,

put x :[max(R1,R2)] σ in output context

• Return max(R1,R2) as context

How does this fix the problem?

Previously problematic rule

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` · · · : · · ·

Now: no problem

• Running algorithm gives (σ1, Γ1) and (σ2, Γ2)
• For

x :[R1] σ ∈ Γ1 and x :[R2] σ ∈ Γ2,

put x :[max(R1,R2)] σ in output context
• Return max(R1,R2) as context

Decidability?

Bad news
• Must check inequalities over reals and natural polynomials
• Subtype relation is undecidable
• Even checking validity of derivations is undecidable
• Problem for both DFuzz and EDFuzz

Good news
• Constraint solvers are pretty good in practice
• Typical DFuzz programs rely on easy constraints

Decidability?

Bad news
• Must check inequalities over reals and natural polynomials
• Subtype relation is undecidable
• Even checking validity of derivations is undecidable
• Problem for both DFuzz and EDFuzz

Good news
• Constraint solvers are pretty good in practice
• Typical DFuzz programs rely on easy constraints

Checking the constraints

Special structure of constraints

• Allow standard (DFuzz) annotations only
• Subtyping only needs to check

R ≥ R∗,

where R is a DFuzz sensitivity and R∗ is a EDFuzz sensitivity
• R understood by standard numeric solvers
• R∗ has extended terms like max(R1,R2), . . .

Checking the constraints

Idea: eliminate extended terms
• Change R ≥ max(R∗1 ,R∗2) to

R ≥ R∗1 ∧ R ≥ R∗2

• Recursively eliminate comparisons R ≥ R∗

• Similar technique for other new sensitivity constructions

About the implementation

It works!
• Dispatches numeric constraints to Why3
• Typechecks examples from the DFuzz paper with no problems
• Annotation burden light on these examples

Final thoughts

Lessons learned
• Typechecking with quantitative constraints is tricky
• Numeric solvers are quite good, even for undecidable problems
• Minor details in original language can have huge effects on

how easy it is to use standard solvers
• Keep typechecking in mind!

Open questions

• Does this technique of “completing” a language to ease
typechecking apply to other quantitative type systems?

• Can we remove the argument type annotation in functions?

Final thoughts

Lessons learned
• Typechecking with quantitative constraints is tricky
• Numeric solvers are quite good, even for undecidable problems
• Minor details in original language can have huge effects on

how easy it is to use standard solvers
• Keep typechecking in mind!

Open questions

• Does this technique of “completing” a language to ease
typechecking apply to other quantitative type systems?

• Can we remove the argument type annotation in functions?

Really Naturally Linear Indexed Type Checking

Arthur Azevedo de Amorim1, Marco Gaboardi2,
Emilio Jesús Gallego Arias1, Justin Hsu1

1University of Pennsylvania
2University of Dundee

October 2, 2014

Another example

Problematic rule

Γ ` e : σ i fresh in Γ
Γ ` Λi : κ. e : ∀i : κ. σ

Avoidance problem

• Running typechecker on (e, Γ•) yields (σ, Γ)
• For x :[R] σ ∈ Γ, want smallest R∗ bigger than R but

independent of i
• Again: R∗ may lie outside sensitivity language
• Add construction sup(R, i) to EDFuzz

