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A new approach to formulating privacy goals: the

risk to one’s privacy, or in general, any type of risk
.should not substantially increase as a result of
part|C|pat|ng in a statistical database.

This is captured by differential privacy.

— Cynthia Dwork
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- Donna Ernie
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Dwork, McSherry, Nissim, and Smith

Let €,0 > 0 be parameters, and suppose there is a binary adjacency
relation Adj on D. A randomized algorithm M : D — Distr(R) is
(e, 0)-differentially private if for every set of outputs S C R and
every pair of adjacent inputs di, d», we have

Promay)[x € S] < exp(e) - Prypap)[x € S] +6.



Dwork, McSherry, Nissim, and Smith

Let €,0 > 0 be parameters, and suppose there is a binary adjacency
relation Adj on D. A randomized algorithm M : D — Distr(R) is
(e, 0)-differentially private if for every set of outputs S C R and
every pair of adjacent inputs dq, db, we have

Promay)[x € S] < exp(e) - Prypap)[x € S] +6.

How to formally verify?




Differential privacy is a:

relational property of
probabilistic programs.
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Composition properties

Consider randomized algorithms M : D — Distr(R) and

M : R — D — Distr(R’). If M is (€, §)-private and for every
re R, M(r)is (€, 8’)-private, then the composition is

(€ + €, + &’)-private:

r & M(d); res & M(r,d); return(res)



When privacy follows from composition




When privacy follows from composition

(Linear types, refinement types, self products, relational Hoare logics, .. .)



When privacy doesn’t follow from composition
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Recent progress (2016)

Differential privacy =~ Approximate couplings

Approximate couplings &~ Proofs in the logic apRHL

Only proofs beyond composition
for (¢, 0)-privacy

11



Enhance the logic

New coupling constructions
New proof rules

Richer formal proofs of privacy
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Our work: formal privacy proofs with:

Accuracy-dependent privacy
Advanced composition

Adaptive inputs
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A crash course: the program logic apRHL [BKOZB]
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A crash course: the program logic apRHL [BKOZB]

Imperative language with random sampling

x & L(e)

approximate probabilistic Relational Hoare Logic

= {P} ca ~es) @2 (V]
Non-probablistic, relational (x; = x»)
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A crash course: the program logic apRHL [BKOZB]

Imperative language with random sampling

x & L(e)

e mesblie Sl L Lo
= {P} c ~es) @2 (V)

Numeric index
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Approximate couplings [BKOZB, BO]

Definition
Let R C A x A be a relation and ¢, > 0. Two distributions
11, ko € Distr(A) are related by an (¢, d)-approximate coupling

with support R if there exists py, ur € Distr(A x A) with:
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» support in R ;
» mi(pe) = p1 and mo(pRr) = p2 ;
> for every S C A X A,

Prou, [z € S] <exp(e) - Prowpuplz € S]+ 0

Write: 11 Réd) (49
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Interpreting judgments

F{®} a ~es) @2 V)

Two memories related by ®

4

Two distributions related by \U%w)
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Differential privacy in apRHL

= {Adj(d1,d2)} ¢ ~(c5) ¢ {resy = res}
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Differential privacy in apRHL

= {Adj(d1,d2)} ¢ ~(c5) ¢ {resy = res}

(€, 0)-differential privacy
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Proof rules

Proof rule ~ Recipe to combine couplings
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Proof rule &~ Recipe to combine couplings

Sequence rule &~ standard composition of privacy
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Proof rules
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Our work: formal privacy proofs with:

Accuracy-dependent privacy
Advanced composition
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Accuracy-dependent privacy

WARNING!
®

=




Accuracy-dependent privacy

Rough intuition

» Think of 0 in (€, d)-privacy as failure probability
» “Algorithm is private except with small probability "

> “If the noise added is not too large, then ...

Similar to up-to-bad reasoning

» Common tool in crypto proofs

» “If bad event doesn't happen, then protocol is safe”

21



In apRHL: up-to-bad rule

F {(D} 1 ~(e,8) @), {ﬂ\U<1) —2 4l — X2}
Eme® = I[ ]IID(r )[\U(l)]<5’

UTB
F{®} a1 ~s16) @ {x1=x}
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In apRHL: up-to-bad rule

F {(D} 1 ~(e,8) @), {ﬂ\U<1> —2 4l — X2}
Eme®© = Pr [W(l)]<?
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F{®} a1 ~s16) @ {x1=x}

Notes

» V(1) is “bad event”, only mentions ¢;
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In apRHL: up-to-bad rule

F {(D} 1 ~(e,8) @), {ﬂ\U<1) —2 4l — X2}
Eme® = P(r )[\ll(l)] <d

[cl

UTB
F{®} a1 ~s16) @ {x1=x}

Notes

» V(1) is “bad event”, only mentions ¢;
> If bad event doesn't happen, have privacy
» Bound probability of W after ¢;
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Advanced composition theorem

Compose n mechanisms, each (e, §)-private

» Standard composition: (n - €, n - §)-private

» Advanced composition: (€*,0*)-private

ef~+/n-e and Fx~n-5+6
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Advanced composition theorem

Compose n mechanisms, each (e, §)-private

» Standard composition: (n - €, n - §)-private

» Advanced composition: (€*,0*)-private

ef~+/n-e and Fx~n-5+4¢

Trade off € and 0
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In apRHL: new while rule

FO—el)=e?2) F{OAel)} ca~es 2 {O}
while e; do ¢; exceutes at most n iterations

AC
F{©} while e; do ¢ ~(ex,5+) While &2 do ¢ {© N —e(l)}

Notes

» Surprising: generalization to approximate couplings

» More surprising: privacy composition directly generalizes

2



Putting it all together

Pass Through
Diamond
From Behind




A brief preview: the Between Thresholds

ASVii(a,b, M, N,d) :==
P00 [);
u & Les2(0);
A<a—u;B+b+uy;
whilei < N Al < M do
i’ i hd — —1;
while i’ < N do
if (hd=-1)
g+ A(D);
S & Le3(evalQ(g,d));
if (A < S < B) then hd < i;
i i+l
i i+
if (hd # —1) thenl«+ hd:: ;
return |

algorithm
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Formal proof combines many different features:

\{

Accuracy-dependent privacy

\{

Advanced composition

v

Adaptively chosen inputs

\4

“Subset” coupling
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Formal proof combines many different features:

» Accuracy-dependent privacy
» Advanced composition
» Adaptively chosen inputs

> “Subset” coupling

Please see the paper!
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