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Relational properties

Properties about two runs of the same program
I Assume inputs are related by Ψ
I Want to prove the outputs are related by Φ
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Examples

Monotonicity
I Ψ : in1 ≤ in2
I Φ : out1 ≤ out2
I “Bigger inputs give bigger outputs”

Non-interference
I Ψ : low1 = low2
I Φ : out1 = out2
I “If low-security inputs are the same, then outputs are the same”
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Probabilistic relational properties

Richer properties
I Differential privacy
I Cryptographic indistinguishability

Verification tool: pRHL [BGZ-B]

I Imperative while language + command for random sampling
I Deterministic input, randomized output
I Hoare-style logic
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Inspiration from probability theory

Probabilistic couplings
I Used by mathematicians for proving relational properties
I Applications: Markov chains, probabilistic processes

Idea
I Place two processes in the same probability space
I Coordinate the sampling
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Our results

Main observation

The logic pRHL internalizes coupling

Consequences
I Constructing pRHL proof → constructing a coupling
I Can verify classic examples of couplings in mathematics with

proof assistant EasyCrypt (built on pRHL)
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The plan

Today
I Introducing probabilistic couplings
I Introducing the relational logic pRHL
I Example: convergence of random walks
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Probabilistic couplings
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Introducing to probabilistic couplings

Basic ingredients
I Given: two distributions X1,X2 over set A
I Produce: joint distribution Y over A× A

– Distribution over the first component is X1
– Distribution over the second component is X2

Definition
Given two distributions X1,X2 over a set A, a coupling Y is a
distribution over A× A such that π1(Y ) = X1 and π2(Y ) = X2.
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Example: mirrored random walks
Simple random walk on integers
I Start at position p = 0
I Each step, flip coin x $← flip
I Heads: p ← p + 1
I Tails: p ← p − 1

1/2

1/2

Figure: Simple random walk
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Coupling the walks to meet

Case p1 = p2: Walks have met
I Arrange samplings x1 = x2
I Continue to have p1 = p2

Case p1 6= p2: Walks have not met
I Arrange samplings x1 = ¬x2
I Walks make mirror moves

Under coupling, if walks meet, they move together
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Why is this interesting?

Goal: memorylessness
I Start two random walks at w and w + 2k
I To show: position distributions converge as we take more steps

Coupling bounds distance between distributions
I Once walks meet, they stay equal
I Distance is at most probability walks don’t meet

Theorem
If Y is a coupling of two distributions (X1,X2), then

‖X1 − X2‖TV ,
∑
a∈A
|X1(a)− X2(a)| ≤ Pr

(y1,y2)∼Y
[y1 6= y2].
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The logic pRHL
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The program logic pRHL

Probabilistic Relational Hoare Logic
I Hoare-style logic for probabilistic relational properties
I Proposed by Barthe, Grégoire, Zanella-Béguelin
I Implemented in the EasyCrypt proof assistant for crypto proofs
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Language and judgments

The pWhile imperative language

c ::= x ← e | x $← d | if e then c else c | while e do c | skip | c; c

Basic pRHL judgments
� c1 ∼ c2 : Ψ⇒ Φ

I Ψ and Φ are formulas over labeled program variables x1, x2
I Ψ is precondition, Φ is postcondition
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Interpreting the judgment

� c1 ∼ c2 : Ψ⇒ Φ

Interpreting pre- and post-conditions
I Ψ interpreted as a relation on two memories
I Φ interpreted as a relation Φ† on distributions over memories

Definition (Couplings in disguise!)
If Φ is a relation on A, the lifted relation Φ† is a relation on
Distr(A) where µ1 Φ†µ2 if there exists µ ∈ Distr(A× A) with
I supp(µ) ⊆ Φ; and
I π1(µ) = µ1 and π2(µ) = µ2.
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Proof rules

The key rule: Sampling

Sample
f ∈ T 1−1−→ T ∀v ∈ T . d1(v) = d2(f v)

� x1 $← d1 ∼ x2 $← d2 : ∀v , Φ[v/x1, f (v)/x2] ⇒ Φ

Notes

I Bijection f : specifies how to coordinate the samples
I Side condition: marginals are preserved under f
I Assume: samples coupled when proving postcondition Φ
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Examples
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Example: mirroring random walks in pRHL
The code
pos ← start; // Start position
i ← 0;
H ← []; // Ghost code
while i < N do

b $← flip;
H ← b :: H; // Ghost code
if b then

pos ← pos + 1;
else
pos ← pos - 1;

fi
i ← i + 1;
end
return pos // Final position

Goal: couple two walks via mirroring
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Record the history

H stores history of flips
I Σ(H) is the net distance that the first process moves to the right
I Meet(H) if there is prefix H’ of H with Σ(H’) = k
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Specify the coupling

Sampling rule

Sample
f ∈ T 1−1−→ T ∀v ∈ T . d1(v) = d2(f v)

� x1 $← d1 ∼ x2 $← d2 : ∀v ,Φ[v/x1, f (v)/x2]⇒ Φ

Case on Meet(H1)

I True: take bijection f to be id
I False: take bijection f to be negation ¬
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Final judgment

� c ∼ c : start1 + 2k = start2 ⇒ (Meet(H1)→ pos1 = pos2)

How to read

I The two walks start 2k apart
I If walks have met before, their positions are equal
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Further examples
Lazy random walk on torus

1/81/8

1/8

1/8

Figure: Lazy random walk on a two dimensional torus

Stochastic domination
I Notion of ordering for probabilistic processes
I Proved via couplings
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Wrapping up
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Open problems

Handling more advanced couplings
I Shift couplings, path couplings, etc.
I Hard example: constructive Lovász Local Lemma by Moser

Quantitative bounds
I How long does it take for the mirrored walks to meet?
I Non-relational reasoning

Borrow more ideas from the coupling literature
I Couplings from mathematics may suggest natural rules to add
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