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Requirements

e Data privacy: protect the consumer’s privacy

e Analyst privacy [DNV'12]: protect the analyst's privacy



(Standard) Differential privacy [DMNS'06]

D-

Algorithm

‘ ratio bounded




More formally

Definition (DMNS'06)

Let M be a randomized mechanism from databases to range R,
and let D, D' be databases differing in one record. M is
e-differentially private if for every r € R,

Pr[M(D) = r] < e - Pr[M(D’) = r].

Useful properties

e Very strong, worst-case privacy guarantee

e Well-behaved under composition, post-processing
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Many-to-one-analyst privacy [DNV'12]
Intuition

e A single analyst can't tell if other analysts change their queries
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Intuition
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The query release problem

Basic problem

e Analysts want accurate answers to a large set Q of
counting (linear) queries

“What fraction of
records satisfy P?"

e Privately construct synthetic database to answer queries

Prior work

e Long line of work [BLR'08, RR'09, HR'10,...], data privacy

e Stateful mechanisms: not analyst private



Accuracy

Theorem

Suppose the analysts ask queries Q, and let the database have n
records from X. There exists an € analyst and data private
mechanism which achieves error o on all queries in Q, where

0 <polylo§$/%’], yg\)> |




Plan for rest of the talk

Outline
e Interpretation of query release as a game
e Privately solving the query release game

e Analyst private query release
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From strategies to query release

Database as a distribution

e Think of true database D as a distribution over records

e D is data player’s distribution over records

Mixed strategy
e Versus a counting query g, data player's expected loss:
E, pla(r) —q(D)] = q(D) — q(D)
e D is mixed strategy with zero loss

Equilibrium strategy
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From strategies to query release

«a-approximate

What if small expected loss? equilibrium

e Suppose data player’'s expected loss less than « for all queries

e Data distribution answers all queries with error at most «

Synthetic

Query releasel
database y

e But how to compute this?
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Computing the equilibrium privately

Known approach: repeated game

e Players maintain distributions over actions
e Loop:
e Sample and play action

e Receive loss for all actions
o Update distribution: increase probability of better actions

Multiplicative
weights (MW)
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Computing equilibrium strategy privately

|dea: use distribution over plays [FS'96]

e Both players use multiplicative weights

Not private

o MW dicteibut : b

e Empirical distributions also converge to approximate
equilibrium

Distribution of
actual plays

e Samples from MW distribution: private?

e Depends on losses: what if we change database or query?
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Data privacy
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Privacy for games

Record r

q(r) —q(D")

e Changing a record in database changes all losses only a little
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Privacy for games

Analyst privacy

Record r Record r

I
q(r) —q(D) | Query ¢~ q’-_.
—>

e Changing a query changes losses for an entire row
(maybe by a lot)
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Query release mechanism

Plan

Private inputs: database D, set of all queries Q from analysts

Simulate repeated play of query release game

Publish: empirical distribution on data player's plays

Analysts compute answers by using this as synthetic database
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Analyst private query release

Requirement: Analyst privacy

e If query changed, synthetic database shouldn't change much

Obstacle: query player can't play a query too often

e Changing it might drastically change synthetic database
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e Versus query g, update probability of record r:
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A closer look at the MW update

Data player’'s update

e Versus query g, update probability of record r:

pr:= pr-exp{—(q(r) — a(D))}

o After queries

(1) ,(2) (7).

q

pr~ep{ — (49N —aV(D)) —- = (¢7(r) - (D)) }

e Very sensitive to changing a query if query played many times

7q 7"‘7q
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Analyst private query release

Requirement: Analyst privacy

e If query changed, synthetic database shouldn't change much

Obstacle: query player can't play a query too often

e Changing it might drastically change synthetic database

e Project query distribution so probabilities are capped

No query played
too often
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e Loop:
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o Calculate loss defined by the plays
e Update distributions (MW)
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e Output data’s empirical distribution: synthetic database
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Changing the game

Probabilities

Mishandled queries -
e What if only a few queries with high error?

e Query player might not be able to put high probability on
these queries

e At equilibrium, a few queries might have high error
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Putting it all together

Analyst private mechanism

Maintain distributions over records and queries

Loop:
e Draw actions (record and query) from distributions
o Calculate loss defined by the plays
e Update distributions (MW)
e Project query distribution to cap probabilities

Output data’s empirical distribution: synthetic database

Find and answer queries where synthetic data performs poorly
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Accuracy

Theorem

Suppose the analysts ask queries Q, and let the database have n
records from X. There exists an € analyst and data private
mechanism which achieves error o on all queries in Q, where

0 <polylo§$/%’], ]Q\)) |

Notes

e Counting queries, so error a < 1 is nontrivial

o Improved dependence on n compared to O(1/n'/4) [DNV'12],
but analyst privacy guarantees are incomparable

e O(1/+/n) nearly optimal dependence on n, even for data
privacy only



Additional results

Extensions
e One-analyst-to-many-analyst private mechanism: one analyst
is allowed to change all of their queries
e Analyst private online mechanism

e Analyst private mechanism for general low-sensitivity queries
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Wrapping up

Our contributions

e Interpretation of query release as zero-sum game
e Method for privately computing the approximate equilibrium

e Nearly optimal error for one-query-to-many-analyst privacy

Ongoing/Future Work

e Inherent gap between analyst privacy and just data privacy?
e Other applications of privately solving zero-sum games?

e Solving linear programs?
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