
Computer-aided Verification in Mechanism Design

Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias,
Justin Hsu*, Aaron Roth*, Pierre-Yves Strub

IMDEA Software, École Polytechnique,
University at Buffalo, *University of Pennsylvania

December 14, 2016

1

Mechanism design
=

Algorithm design
+

Strategic inputs
*In computer science

2

Incentive properties

Encourage agents to behave simply

Benefits
I For the agents: easy to decide what to do
I For the designer: easy to reason about what agents will do

3

Best case: truthfulness

Model
I Agents have private type ti ∈ T
I Mechanism inputs: agents report si ∈ T
I Mechanism outputs: outcome o ∈ O and payments pi ∈ R

Definition (Complete information)
A mechanism is truthful (DSIC) if each agent maximizes their
utility by reporting si = ti , no matter what other agents do.

Definition (Incomplete information)
A mechanism is Bayesian Incentive Compatible (BIC) if each agent
maximizes their expected utility by reporting si = ti , when other
agents report their true type drawn from a known prior µ.

4

Best case: truthfulness

Model
I Agents have private type ti ∈ T
I Mechanism inputs: agents report si ∈ T
I Mechanism outputs: outcome o ∈ O and payments pi ∈ R

Definition (Complete information)
A mechanism is truthful (DSIC) if each agent maximizes their
utility by reporting si = ti , no matter what other agents do.

Definition (Incomplete information)
A mechanism is Bayesian Incentive Compatible (BIC) if each agent
maximizes their expected utility by reporting si = ti , when other
agents report their true type drawn from a known prior µ.

4

Mechanism ≈ Program

Truthfulness ≈ Property

Program verification
for incentive properties

5

But isn’t this really hard?

Divide the task
I Proof construction: hard
I Proof checking: easy

6

Why verify properties? Check correctness

7

Why verify incentive properties? Convince agents

What if agents don’t believe incentive property?
I Incentive properties often not obvious
I Read the proof (?)

A possible model
I Designer constructs formal proof of incentive property
I Agents check it automatically

8

Why verify incentive properties? Convince agents

What if agents don’t believe incentive property?
I Incentive properties often not obvious
I Read the proof (?)

A possible model
I Designer constructs formal proof of incentive property
I Agents check it automatically

8

Our work: A case study

Target
I Replica-surrogate-matching mechanism (HKM)
I To prove: BIC

Proof is non-trivial
I Lots of reasoning about randomization
I Need incentive property for VCG mechanism

9

Proof construction approaches: basic tradeoff

Complex
proofs

Simple
proofs

10

Proof construction approaches: basic tradeoff

Complex
proofs

Simple
proofs

More
automatic

Less
automatic

10

Proof construction approaches: basic tradeoff

Existing efforts

Complex
proofs

Simple
proofs

More
automatic

Less
automatic

10

Proof construction approaches: basic tradeoff

Existing efforts

Our target

Complex
proofs

Simple
proofs

More
automatic

Less
automatic

10

Idea: incentive properties are relational properties

Program: agent’s report → agent’s (expected) utility

I First run: agent report equal to agent type (truthful)
I Second run: agent report arbitrary (non-truthful)
I Truthfulness: first utility larger than second utility

Leverage specialized tools
I HOARe2: for probabilistic relational properties

11

Formally verifying BIC

Four main steps

1. Write program
2. Annotate program with assertions
3. Apply solvers to automatically check assertions
4. Fall back to less automated approaches for remaining steps

See paper for details!

12

Formally verifying BIC

Four main steps

1. Write program
2. Annotate program with assertions
3. Apply solvers to automatically check assertions
4. Fall back to less automated approaches for remaining steps

See paper for details!

12

Writing the assertions

Basic form

{prog :: S | Φ(prog1, prog2)}

Incentive Compatibility

{rept :: T | rept1 = type} → {util :: R | util1 ≥ util2}

13

Writing the assertions

Basic form

{prog :: S | Φ(prog1, prog2)}
Incentive Compatibility

{rept :: T | rept1 = type} → {util :: R | util1 ≥ util2}

13

Applying solvers

Given x1 < x2, prove:
I x1 + 1 < x2 + 2 (easy)
I f (x1) < f (x2), where f is a program (harder)

Results
I Almost all assertions (∼ 60) automatically proved (∼ seconds)
I Solvers run out of time on three assertions

14

Applying solvers

Given x1 < x2, prove:
I x1 + 1 < x2 + 2 (easy)
I f (x1) < f (x2), where f is a program (harder)

Results
I Almost all assertions (∼ 60) automatically proved (∼ seconds)
I Solvers run out of time on three assertions

14

Formally verifying BIC

Four main steps

1. Write program
2. Annotate program with assertions
3. Apply solvers to automatically check assertions
4. Fall back to less automated approaches for remaining steps

See paper for details!

15

Perspective

Promising signs: automatic parts
I Handle complex proofs and mechanisms
I Solvers usually work, and are fast

Pain points: manual parts
I When solvers fail: life is hard
I Crafting program and assertions

16

Needed: more case studies!

Do you have a mechanism that . . .
I has a tedious proof?
I uses randomization?
I satisfies a relational property?

We want to know!
For brave souls: https://github.com/ejgallego/HOARe2

(Also, I am looking for a job . . .)

17

https://github.com/ejgallego/HOARe2

Needed: more case studies!

Do you have a mechanism that . . .
I has a tedious proof?
I uses randomization?
I satisfies a relational property?

We want to know!
For brave souls: https://github.com/ejgallego/HOARe2

(Also, I am looking for a job . . .)

17

https://github.com/ejgallego/HOARe2

Needed: more case studies!

Do you have a mechanism that . . .
I has a tedious proof?
I uses randomization?
I satisfies a relational property?

We want to know!
For brave souls: https://github.com/ejgallego/HOARe2

(Also, I am looking for a job . . .)

17

https://github.com/ejgallego/HOARe2

Computer-aided Verification in Mechanism Design

Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias,
Justin Hsu*, Aaron Roth*, Pierre-Yves Strub

IMDEA Software, École Polytechnique,
University at Buffalo, *University of Pennsylvania

December 14, 2016

18

Writing the program
Main program: one agent’s utility

I Input: agent’s true type and report
I Output: agent’s expected utility from mechanism
I Assume: other agents reports drawn from prior (BIC)

Top level code

19

Handling the hard assertions

Hardest step
I Mechanism transforms each report into a “surrogate” report
I Key lemma: if report ∼ prior, transformation preserves prior
I Manually construct proof in different system (EasyCrypt),
∼ 190 out of ∼ 260 total lines of manual proof

20

RSM mechanism (Hartline, Kleinberg, Malekian)

Algorithm

Agent

21

RSM mechanism (Hartline, Kleinberg, Malekian)

RSM
Transform

Price

Algorithm

Agent

21

RSM mechanism (Hartline, Kleinberg, Malekian)

RSM
Transform

Price

Agent

RSM
Transform

Price

Algorithm

Agent

21

RSM mechanism (Hartline, Kleinberg, Malekian)

RSM
Transform

Price

Agent

RSM
Transform

Price

Outcome

Algorithm

Agent

21

