
A Theory AB Toolbox
Marco Gaboardi1 and Justin Hsu2

1 University of Dundee and Harvard University
m.gaboardi@dundee.ac.uk

2 University of Pennsylvania
justhsu@cis.upenn.edu

1 Introduction

One of the most unexpected discoveries in the study of algorithms is the power of randomness.
For many tasks, random algorithms perform better than deterministic algorithms, both in
theory and in practice. This is often the case even when the tasks seems purely determined,
with no random input or source of noise. Therefore, it’s not surprising that random algorithms
have been widely adopted in practice; examples span a wide range of computer science, from
machine learning to database technology to graphics.

A natural question is: Are these algorithms correct? Today, proofs of these requirements
are accomplished by enlisting highly skilled humans to produce “paper proofs” by hand.
However, even the most skilled humans are not perfect, and even if an algorithm is proved
correct, who is to say that it is implemented correctly? We propose to use tried-and-true
techniques from program verification—like type systems and more general static analyses—to
check, and perhaps automatically derive, formal versions of the requisite paper proofs.

At first glance, the paper proofs we are trying to imitate are extremely diverse, conjuring
up insights that seem totally mystifying. Faced with this problem, a standard approach is to
use general-purpose theorem provers. These are extremely expressive, but there is a real cost:
The proofs work at a low level of abstraction that bears little resemblance to the informal
proof. As a result, the formal proofs are verbose and require substantial manual effort to
construct. An expert who knows the formal proof perfectly clearly often labors to convince a
theorem prover of this fact.

To avoid these drawbacks, we envision building a toolbox of verification techniques
following an overarching principle: take inspiration from human reasoning. While some parts
of a given paper proof may be genuinely novel, experts often rely on simple yet powerful
abstractions for intuitive reasoning about particular properties; accordingly, paper proofs
remain simplest, most concise, and most lightweight. As much as possible, we want to take
advantage of these patterns used when humans reason about randomized algorithms.

Compared to carrying out proofs with general purpose theorem provers, we expect that
narrowing the gap between informal and formal reasoning will lead to simpler, more intuitive
proofs; humans familiar with the paper proof of properties should find it possible to use our
verification framework with minor training. By restricting the type of reasoning, we also
expect a higher degree of automation in our tools, reducing the verification burden even
further.

As we hope to build everything around proof patterns, we must accept that there are
facts about randomized algorithms that we will not be able to verify. Some theorems may
use “ad hoc” tools—or at least, rare tools that are not worth the effort in formalizing. The
focus of our toolbox—at least at first—is to provide a tool for composing mathematical facts
rather than verifying everything from the ground up. Based on our survey of proofs we might
hope to verify, we believe a small collection of primitive axioms and operations along with
powerful composition patterns will already suffice to verify many interesting proofs.
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2 What is correctness for randomized algorithms?

Randomized algorithms serve many functions, some mundane—movie recommendations,
elevator scheduling; some important—driving directions, credit approval ratings; and some
life-critical—robotic surgery, air traffic control, safety systems in cars.

These applications involve randomization in a variety of ways. For instance, an algorithm
may only have access to “noisy” inputs, and the goal is to control the effect of the noise. Or
the algorithm may introduce randomness to a deterministic problem; maybe the added noise
helps smooth out worst-case inputs, leading to faster execution or smaller space usage. Or
maybe the randomness is inherently part of the problem of interest.

With so many settings, correctness can mean many different things. For instance, we
can consider a program correct if it returns an optimal, or alternatively we can consider it
correct if it returns a output quickly that may not be optimal, but is close enough. There are
probabilistic versions of typical metrics for deterministic algorithms, like expected accuracy
or expected convergence rate, but there are also performance metrics specific to randomized
algorithms, like generalization error in machine learning algorithms.

A common thread in all of these concepts is reasoning about probabilities, whether
explicitly or implicitly. For example, an interesting guarantee might be “With at least 99%
probability, the algorithm computes an answer within 0.01 of the true answer”. A different
accuracy and convergence rate guarantee could be “The expected value of the complexity of
the randomized algorithm to reach an accuracy bound α is quadratic in 1/α”.

Though there have been quite successful formalizations of probability theory [2], they
typically model probabilities from a single point of view—say, as explicit distributions. In
contrast, typical paper proofs treat probabilities in a multi-faceted way. The proof may
work with random variables, when the reasoning looks a bit like symbolically manipulating
algebraic formulas; say, two samples Z1 and Z2 from a normal distribution may be added
together as Z1 + Z2. In other cases, proofs may work with probabilities of certain events
directly; say, proving that Pr[X > 10] = 0.1. Proofs may even involve looking at probabilities
geometrically.

In our view, the main challenge of handling these proofs is organizing and structuring
proofs so that the numerous theorems can be brought to bear in a usable and lightweight
way.

3 The current state-of-the-art

We are certainly not the first to argue the fact that programming language research should
develop more techniques for randomized algorithms.

In a closely related area, there is a large amount of work in analyzing and testing
approximate algorithms, for instance a recent work is the one of Sampson et al. [16]. In
most of these works the goal is to provide guarantees on the performance of randomized
programs by carrying out first some dynamic analysis inferring a synthetic representation of
the random process, and then some static analysis to simplify and test the results against
some specification. While certainly of interest, this approach do not provide actual proofs.

There is also a large amount of works that have approached the verification of approximate
algorithms, either by using full-blown formalization in a theorem prover [2], or ad-hoc
verification techniques based on program analysis [7]. There has been recent success in
proving correctness (for various definitions of correctness) of randomized algorithms in specific
domains like cryptography [3, 5], differential privacy [13, 6], etc.
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However, looking at these and other approaches in the literature, it seems that there are
few tools that produce proofs remotely similar to paper proofs! Indeed, while attending the
Approx 2014 [1] workshop co-located with PLDI 2014—devoted to the topic of verifying
randomized computation—we were struck by the lack of attention to proofs.

We believe that part of the problem here is that all these approaches have been studied by
programming languages researchers with programming languages tools for the programming
languages community. Our goal is instead to provide a toolbox that is interesting and useful
for people from the algorithm and machine learning community but based on techniques
from the programming language community. In this sense, we want a toolbox combining
interesting aspects of both theory A and theory B.

4 Our proposal: Take abstractions from paper proofs

As we have discussed, we envision tools built around common structures humans use when
proving correctness properties. These patterns take a variety of shapes and forms, but
fundamentally, they are abstractions: they are used to give structure to the key parts of an
argument, in a flexible and concise form, while concealing the boilerplate, “boring” parts of
the proofs. From this point of view, what makes these patterns interesting is that while there
are the typical abstractions we know and love—modularity, inductive arguments, etc.—there
are also patterns that are harder to recognize. For instance, they may involve reasoning
about code in a non-modular way, or grouping random sampling in particular, non-local
ways. We believe that understanding and capturing patterns from paper proofs—empirically,
the best abstractions—is a key step to designing usable and powerful verification tools.

As a first step in designing our toolbox we will focus on accuracy. Here, we briefly discuss
three such proof patterns and how they might be profitably incorporated into a verification
framework. For concreteness we will focus mostly on language-based verification, though we
expect these principles to be valuable in a wide variety of verification approaches.

4.1 Case study: The union bound

The union bound states that if event A happens except with probability pA, and event B
happens except with probability pB , then both A and B happen except with probability at
most pA + pB . In the context of randomized algorithms, A and B are often taken to be the
event that some random noise is small. The probabilities pA and pB are often called failure
probabilities—they are the probabilities that event A or B fails to happen.

Even though randomized algorithms naturally mix probabilistic and deterministic oper-
ations, the accuracy proof can be simplified by separating out the analysis of the random
operations. A common first step when proving accuracy is to apply the union bound to
argue that, except with probability p, all the random noise added is small. Assuming this
fact, the rest of the analysis can then treat each sampling operation as returning small noise,
and prove accuracy without explicitly reasoning about randomness.

In general, the reasoning naturally divides into two parts: (1) keep track of the total
probability that the noise is too large, using the union bound to aggregate the failure
probability of various sampling operations, and (2) carry out the accuracy analysis by
viewing the original program as a deterministic program, where each sampling operation is
assumed to return some small value.
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For example, consider an algorithm that adds noise to each element of a list:1
Listing 1 Applying a union bound
noiselist (in : list R) :[b] { out : list R | dist(in , out) < T } =

match in with
| Nil -> return Nil
| Cons x xs ->

sample noisy <- addnoise x in
sample rest <- noiselist xs in
return (Cons noisy rest)

The noise function addnoise comes with an accuracy specification encoding the probability
of adding noise more than T . The annotation in the first line state that the output list out
has each element at most T away from the corresponding element in input list in. The
annotation [b] indicates the failure probability: the accuracy assertion holds with probability
at least 1− b.

The union bound is carried out by the use of sample. In more detail, suppose we have
shown that program e satisfies accuracy assertion A with probability failure probability pA,
and program e′ satisfies accuracy assertion B with failure probability pB, assuming that
A holds. Then, our language concludes that the program sample x <- e in e’ (which
samples x from e and runs e′) satisfies assertion B, but now with the failure probability
given by the union bound: pA + pB .

Looking more closely, we can view the union bound as a kind of composition principle: to
analyze the failure probability of a big algorithm, it’s enough to analyze the failure probability
of each of its component programs. This is a powerful principle that simplifies the reasoning
on paper, and we should take advantage of this principle in verification as well.

4.2 Case study: Independence bounds
While a wide range of randomized algorithms can be proved accurate with just the union
bound, some algorithms require a finer analysis based on independence of random variables.
For instance, some accuracy results rely on concentration around the mean: the principle
that, if we take a series of independent random draws from a distribution µ, the average of
the draws is with high probability not too far from the mean of µ. For example, the accuracy
proof of a random counter [8, 10] from the privacy literature uses a concentration bound for
sums of independent draws from the Laplace distribution.

Arguments in terms of independence are problematic for program verification. They are
often global, involving reasoning about collections of random draws that may be far apart in
the actual code of the program. A priori, it may not be clear that the random draws are
even independent. To provide some structure, we can imagine a two-stage approach.

First, we can separate random sampling from the main program and annotate it with
where and how to apply the independence bounds. This makes it easier to verify independence
for collections of random draws.

For example, suppose we want to take three independent samples from some distribution
µ. Furthermore, say that there is a concentration bound stating that the sum of up to three
independent draws from µ satisfies some property φ. In a first stage analysis we might write
the following:

1 We give pseudocode in a functional language to illustrate our ideas, but we don’t restrict to any
particular kind of language.
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Listing 2 Applying independence bounds
sample n1 <- mu in
sample n2 <- mu in
sample n3 <- mu in

sum1 = boundsum n1 :[b] phi1 in
sum2 = boundsum (n1 , n2) :[b] phi2 in
sum3 = boundsum (n1 , n2 , n3) :[b] phi3 in
(sum1 , sum2 , sum3)

Each boundsum applies the concentration bound to a list of random samples. The returned
values [sum1, sum2, sum3] represent the sums n1, n1 + n2, and n1 + n2 + n3 respectively,
each tagged with a probabilistic assertion φ1, φ2, or φ3 and failure probability b given by the
concentration bound. For instance, the assertions might look like

φ1(x) := |x− c| < T1

φ2(x) := |x− 2c| < T2

φ3(x) := |x− 3c| < T3,

where c is the mean of distribution µ.
The guarantees from concentration bounds—φi holds with probability at least 1− β—are

probabilistic assertions, which can then be combined with the union bound. Indeed, the
two principles are often used together in paper proofs, first applying concentration bounds
relying on independence to arrive at some preliminary facts, then applying union bounds to
combine the facts.

In the second stage, the samples, along with facts derived from applying the independence
bounds, are fed into a program written in our union bound language. There, the samples
can be used and the facts assumed as needed, tracking the failure probability. In the simple
example above, after applying the independence bounds, we may want to reason about
adding up the sums. The corresponding second stage program might look as follows:

Listing 3 Second stage program
sumup (s1 :[b] { x : R | phi1 } )

(s2 :[b] { x : R | phi2 } )
(s3 :[b] { x : R | phi3 } )
:[3 * b] { out : R | dist(out , 6 * c) < T1 + T2 + T3 } =

sample x <- s1 in
sample y <- s2 in
sample z <- s3 in
return (x + y + z)

Note that the inputs to this program carry the assertions derived in the first-stage program
above. Also note that the sample operation combines the failure probability (b for each
assertion) to give the final failure probability (3b).

4.3 Case study: Martingale reasoning
Our third and final pattern involves martingales. Formally, a martingale is a sequence of
random variables X1, X2, . . . . We allow Xi to depend on all previous random variables
X1, . . . , Xi−1. The martingale property requires that this sequence is somehow “memory-
less”: the information at time step i is captured by Xi−1, rather than the whole sequence
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X1, . . . , Xi=1. More formally, for any concrete values x1, . . . , xi−1, we require

E[Xi | X1 = x1, . . . Xi−1 = xi] = xi

A canonical example is a random walk. A person starts at a point on a line (call it 0),
and at each time step, flips a fair coin. If heads, she goes to the left one unit; if tails, she
goes to the right unit. If we let Xi be her position at time i, then X1, . . . , Xi is a martingale
sequence.

A particularly powerful fact about martingales is the following theorem. We will present
it informally, since the details are somewhat technical to spell out.

I Theorem 1 (Optional Stopping Theorem, Informal). Let X0, X1, X2, . . . be a martingale
sequence, and let τ ∈ N be a stopping time—a random variable that depends only on the
martingale values before τ . For instance, we should be able to decide if τ = 3 given just
X0, X1, X2, X3. Then,

E[Xτ ] = E[X0].

Note that on the left, the time τ may be random as well, since it depends on the random
sequence.

We think the optional stopping theorem can be a powerful tool for verifying probabilistic
programs with loops. For instance, consider the following loop:

Listing 4 A loop
X = Y = 0;
while (|X| < 10) do

Y = X;
sample f <- flip (-1, 1);
X = X + f;

end

The optional sampling theorem provides a powerful and flexible way to reason about
this loop, which involves probabilistic sampling. Specifically, we can think of the iteration
when this loop terminates as a stopping time—this iteration depends only on the previous
iterations. If we know that X evolves as a martingale, then we can conclude that

E[Xfin] = E[X] = 0.

Since we know hat Xfin is 10 or −10, this immediately lets us conclude that Pr[Xfin =
10] = Pr[Xfin = −10], something that is awkward to prove via other means.

We have outlined a simple example, just to give an idea of what verification via martingales
may look like. There is a wide variety of proofs that can be carried out with similar martingale
arguments, just by choosing the correct martingale and applying the optional stopping
theorem. Picking the proper martingale to deduce a particular fact is something of a black
art, and not something we would expect could be handled automatically. In many respects,
finding the right martingale is similar to specifying a loop invariant—some human insight
seems to be required.

That being said, martingales are a powerful technique for proving facts about probabilistic
programs. For instance, it’s know that many independence bounds (as described in Section 4.2)
are actually consequences of optional stopping. Rather than building independence bounds
into our toolbox (i.e., assuming them), martingales may allow us to actually derive these
principles directly.
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5 Looking ahead

The three case studies above are meant to give just a taste of the kind of toolbox we have
in mind. Of course, there are many possible extensions; we briefly sketch a few directions
below.

5.1 More tools in the toolbox
The most natural extension is simply adding more advanced tools.

Refining the union bound

The union bound in Section 4.1 is used extremely frequently, but it is a somewhat loose bound.
There are several known refinements that give sharper bounds on the failure probability
under certain assumptions. One promising candidate is the Lovász Local Lemma [12], which
gives a better bound when each event is independent of most of the other events.

Advanced concentration bounds

While the concentration bounds in Section 4.2 require independence, there are more general
bounds that relax this requirement. For instance, the Azuma-Hoeffding bound [9] gives
concentration for martingale sequences X0, X1, . . . . This is a weaker requirement than full
independence, but can be trickier to prove.

5.2 Combining the tools
So far, we have proposed tools that focus on individual reasoning principles in a somewhat
independent fashion. However, there is no reason that these techniques must be used in
isolation. Obviously, there are some rules governing how, say, independence bounds can be
mixed with martingale reasoning, but in paper proofs, different principles can be flexibly
mixed and matched. In our view, understanding how to formalize and flexibly combine
different tools is an important direction for handling more complex proofs.

In Section 4.2, we have a proposed a very small step in this direction: mixing union
bounds and independence bounds. However, our proposal leaves much to be desired. For
instance, it requires that independence bounds must be applied first, then union bounds. For
many algorithms, this may require coding the algorithm in an unnatural way to conform to
this proof structure. An ideal solution would avoid this unnecessary burden.

5.3 Beyond accuracy
While accuracy is certainly an important property of randomized algorithms, there are a
host of other properties that could be handled by formal verification.

Incentive and game-theoretic properties

In game theory settings, the inputs to an (often randomized) algorithm are controlled by
rational agents that may seek to manipulate the output of the algorithm but changing
their input. Incentive properties guarantee that agents can’t gain much by this kind of
manipulation.

From a program verification point of view, incentive properties are relational program
properties. They reason about the relation between two runs of the same program: one where
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agents report honestly, and one where agents manipulate their inputs. As we observed in
recent work [4], basic incentive properties can be fruitfully handled with relational program
verification techniques.

However, the current state of verification for incentive properties is stuck on the same
obstacle: More complex incentive properties depend on accuracy guarantees, which the
tools we have are ill-equipped to handle. There are several examples for algorithms which
compute equilibria—in a nutshell, the goal is to coordinate players to actions where no player
has incentive to deviate (a kind of stability condition), but players may have incentive to
manipulate which equilibrium is chosen. For instance, Rogers and Roth [15] propose an
algorithm for computing Nash equilibrium that depends on the accuracy of randomized
counters; Kearns, et al. [14] propose an algorithm for computing so-called coarse correlated
equilibrium, where the incentive properties depend on the accuracy of a sophisticated learning
algorithm.

Randomized computational complexity

The computational complexity of randomized algorithms is a deep area of study. At the
most basic level, we might want to verify the complexity of a program that has probabilistic
running time. The typical notion here is expected running time, the average time the program
takes. The problem is most interesting (and most difficult) when the program runs a loop
with a probabilistic guard. In such cases, the program may not even always terminate!

The wide available literature on the subject and the restricted availability of domain
specific tools to build complexity proofs makes this area particularly attractive. A higher
level question is whether there is a reasonably small class of patterns that we can target to
verify a large number of examples.

The probabilistic method

Finally, our toolbox can be viewed as capturing reasoning about probabilistic quantities, not
just quantities related to algorithms. For general mathematical proofs, a powerful tool is
the probabilistic method, invented by Erdős [11]. This principle shows the (non-constructive)
existence of an object satisfying a specific property P by first constructing a random instance
of the property, then showing the probability P holds is strictly positive. The tools of
probability theory are powerful and broadly applicable to general mathematics; to the extent
that our toolbox can capture probabilistic reasoning, we should be able to model general
mathematical proofs.

6 Conclusion

As our field of programming languages (and more generally, formal verification) matures, it
is crucial to export our tools and techniques to other fields, so that all kinds of researchers
can hear what formal verification has to say, as it were. By interacting with other fields,
our field stands to be greatly enriched by exchanging ideas and considering new, interesting
properties to verify. Our proposal to verify properties of randomized algorithms is a step in
this program, but just a step. We hope there are many more steps to come.
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