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Relational properties

Properties about two runs of the same program

» Assume inputs are related by W

» Want to prove the outputs are related by ¢



Examples

Monotonicity

> U ing < inp
> & : outy < outy
» “Bigger inputs give bigger outputs”



Examples

Monotonicity
> U ing < inp
» O : outy < outr
» “Bigger inputs give bigger outputs”

Non-interference
» VU : Jow; = lows
» & : outy = outy

» “If low-security inputs are the same, then outputs are the same”



Probabilistic relational properties

Richer properties

» Differential privacy

» Cryptographic indistinguishability



Probabilistic relational properties

Richer properties

» Differential privacy

» Cryptographic indistinguishability

Verification tool: pRHL [BGZ-B]

» Imperative while language + command for random sampling
» Deterministic input, randomized output

» Hoare-style logic



Inspiration from probability theory

Probabilistic couplings

» Used by mathematicians for proving relational properties

» Applications: Markov chains, probabilistic processes

Idea

» Place two processes in the same probability space

» Coordinate the sampling



Our results

Main observation

The logic pRHL internalizes coupling




Our results

Main observation

The logic pRHL internalizes coupling

Consequences

» Constructing pRHL proof — constructing a coupling

» Can verify classic examples of couplings in mathematics with
proof assistant EasyCrypt (built on pRHL)



The plan

Today

» Introducing probabilistic couplings
> Introducing the relational logic pRHL

» Example: convergence of random walks






Introducing to probabilistic couplings

Basic ingredients

» Given: two distributions Xi, X> over set A
» Produce: joint distribution Y over A x A

— Distribution over the first component is X
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Introducing to probabilistic couplings

Basic ingredients

» Given: two distributions Xi, X> over set A
» Produce: joint distribution Y over A x A

— Distribution over the first component is X
— Distribution over the second component is X>

Definition
Given two distributions X7, X, over a set A, a coupling Y is a
distribution over A x A such that 71(Y) = X and m(Y) = X.



Example: mirrored random walks
Simple random walk on integers

» Start at position p =0

» Each step, flip coin x & flip
» Heads: p+ p+1

» Tails: p+<—p—1



Example: mirrored random walks

v

Start at position p =0

v

Each step, flip coin x & flip

v

Heads: p+ p+1

v

Tails: p<p—1

Simple random walk



Coupling the walks to meet

Case p; = po: Walks have met

» Arrange samplings x; = xo

» Continue to have p; = p>
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Coupling the walks to meet

Case p; = po: Walks have met
> Arrange samplings x; = xo
» Continue to have p; = p>
Case p; # po: Walks have not met

» Arrange samplings x; = —xo

» Walks make mirror moves

Under coupling, if walks meet, they move together




Why is this interesting?

Goal: memorylessness

» Start two random walks at w and w + 2k

» To show: position distributions converge as we take more steps



Why is this interesting?

Goal: memorylessness

» Start two random walks at w and w + 2k

» To show: position distributions converge as we take more steps

Coupling bounds distance between distributions

» Once walks meet, they stay equal

» Distance is at most probability walks don't meet



Why is this interesting?

Goal: memorylessness

» Start two random walks at w and w + 2k

» To show: position distributions converge as we take more steps

Coupling bounds distance between distributions

» Once walks meet, they stay equal

» Distance is at most probability walks don't meet

Theorem
If Y is a coupling of two distributions (X1, X2), then

X1 = Xollrv £ ) [X1(a) = Xa(a)| £ Pr _[n # yal-
ek (y1.y2)~Y






The program logic pRHL

Probabilistic Relational Hoare Logic

» Hoare-style logic for probabilistic relational properties
» Proposed by Barthe, Grégoire, Zanella-Béguelin

» Implemented in the EasyCrypt proof assistant for crypto proofs



Language and judgments

The pWhile imperative language

cu=x<e| x& d |if ethen celse ¢ | while e do ¢ | skip | ¢; ¢
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Language and judgments

The pWhile imperative language

c:::x<—e]-\ if e then c else ¢ | while e do ¢ | skip | ¢; ¢
Basic pRHL judgments
Fa~o: V=9

> W and ¢ are formulas over labeled program variables x1, x»

» W is precondition, ® is postcondition



Interpreting the judgment

Fci~c V=90
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Interpreting pre- and post-conditions

» W interpreted as a relation on two memories

» O interpreted as a relation ®T on distributions over memories



Interpreting the judgment

Fci~c V=90

Interpreting pre- and post-conditions

» W interpreted as a relation on two memories

» O interpreted as a relation ®T on distributions over memories

Definition (Couplings in disguise!)
If ® is a relation on A, the lifted relation ®T is a relation on
Distr(A) where i1 ®f s if there exists ;. € Distr(A x A) with

» supp(p) € @; and
» mi(p) = pa and ma(p) = po.



Proof rules

The key rule: Sampling

feT 33T Vv e T. di(v) = daof v)
SAMPLE

Exi & di~xod& do: Vv, Olv/x,f(v)/x] = ¢

Notes
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Proof rules

The key rule: Sampling

feT 33T Vv e T. di(v) = daof v)

v D -

SAMPLE

Notes

» Bijection f: specifies how to coordinate the samples
» Side condition: marginals are preserved under f
» Assume: samples coupled when proving postcondition ®



Examples
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Example: mirroring random walks in pRHL
The code

pos < start; // Start position
i+0;
H<«[1; // Ghost code
while i < N do
b & flip;
H<+b :: H; // Ghost code
if b then
pos < pos + 1;
else
pos < pos - 1;
fi
1+1+ 1;
end
return pos // Final position



Example: mirroring random walks in pRHL
The code

pos < start; // Start position
i+0;
H<«[1; // Ghost code
while i < N do
b & flip;
H<«b :: H; // Ghost code
if b then
pos < pos + 1;
else
pos < pos - 1;
fi
i+1i+ 1;
end
return pos // Final position

Goal: couple two walks via mirroring




Record the history

H stores history of flips

» Y (H) is the net distance that the first process moves to the right
» Meet(H) if there is prefix v’ of H with X (H) = k



Specify the coupling

Sampling rule

freT 3T T —
ST eT — Vv e T. di(v) = do(f v)

Exi & di~xp &8 dy: Vv, dlv/xq, f(v)/x] = &



Specify the coupling

Sampling rule

FfeT 371 werT, — do(f
ST eT — v e T. di(v)=dof v)

Exi & di~xp &8 dy: Vv, dlv/xq, f(v)/x] = &

Case on Meet(H;)

» True: take bijection f to be id

> False: take bijection f to be negation —



Final judgment

Fcn~ c: start] + 2k = startp = (/\/Ieet(Hl) — pos] = p052)

How to read
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Final judgment

How to read

» The two walks start 2k apart



Final judgment

How to read

» The two walks start 2k apart

» If walks have met before, their positions are equal



Further examples

Lazy random walk on torus

Figure: Lazy random walk on a two dimensional torus



Further examples

Lazy random walk on torus

Figure: Lazy random walk on a two dimensional torus

Stochastic domination

> Notion of ordering for probabilistic processes

» Proved via couplings



basic swaddle




Open problems

Handling more advanced couplings

» Shift couplings, path couplings, etc.

» Hard example: constructive Lovasz Local Lemma by Moser

Quantitative bounds

» How long does it take for the mirrored walks to meet?

> Non-relational reasoning

Borrow more ideas from the coupling literature

» Couplings from mathematics may suggest natural rules to add
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