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Abstract
System FC, the core language of the Glasgow Haskell Compiler, is
an explicitly-typed variant of System F with first-class type equality
proofs called coercions. This extensible proof system forms the
foundation for type system extensions such as type families (type-
level functions) and Generalized Algebraic Datatypes (GADTs).
Such features, in conjunction with kind polymorphism and datatype
promotion, support expressive compile-time reasoning.

However, the core language lacks explicit kind equality proofs.
As a result, type-level computation does not have access to kind-
level functions or promoted GADTs, the type-level analogues to
expression-level features that have been so useful. In this paper,
we eliminate such discrepancies by introducing kind equalities to
System FC. Our approach is based on dependent type systems
with heterogeneous equality and the “Type-in-Type” axiom, yet
it preserves the metatheoretic properties of FC. In particular, type
checking is simple, decidable and syntax directed. We prove the
preservation and progress theorems for the extended language.

Categories and Subject Descriptors F.3.3 [Studies of Program
Constructs]: Type structure

General Terms Design, Languages

Keywords Haskell, Dependent types, Equality

1. Introduction
Is Haskell a dependently typed programming language? Many
would say no, as Haskell fundamentally does not allow expressions
to appear in types (a defining characteristic of dependently-typed
languages). However, the type system of the Glasgow Haskell
Compiler (GHC), Haskell’s primary implementation, supports two
essential features of dependently typed languages: flow-sensitive
typing through Generalized Algebraic Datatypes (GADTs) (Pey-
ton Jones et al. 2006; Schrijvers et al. 2009), and rich type-
level computation through type classes (Jones 2000), type fami-
lies (Chakravarty et al. 2005), datatype promotion and kind poly-
morphism (Yorgey et al. 2012). These two features allow clever
Haskellers to encode programs that are typically reputed to need
dependent types.
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However, these encodings cannot accommodate all dependently-
typed programs. GADTs and type families are supported in FC,
GHC’s typed intermediate language, through the use of first-class
type equalities (Sulzmann et al. 2007). However, FC lacks first-
class kind equalities limiting its expressiveness. As a result, GADTs
cannot be promoted, because the type equalities in their definition
cannot be lifted to kind equalities. Furthermore, GADTs cannot
be indexed by kinds, which would require reasoning about kind
equality. Finally, although type families permit types to be defined
computationally, the lack of kind equalities means there are no
kind families in GHC. Although these features seem esoteric, they
are often necessary for encoding dependently-typed programs in
GHC (Eisenberg and Weirich 2012). We give concrete examples
that require these features in Section 2.

Our goal in this paper is to eliminate such nonuniformities with
a single blow, by unifying types and kinds. In essence, we augment
FC’s type language with dependent kinds—kinds that can depend
on types. This process is not without challenges—this dependency
has complex interactions with type equality. However, our ultimate
goal is to better support dependently typed programming in GHC,
and resolving these issues is an critical step.

Specifically, we make the following technical contributions:

• We describe an explicitly-typed intermediate language with
explicit equality proofs for both types and kinds (Sections 3
and 4). The language is no toy: it is an extension of the System
FC intermediate language used by GHC (Sulzmann et al. 2007;
Weirich et al. 2011; Yorgey et al. 2012; Vytiniotis et al. 2012).
• We extend the type preservation proof of FC to cover the new

features (Section 5). The treatment of datatypes requires an im-
portant property: congruence for the equational theory. In other
words, we can derive a proof of equality for any form of type
or kind, given equality proofs of subcomponents. The compu-
tational content of this theorem, called lifting, generalizes the
standard substitution operation. This operation is required in the
operational semantics for datatypes.
• We prove the progress theorem in the presence of kind coer-

cions and dependent coercion abstraction. The progress theo-
rem holds under consistent sets of equality axioms. Our mod-
ifications require new conditions on axioms to ensure consis-
tency, and proving consistency requires significant changes to
the proof from prior work. We discuss these changes and their
consequences in Section 6.

We have implemented our extensions to FC in a development
branch1 of GHC to demonstrate that our modifications are compat-
ible with the existing system, and do not invalidate existing Haskell

1 Available online, from
http://www.cis.upenn.edu/~eir/packages/nokinds/.



programs. This implementation involves extensions to the core lan-
guage syntax, type checker and stepper (used in optimizations).

Although our designs are inspired by the rich theory of depen-
dent type systems, applying these ideas in the context of Haskell
means that our language differs in many ways from existing work.
We detail these comparisons in Section 7.

The scope of this paper only includes the design and implemen-
tation of kind equalities in the FC intermediate language; we have
not yet modified GHC’s source language, so promoted GADTs,
kind-indexed GADTs and kind families are not (yet) available to
programmers. Although the required syntactic extensions are mi-
nor, extending GHC’s constraint solver requires careful integra-
tion with existing features. Furthermore, the encodings that work
around Haskell’s restriction that terms cannot appear in types often
impose heavy syntactic overheads—improved source-level support
for dependently-typed programming should also address this issue.
We describe this important future work in Section 8.

For reasons of space, several technical details and the proofs are
deferred to the extended version of the paper, available at http:
//www.cis.upenn.edu/~sweirich/nokinds-extended.pdf.

2. Why kind equalities?
Kind equalities enable new, useful features. In this section we use
an extended example to demonstrate how kind-indexed GADTs,
promoted GADTs, and kind families might be used in practice. Be-
low, code snippets that require kind equalities in their compilation
to FC are highlighted in gray—all other code snippets compile.2

The running example below defines “shallowly” and “deeply”
indexed representations of types, and shows how they may be
used for Generic Programming. The former use Haskell’s types
as indices (Crary et al. 1998; Yang 1998), whereas the latter use
an algebraic datatype (also known as a universe) (Altenkirch and
McBride 2002; Norell 2002). (Magalhães (2012) gives more details
describing how extensions to Haskell, including the ones described
in this paper, benefit generic programming.)

Shallow indexing Consider a GADT for type representations:

data TyRep :: * → * where
TyInt :: TyRep Int
TyBool :: TyRep Bool

GADTs differ from ordinary algebraic datatypes in that they
allow each data constructor to constrain the type parameters to
the datatype. For example, the TyInt constructor requires that the
single parameter to TyRep be Int.

We can use type representations for type-indexed programming—
a simple example is computing a default element for each type.

zero :: ∀ a. TyRep a → a
zero TyInt = 0 -- ‘a’ must be Int
zero TyBool = False -- ‘a’ must be Bool

This code pattern matches the type representation to determine
what value to return. Because of the nonuniform type index, pattern
matching recovers the identity of the type variable a. In the first
case, because the data constructor is TyInt, this parameter must be
Int, so 0 can be returned. In the second case the parameter a must
be equal to Bool, so returning False is well-typed.

However, the GADT above can only be used to represent types
of kind ?. To represent type constructors with kind ? → ?, such
as Maybe or [], we could create a separate datatype, perhaps called
TyRep1. However, this approach is ugly and inflexible—what about
tuples? Do we need a TyRep2, TyRep3, and more?

2 with GHC 7.6 and the language extensions PolyKinds, DataKinds,
GADTs, ExplicitForAll and TypeFamilies.

We might hope that kind polymorphism (Yorgey et al. 2012),
which allows datatypes to be parameterized by kind variables as
well as type variables, could be the solution. For example, the
following kind polymorphic type takes two phantom arguments,
a kind variable κ and a type variable a of kind κ.

data Proxy (a :: k) = P

However, kind polymorphism is not enough to unify the represen-
tations for TyRep—the type representation (shown below) should
constrain its kind parameter.

data TyRep :: ∀ k. k → * where
TyInt :: TyRep Int
TyBool :: TyRep Bool
TyMaybe :: TyRep Maybe
TyApp :: TyRep a → TyRep b → TyRep (a b)

This TyRep type takes two parameters, a kind k and a type of
that kind (not named in the kind annotation). The data constructors
constrain k to a concrete kind. For the example to be well-formed,
TyInt must constrain the kind parameter to ?. Similarly, TyMaybe
requires the kind parameter to be ? → ?. We call this example a
kind-indexed GADT because the datatype is indexed by both kind
and type information.

Pattern matching with this datatype refines kinds as well as
types—determining whether a type is of the form TyApp makes
new kind and type equalities available. For example, consider the
zero function extended with a default value of the Maybe type.

zero :: ∀ (a :: *). TyRep a → a
zero TyInt = 0
zero TyBool = False
zero (TyApp TyMaybe _) = Nothing

In the last case, the TyApp pattern introduces the kind variable k,
the type variables b :: k → * and c :: k, and the type equality
a ∼ b c. The TyMaybe pattern adds the kind equality k ∼ * and
type equality b ∼ Maybe. Combining the equalities, we can show
that Maybe c, the type of Nothing, is well-kinded and equal to a.3

Deep indexing Kind equalities enable additional features besides
kind-indexed GADTs. The previous example used Haskell types
directly to index type representations. With datatype promotion, we
can instead define a datatype (a universe) for type information.

data Ty = TInt | TBool

We can use this datatype to index the representation type.

data TyRep :: Ty → * where
TyInt :: TyRep TInt
TyBool :: TyRep TBool

Note that the kind of the parameter to this datatype is Ty instead
of *—datatype promotion allows the type Ty to be used as a kind
and allows its constructors, TyInt and TyBool, to appear in types.

To use these type representations, we describe their connection
with Haskell types via a type family (a function at the type level).

type family I (t :: Ty) :: *
type instance I TInt = Int
type instance I TBool = Bool

I is a function that maps the (promoted) data constructor TInt to
the Haskell type Int, and similarly TBool to Bool.

3 Note that although this definition of zero is exhaustive, it is unlikely that
an extended version of GHC will be able to determine that fact automati-
cally.



We can use these type representations to define type-indexed
operations, like before.

zero :: ∀ (a :: Ty). TyRep a → I a
zero TyInt = 0
zero TyBool = False

Pattern matching TyInt refines a to TInt, which then uses the type
family definition to show that the result type is equal to Int.

Dependently typed languages do not require an argument like
TyRep to implement operations such as zero—they can match
directly on the type of kind Ty. This is not allowed in Haskell,
which maintains a separation between types and expressions. The
TyRep argument is an example of a singleton type, a standard way
of encoding dependently typed operations in Haskell.

Note that this representation is no better than the shallow ver-
sion in one respect—I must produce a type of kind ?. What if we
wanted to encode TMaybe with Ty?

To get around this issue, we use a GADT to represent different
kinds of types. We first need a universe of kinds.

data Kind = Star | Arr Kind Kind

Kind is a normal datatype that, when promoted, can be used to
index the Ty datatype, making it a (standard) GADT.

data Ty :: Kind → * where
TInt :: Ty Star
TBool :: Ty Star
TMaybe :: Ty (Arr Star Star)
TApp :: Ty (Arr k1 k2) → Ty k1 → Ty k2

This indexing means that Ty can only represent well-kinded
types. For example TMaybe has type Ty (Arr Star Star) and
TApp TMaybe TBool has type Ty Star, while the value TApp
TInt would be rejected. Although this GADT can be expressed in
GHC, the corresponding TyRep type requires two new extensions:
promoted GADTs and kind families.

With the current design of FC, only a subset of Haskell 98
datatypes can be promoted. In particular, GADTs cannot be used
to index other GADTs. The extensions proposed in this work allow
the GADT Ty above to be used as an index to TyRep or to be
interpreted by the type family I, as shown below.

data TyRep (k :: Kind) (t :: Ty k) where
TyInt :: TyRep Star TInt
TyBool :: TyRep Star TBool
TyMaybe :: TyRep (Arr Star Star) TMaybe
TyApp :: TyRep (Arr k1 k2) a → TyRep k1 b

→ TyRep k2 (TApp a b)

We now need to adapt the type family I to work with the new
promoted GADT Ty. To do so, we must classify its return kind,
and for that, we need a kind family—a function that produces a
kind by pattern matching a type or kind argument. For example, we
can interpret values of the Kind datatype as Haskell kinds like so:

kind family IK (k :: Kind)
kind instance IK Star = *
kind instance IK (Arr k1 k2) = IK k1 → IK k2

This interpretation of kinds is necessary to define the interpre-
tation of types—without it, this definition does not “kind-check”:

type family I (t :: Ty k) :: IK k
type instance I TInt = Int
type instance I TBool = Bool
type instance I TMaybe = Maybe
type instance I (TApp a b) = (I a) (I b)

However, once I has been defined, Ty and TyRep can be used
in type-indexed operations as before.

zero :: ∀ (a :: Ty Star). TyRep Star a → I a
zero TyInt = 0
zero TyBool = False
zero (TyApp TyMaybe _) = Nothing

The examples above demonstrate all three features that kind
equalities enable: kind-indexed GADTs, kind families, and pro-
moted GADTs. While these examples are all derived from generic
programming, we have also been able to use these features to ex-
press dependently typed programs from McBride (2012) and Oury
and Swierstra (2008). We omit these examples for lack of space.

We note that the Haskell syntax used in the gray boxes above
is hypothetical, as we have not extended the surface language.
However, an important first step is to enhance the core language,
System FC, so that it is expressive enough to support these features.
We now turn to this task.

3. System FC
System FC is the typed intermediate language of GHC. GHC’s ad-
vanced features, such as GADTs and type families, are compiled
into FC as type equalities. This section reviews the current status
of System FC, describes that compilation, and puts our work in
context. FC has evolved over time, from its initial definition (Sulz-
mann et al. 2007), to extensions FC2 (Weirich et al. 2011), and
F ↑C (Yorgey et al. 2012). In this paper, we use the name FC for the
language and all of its variants. Our technical discussion contrasts
our new extensions with the most recent prior version, F ↑C .

Along with the usual kinds (κ), types (τ ) and expressions (e),
FC contains coercions (γ) that are proofs of type equality. The
judgement

Γ c̀o γ : τ1 ∼ τ2
checks that the coercion γ proves types τ1 and τ2 equal. These
proofs are used to change the types of expressions. For example, if
γ is a proof of τ1 ∼ τ2, and the expression e has type τ1, then the
expression e . γ (pronounced “e casted by γ”) has type τ2.

Making type conversion explicit ensures that the FC typing re-
lation Γ t̀m e : τ is syntax-directed and decidable. This
is not the case in the source language; there type checking re-
quires nonlocal reasoning, such as unification and type class res-
olution. Furthermore, in the presence of certain flags (such as
UndecidableInstances), it may not terminate.

Straightforward type checking is an important sanity check on
the internals of GHC—transformations and optimizations must
preserve typability. Therefore, all information necessary for type
checking is present in FC expressions. This information includes
explicit type abstractions and applications (System FC is an exten-
sion of System Fω (Girard 1972)) as well as explicit proofs of type
equality.

For example, type family definitions are compiled to axioms
about type equality that can be used in FC coercion proofs. A type
family declaration and instance in source Haskell

type family F a :: *
type instance F Bool = Int

generates the following FC axiom declaration:

axF : FBool ∼ Int

When given a source language function of type

g :: ∀ a. a → F a → Char



the expression g True 3 translates to the FC expression

g Bool True (3 . sym axF)

that instantiates g at type Bool and coerces 3 to have type FBool.
The coercion sym axF is a proof that Int ∼ FBool.

GADTs are compiled into FC so that pattern matching on their
data constructors introduces type equality assumptions into the
context. For example, consider the following simple GADT.

data T :: * → * where
TInt :: T Int

This declaration could have also been written as a normal datatype
where the type parameter is constrained to be equal to Int.

data T a = (a ∼ Int) ⇒ TInt

In fact, all GADTs can be rewritten in this form using equality
constraints. Pattern matching makes this constraint available to the
type checker. For example, the type checker concludes below that
3 has type a because the type Int is known to be equal to a.

f :: T a → a
f TInt = 3

In the translation to FC, the TInt data constructor takes this
equality constraint as an explicit argument.

TInt : ∀ a: ? . (a ∼ Int)⇒ T a

When pattern matching on values of type T a , this proof is avail-
able for use in a cast.

f = Λa: ? .λx:T a. case x of
TInt (c: a ∼ Int)→ (3 . sym c)

Coercion assumptions and axioms can be composed to form
larger proofs. FC includes a number of forms in the coercion lan-
guage that witness the reflexivity, symmetry and transitivity of type
equality. Furthermore, equality is a congruent relation over types.
For example, if we have proofs of τ1 ∼ τ2 and τ ′1 ∼ τ ′2, then we
can form a proof of the equality τ1 τ ′1 ∼ τ2 τ

′
2. Finally, composite

coercion proofs can be decomposed. For example, data construc-
tors T are injective, so given a proof of T τ1 ∼ T τ2, a proof of
τ1 ∼ τ2 can be produced.

Explicit coercion proofs are like explicit type arguments: they
are erasable from expressions and do not effect the operational
behavior of an expression. (We make this precise in Section 5.3.)
To ensure that coercions do not suspend computation, FC includes
“push rules”. For example, when a coerced value is applied to an
argument, the coercion must be “pushed” to the argument and result
of the application so that β-reduction can occur.

Γ c̀o γ : σ1 → σ2 ∼ τ1 → τ2

(v . γ) e −→ (v (e . sym (nth1 γ))) . nth2 γ
S PUSH

In this rule, if the expression (v . γ) e is well typed, then γ must
be a proof of the equality σ1 → σ2 ∼ τ1 → τ2. The coercions
sym (nth1 γ) and nth2 γ decompose this proof into coercions
for the argument (τ1 ∼ σ1) and result (σ2 ∼ τ2) of the application.

4. System FC with kind equalities
The main idea of this paper is to augment FC with proofs of
equality between kinds and to use these proofs to explicitly coerce
the kinds of types. We do so via new type form: if type τ has kind
κ1, and γ is a proof that kind κ1 equals kind κ2, then τ . γ is type
τ casted to kind κ2. There are several challenges to this extension,
which we address with the following technical solutions.

H ::= Type constants
| (→) Arrow
| ? Type/Kind
| T Type constructor
| K Promoted data constructor

w ::= Type-level names
| a Type variables
| F Type functions
| H Type constants

σ, τ, κ ::= Types and Kinds
| w Names
| ∀ a:κ. τ Polymorphic types
| ∀ c:φ. τ Coercion abstr. type
| τ1 τ2 Type/kind application
| τ . γ Casting
| τ γ Coercion application

φ ::= σ ∼ τ Propositions (coercion kinds)

γ, η ::= Coercions
| c Variables
| C ρ Axiom application
| 〈τ〉 Reflexivity
| sym γ Symmetry
| γ1 # γ2 Transitivity
| ∀η(a1, a2, c).γ Type/kind abstr. cong.
| ∀(η1,η2)(c1, c2).γ Coercion abstr. cong.
| γ1 γ2 Type/kind app. cong.
| γ(γ2, γ

′
2) Coercion app. cong.

| γ . γ′ Coherence
| γ@γ′ Type/kind instantiation
| γ@(γ1, γ2) Coercion instantiation
| nthi γ nth argument projection
| kind γ Kind equality extraction

ρ ::= τ | γ Type or coercion

e, u ::= Expressions
| x Variables
| λx: τ. e Abstraction
| e1 e2 Application
| Λa:κ. e Type/kind abstraction
| e τ Type/kind application
| λc:φ. e Coercion abstraction
| e γ Coercion application
| e . γ Casting
| K Data constructors
| case e of p → u Case analysis
| contra γ τ Absurdity

p ::= K ∆ x:τ Patterns

∆ ::= Telescopes
| ∅ Empty
| ∆, a:κ Type variable binding
| ∆, c:φ Coercion variable binding

Figure 1. Basic Grammar



• Unifying kinds and types. A language with kind polymorphism,
kind equalities, kind coercions, type polymorphism, type equal-
ities and type coercions quickly becomes redundant (and some-
what overwhelming).
Therefore, we follow pure type systems (Barendregt 1992) and
unify the syntax of types and kinds, allowing us to reuse type
coercions as kind coercions.4 Although there is no syntactic
distinction between types and kinds, we informally use the
word type (metavariables τ and σ) for those members that
classify runtime expressions, and kind (metavariable κ) for
those members that classify expressions of the type language.
As in pure type systems, types and kinds share semantics—
there is a common judgement for the validity of both. Further-
more, our rules include the ?:? axiom which means that there
is no real distinction between types and kinds. This choice sim-
plifies many aspects of the language design.
Languages such as Coq and Agda avoid the ?:? axiom because
it introduces inconsistency, but that is not an issue here. The FC
type language is already inconsistent in the sense that all kinds
are inhabited. The type safety property of FC depends on the
consistency of its coercion language, not its type language. See
Section 6 and Section 7 for more discussion of this issue.5

• Making type equality “heterogeneous”. As kinds classify types,
kind equality has nontrivial interactions with type equality.
Because kind coercions are explicit, there are equivalent types
that do not have syntactically identical kinds. Therefore, like
McBride’s “John Major” equality (2002), our definition of type
equality τ1 ∼ τ2 is heterogeneous—the types τ1 and τ2 could
have kinds κ1 and κ2 that have no syntactic relation to each
other. A proof γ of τ1 ∼ τ2 implies not only that τ1 and τ2
are equal, but also that their kinds are equal. The new coercion
form kind γ extracts the proof of κ1 ∼ κ2 from γ.
Another difficulty comes from the need to equate polymorphic
types that have coercible but not syntactically equal kinds for
the bound variable. We discuss the modification to this coercion
form in Section 4.3.1.
• Coercion irrelevance. Coercions should be irrelevant to both

the operational semantics and type equivalence. The fact that a
coercion is used to change the type of an expression, or the kind
of a type, should not influence the evaluation of the expression
or the equalities available for the type. For the former, we
maintain irrelevance by updating FC’s “push rules” to the new
semantics (see Section 5 for details). For the latter, we carefully
construct our coercion forms to ignore coercions inside types
(Section 4.3.2).
• Dependent coercion abstraction. As in prior versions of FC,

coercions are first class—they can be passed as arguments to
functions and stored in data structures (as the arguments to
data constructors of GADTs). However, this system differs from
earlier versions in that the type form for these objects, written
∀ c: φ. τ , names the abstracted proof with the variable c and
allows the type τ to refer to this coercion.
This extension is necessary for some kind-indexed GADTs. For
example, consider the following datatype, which is polymor-
phic over a kind and type parameter.

4 GHC already uses a shared datatype for types and kinds, so this merge
brings the formalism closer to the actual implementation.
5 If a consistent type language were desired for FC for other reasons, we be-
lieve that the ideas presented in this paper are adaptable to the stratification
of ? into universe levels (Luo 1994), as is done in Coq and Agda.

data T :: ∀ k. k → * where
K :: ∀ (b :: *). b → T b

The single data constructor K constrains the kind to be ? but
does not otherwise constrain the type.
After translation, the data constructor should be given the fol-
lowing FC type, where the abstracted kind coercion c is used to
cast the kind of the parameter k.

K: ∀ k: ?, b: k. ∀ c: (k ∼ ?). (b . c)→ T k b

4.1 Type system overview
The next few subsections go into more detail about these technical
points. We start with a quick tour of the type system.

The new syntax for FC appears in Figure 1; forms that are new
or modified in this paper are highlighted—these modifications are
primarily in the type and coercion languages. Also, note that ? is
a new type constant and κ is a metavariable for types. The only
difference in the grammar for expressions is that type abstractions
and kind abstractions have been merged. In general, the type system
and operational semantics for the expression language is the same
here as in prior versions of FC.

A context Γ is a list of assumptions for term variables (x), type
variables/datatypes/data constructors (w), coercion variables (c),
and coercion axioms (C).

Γ ::= ∅ | Γ, x: τ | Γ, w:κ | Γ, c:φ | Γ, C : ∀∆. φ

The type system includes the following judgements:

ẁf Γ Context validity (Figure 5)
Γ t̀y τ : κ Type/kind validity (Figure 2)
Γ p̀r φ ok Proposition validity (Figure 3)
Γ t̀m e : τ Expression typing (extended version)
Γ c̀o γ : φ Coercion validity (Figure 4)
Γ t̀el ρ⇐ ∆ Telescope arg. validity (extended version)

Each of the judgements is syntax directed: given the information
before the colon (if present), a simple algorithm determines if the
judgement holds, and recovers the information after the colon.

4.2 Type and kind formation
We next describe our extensions and modifications to the rules
classifying FC types into kinds, which appear in Figure 2. Some
of these rules are unchanged or only slightly modified from prior
versions of FC.

For example, rule K VAR looks up the kind of a type-level
name from the typing context. Unlike previous systems, this rule
now covers the kinding of promoted constructors, since w ranges
over them. Recall that datatype promotion allows data constructors,
such as TInt, to appear in types and be the arguments of type
functions. Previously, the types of data constructors had to be
explicitly promoted to kinds (Yorgey et al. 2012). Now, any data
constructor may freely be used as a type. When the constructor is
used as a type, its kind is the same as the type of the constructor
when used as a term.

Rule K ARROW gives the expected kind for the arrow type con-
structor. We use the usual syntactic sugar for arrow types, writing
τ1 → τ2 for (→) τ1 τ2. Note that the kind of the arrow type con-
structor is itself an arrow type. However, that circularity does not
cause difficulty. After that, the rule K ALLT describes when poly-
morphic types are well formed.

The next two rules describe when type application is well-
formed. Application is overloaded in these rules, but the system
is still syntax-directed—the type of the first component determines
which rule applies. We do not combine function types σ1 → σ2



Γ t̀y τ : κ

ẁf Γ w:κ ∈ Γ

Γ t̀y w : κ
K VAR

ẁf Γ

Γ t̀y (→) : ?→ ?→ ?
K ARROW

Γ, a:κ t̀y τ : ? Γ t̀y κ : ?

Γ t̀y ∀ a:κ. τ : ?
K ALLT

Γ t̀y τ1 : κ1 → κ2 Γ t̀y τ2 : κ1

Γ t̀y τ1 τ2 : κ2
K APP

Γ t̀y τ1 : ∀ a:κ1. κ2 Γ t̀y τ2 : κ1

Γ t̀y τ1 τ2 : κ2[τ2/a]
K INST

ẁf Γ

Γ t̀y ? : ?
K STARINSTAR

Γ t̀y τ1 : ∀ c:φ. κ Γ c̀o γ1 : φ

Γ t̀y τ1 γ1 : κ[γ1/c]
K CAPP

Γ, c:φ t̀y τ : ? Γ p̀r φ ok

Γ t̀y ∀ c:φ. τ : ?
K ALLC

Γ t̀y τ : κ1 Γ c̀o η : κ1 ∼ κ2 Γ t̀y κ2 : ?

Γ t̀y τ . η : κ2
K CAST

Figure 2. Kind and type formation rules

Γ p̀r φ ok

Γ t̀y σ1 : κ1

Γ t̀y σ2 : κ2

Γ p̀r σ1 ∼ σ2 ok
PROP EQUALITY

Figure 3. Proposition formation rule

and polymorphic types ∀ a:κ. σ into a single form because of type
erasure: term arguments are necessary at runtime, whereas type ar-
guments may be erased. Although this distinction is meaningless at
the kind level, it is benign. Identifying these forms at the kind level
while retaining the distinction at the term level would needlessly
complicate the language.

The rules K STARINSTAR, K CAST and K CAPP and K ALLC
check the new type forms. The first says that ? has kind ?.

To preserve the syntax-directed nature of FC, we must make the
use of kind equality proofs explicit. We do so via the new form τ .γ
of kind casts: when given a type τ of kind κ1 and a proof γ that kind
κ1 equals kind κ2, the cast produces a type of kind κ2. Because
equality is heterogeneous, the K CAST rule requires a third premise
to ensure that the new kind has the correct classification, so that
inhabited types have kind ?.

To promote GADTs we must be able to promote data construc-
tors that take coercions as arguments, requiring the new application
form τ γ. For example, the data constructor TInt (from Section 3)
requires a type argument τ and a proof that τ ∼ Int. Note that there
is no type-level abstraction over coercion—the form τ γ can only
appear when the head of τ is a promoted datatype constructor.

4.3 Coercions
Coercions are proof terms witnessing the equality between types
(and kinds), and are classified by propositions φ. The rules under
which the proofs can be derived appear in Figure 4, with the validity

Γ c̀o γ : φ

Γ t̀y τ : κ

Γ c̀o 〈τ〉 : τ ∼ τ CT REFL

Γ c̀o γ : τ1 ∼ τ2
Γ c̀o sym γ : τ2 ∼ τ1

CT SYM

Γ c̀o γ1 : τ1 ∼ τ2 Γ c̀o γ2 : τ2 ∼ τ3
Γ c̀o γ1 # γ2 : τ1 ∼ τ3

CT TRANS

Γ c̀o γ1 : τ ′1 ∼ τ ′2 Γ c̀o γ2 : τ1 ∼ τ2
Γ t̀y τ

′
1 τ1 : κ1 Γ t̀y τ

′
2 τ2 : κ2

Γ c̀o γ1 γ2 : τ ′1 τ1 ∼ τ ′2 τ2
CT APP

Γ c̀o γ1 : τ1 ∼ τ ′1
Γ t̀y τ1 γ2 : κ Γ t̀y τ

′
1 γ
′
2 : κ′

Γ c̀o γ1(γ2, γ′2) : τ1 γ2 ∼ τ ′1 γ′2
CT CAPP

Γ c̀o η : κ1 ∼ κ2

Γ, a1:κ1, a2:κ2, c: a1 ∼ a2 c̀o γ : τ1 ∼ τ2
Γ t̀y ∀ a1:κ1. τ1 : ? Γ t̀y ∀ a2:κ2. τ2 : ?

Γ c̀o ∀η(a1, a2, c).γ : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)
CT ALLT

Γ c̀o η1 : σ1 ∼ σ′1 φ1 = σ1 ∼ σ2

Γ c̀o η2 : σ2 ∼ σ′2 φ2 = σ′1 ∼ σ′2
c1 # |γ| c2 # |γ|
Γ, c1:φ1, c2:φ2 c̀o γ : τ1 ∼ τ2
Γ t̀y ∀ c1:φ1. τ1 : ? Γ t̀y ∀ c2:φ2. τ2 : ?

Γ c̀o ∀(η1,η2)(c1, c2).γ : (∀ c1:φ1. τ1) ∼ (∀ c2:φ2. τ2)
CT ALLC

Γ c̀o γ : τ1 ∼ τ2 Γ t̀y τ1 . γ
′ : κ

Γ c̀o γ . γ′ : τ1 . γ′ ∼ τ2
CT COH

c:φ ∈ Γ ẁf Γ

Γ c̀o c : φ
CT VAR

C : ∀∆. (τ1 ∼ τ2) ∈ Γ Γ t̀el ρ⇐ ∆

Γ c̀o C ρ : τ1[ρ/∆] ∼ τ2[ρ/∆]
CT AXIOM

Γ c̀o γ : H ρ ∼ H ρ′

ρi = τ ρ′i = τ ′

Γ c̀o nth
i γ : τ ∼ τ ′

CT NTH

Γ c̀o γ1 : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)

Γ c̀o nth
1 γ1 : κ1 ∼ κ2

CT NTH1TA

Γ c̀o γ1 : (∀ a1:κ1. τ1) ∼ (∀ a2:κ2. τ2)
Γ c̀o γ2 : σ1 ∼ σ2

Γ t̀y σ1 : κ1 Γ t̀y σ2 : κ2

Γ c̀o γ1@γ2 : τ1[σ1/a1] ∼ τ2[σ2/a2]
CT INST

Γ c̀o γ : (∀ c:κ1 ∼ κ2. τ) ∼ (∀ c′:κ′1 ∼ κ′2. τ ′)
Γ c̀o nth

1 γ : κ1 ∼ κ′1
CT NTH1CA

Γ c̀o γ : (∀ c:κ1 ∼ κ2. τ) ∼ (∀ c′:κ′1 ∼ κ′2. τ ′)
Γ c̀o nth

2 γ : κ2 ∼ κ′2
CT NTH2CA

Γ c̀o γ : (∀ c1:φ1. τ1) ∼ (∀ c2:φ2. τ2)
Γ c̀o γ1 : φ1 Γ c̀o γ2 : φ2

Γ c̀o γ@(γ1, γ2) : τ1[γ1/c1] ∼ τ2[γ2/c2]
CT INSTC

Γ c̀o γ : τ1 ∼ τ2 Γ t̀y τ1 : κ1 Γ t̀y τ2 : κ2

Γ c̀o kind γ : κ1 ∼ κ2
CT EXT

Figure 4. Coercion formation rules



rule for φ appearing in Figure 3. These rules establish properties of
the type equality relation:

• Equality is an equivalence relation, as seen in rules CT REFL,
CT SYM, and CT TRANS.
• Equality is congruent—types with equal subcomponents are

equal. Every type formation rule (except for the base cases like
variables and constants) has an associated congruence rule. The
exception is kind coercion τ . γ, where the congruence rule is
derivable (see Section 4.3.2). The congruence rules are mostly
straightforward; we discuss the rules for quantified types (rules
CT ALLT and CT ALLC) in Section 4.3.1.
• Equality can be assumed. Coercion variables and axioms add

assumptions about equality to the context and appear in proofs
(using rules CT VAR and CT AXIOM respectively). These ax-
ioms for type equality are allowed to be axiom schemes—they
may be parameterized and must be instantiated when used.
The general form of the type of an axiom, C : ∀∆. φ gathers
multiple parameters in a telescope, a context denoted with ∆
of type and coercion variables, each of which scope over the
remainder of the telescope as well as the body of the axiom.
We specify the list of instantiations for a telescope with ρ,
a mixed list of types and coercions. When type checking an
axiom application, we must type check its list of arguments ρ
against the given telescope. The judgement form Γ t̀el ρ ⇐ ∆
(presented in the extended version of this paper) checks each
argument ρ in turn against the binding in the telescope, scoping
variables appropriately.
• Equality can be decomposed using the next six rules. For exam-

ple, because we know that datatypes are injective type func-
tions, we can decompose a proof of the equivalence of two
datatypes into equivalence proofs for any pair of correspond-
ing type parameters (CT NTH). Furthermore, the equivalence
of two polymorphic types means that the kinds of the bound
variables are equivalent (CT NTH1TA), and that all instanti-
ations of the bound variables are equivalent (CT INST). The
same is true for coercion abstraction types (rules CT NTH1CA,
CT NTH2CA, and CT INSTC).
• Equality is heterogeneous. If γ is a proof of the equality τ1 ∼
τ2, then kind γ extracts a proof of equality between the kinds
of τ1 and τ2.

4.3.1 Congruence rules for quantified types
In prior versions of FC, the coercion ∀a: κ.γ proved the equality
proposition ∀ a:κ. τ1 ∼ ∀ a:κ. τ2, using the following rule:

Γ t̀y κ : ? Γ, a:κ c̀o γ : τ1 ∼ τ2
Γ c̀o ∀ a:κ. γ : (∀ a:κ. τ1) ∼ (∀ a:κ. τ2)

CT ALLTX

This rule sufficed because the only quantified types that could be
shown equal had the same syntactic kinds κ for the bound variable.
However, we now have a nontrivial equality between kinds. We
need to be able to show a more general proposition, ∀ a: κ1. τ1 ∼
∀ a:κ2. τ2, even when κ1 is not syntactically equal to κ2.

Without this generality, the language does not satisfy the
preservation theorem, which requires that the equality relation be
substitutive—given a valid type σ where a appears free, and a proof
Γ c̀o γ : τ1 ∼ τ2, we must be able to derive a proof between
σ[τ1/a] and σ[τ2/a]. For this property to hold, if a occurs in the
kind of a quantified type (or coercion) variable ∀ b: a. τ , then we
must be able to derive ∀ b: τ1. τ ∼ ∀ b: τ2. τ .

Rule CT ALLT shows when two polytypes are equal. The first
premise requires a proof η that the kinds of the bound variables
are equal. But, these two kinds might not be syntactically equal, so
we must have two type variables, a1 and a2, one of each kind. The

ẁf Γ

Γ t̀y ∀ a:κ. ? : ? T # Γ

ẁf Γ, T: ∀ a:κ. ?
GWF TYDATA

Γ t̀y ∀ a:κ. ∀∆. (σ → T a) : ? K # Γ

ẁf Γ, K : ∀ a:κ. ∀∆. (σ → T a)
GWF CON

Γ,∆ p̀r φ ok C # Γ

ẁf Γ, C : ∀∆. φ
GWF AX

Figure 5. Context formation rules (excerpted)

second premise of the rule adds both bindings a1: κ1 and a2: κ2

to the context as well as an assertion c that a1 and a2 are equal.
The polytypes themselves can only refer to their own variables, as
verified by the last two premises of the rule.

The other type form that includes binding is the coercion ab-
stractions, ∀ c: φ. τ . The rule CT ALLC constructs a proof that
two such types of this form are equal. We can only construct
such proofs when the abstracted propositions relate correspond-
ingly equal types, as witnessed by proofs η1 and η2. The proof
term introduces two coercion variables into the context, similar to
the two type variables above. Due to proof irrelevance, there is no
need for a proof of equality between coercions themselves. Note
that the kind of c1 is not that of η1: the kind of c1 is built from
types in both η1 and η2.

The rule CT ALLC also restricts how the variables c1 and c2

can be used in γ. The premises c1 # |γ| and c2 # |γ| prevent these
variables from appearing in the relevant parts of γ. (The freshness
operator # requires its two arguments to have disjoint sets of free
variables.) This restriction stems from our proof technique for the
consistency of this proof system; we define the erasure operation
| · | and discuss this issue in more detail in Section 6.

4.3.2 Coercion irrelevance and coherence
Although the type system includes a judgement for type equality,
and types may include explicit coercion proofs, the system does
not include a judgement that states when two coercions proofs
are equal. The reason is that this relation is trivial—all coercions
should be considered equivalent. As a result, coercion proofs are
irrelevant to type equality.

This “proof irrelevance” is guaranteed by several of the coer-
cion rules. Consider the congruence rule for coercion application,
CT CAPP: there are no restrictions on γ2 and γ′2 other than well-
formedness. Another example is rule CT INSTC—again, no rela-
tion is required between the coercions γ1 and γ2.

Not only is the identity of coercion proofs irrelevant, but it is
always possible to equate a type with a casted version of itself.
The coherence rule, CT COH, essentially says that the use of kind
coercions can be ignored when proving type equalities. Although
this rule seems limited, it is sufficient to derive the elimination and
congruence rules for coerced types, as seen below.

Γ c̀o γ : τ1 ∼ τ2 Γ t̀y τ1 . η1 : κ1 Γ t̀y τ2 . η2 : κ2

Γ c̀o (sym ((sym γ) . η2)) . η1 : τ1 . η1 ∼ τ2 . η2

(Again, note that there is no relation required between η1 and η2.)
We use the syntactic sugar γ . η1 ∼ η2 to abbreviate the coercion
(sym ((sym γ) . η2)) . η1.

4.4 Datatypes
Because we focus on the treatment of equality in the type language,
we omit most of the discussion of the expression language and its



operational semantics. However, since we have collapsed types and
kinds, we must revise the treatment of datatypes, whose construc-
tors can contain types and kinds as arguments. Previously, the ar-
guments to datatype constructors were ordered with all kind argu-
ments occurring before all type arguments (Yorgey et al. 2012).
In this language, we cannot divide up the arguments in this way.
Therefore, we again use the technique of telescopes to describe the
more complex dependency between arguments.

The validity rules for contexts (see Figure 5) restrict datatype
constants T to have kind ∀ a:κ. ?. We call the variables a the
parameters of the datatype. For example, the kind of the datatype
List is ∀ a: ?. ? and the kind of the datatype TyRep (the first version
from Section 2) is ∀ k: ?, t: k. ?. Furthermore, datatypes can only
be parameterized by types and kinds, not coercions.

Likewise, the same validity rules force data constructors K to
have types/kinds of the form

∀ a:κ. ∀∆. (σ → T a).

Each data constructor K must produce an element of T applied
to all of its parameters a:κ. Above, the form ∀∆. τ is syntactic
sugar for a list of nested quantified types. The scope of the bound
variables includes both the remainder of the telescope ∆ and the
form within the quantification (in this case, σ → T a).

The telescope ∆ describes the existential arguments to the data
constructor. These arguments may be either coercions or types, and
because of the dependency, must be allowed to freely intermix.
For example, the data constructor TyInt from Section 2 (a data
constructor belonging to TyRep : ∀ k: ?, t: k. ?) includes two
coercions in its telescope, one asserting that the kind parameter k
is ?, the second asserting that the type parameter t is Int:

TyInt : ∀ k: ?, t: k. ∀ c1: k ∼ ?, c2: t ∼ Int.TyRep k t

Likewise, the data constructor TyApp existentially binds k′, a ,
b, and c—one kind and two type variables followed by a coercion.

TyApp : ∀k: ?, t: k.∀k′: ?, a: k′ → k, b: k′, c: t ∼ a b.
TyRep (k′ → k) a → TyRep k′ b → TyRep k t

A datatype value is of the form K τ ρ e , where τ denotes the
parameters (which cannot include coercions), ρ instantiate the ex-
istential arguments, and e is the list of usual expression arguments
to the data constructor.

5. The “push” rules and the preservation theorem
Now that we have defined our extensions, we turn to the metathe-
ory: preservation and progress. While the operational semantics is
largely unchanged from prior work, we detail here a few key dif-
ferences. The most intricate part of the operational semantics of
FC are the “push” rules, which ensure that coercions do not inter-
fere with the small step semantics. Coercions are “pushed” into the
subcomponents of values whenever a coerced value appears in an
elimination context. System FC has four push rules, one for each
such context: term application, type application, coercion applica-
tion, and pattern matching on a datatype. The first three are straight-
forward and are detailed in previous work (Yorgey et al. 2012). In
this section, we focus on pattern matching and the S KPUSH rule.

5.1 Pushing coercions through constructors
When pattern matching on a coerced datatype value of the form
K τ ρ e . γ, the coercion must be distributed over all of the argu-
ments of the data constructor, producing a new scrutinee K τ ′ ρ′ e ′

as shown in Figure 6. In the rest of this section, we explain the rule
by describing the formation of the lifting context Ψ and its use in
the definition of τ ′, ρ′ and e′.

The S KPUSH rule uses a lifting operation Ψ(·) on expressions
which coerces the type of its argument (e in Figure 6). For example,

K : ∀ a:κ.∀∆. σ → (T a) ∈ Γ
Ψ = extend(context(γ); ρ; ∆)
τ ′ = Ψ2(a)
ρ′ = Ψ2(dom∆)
for each ei ∈ e,

e ′i = ei .Ψ(σi)

case ((K τ ρ e) . γ) of p → u −→
case (K τ ′ ρ′ e ′) of p → u

S KPUSH

Figure 6. The S KPUSH rule

suppose we have a data constructor K of type ∀ a: ? .F a → T a
for some type function F and some type constructor T . Consider
what happens when a case expression scrutinee (K Int e).γ, where
γ is a coercion of type T Int ∼ T τ ′. The push rule should convert
this expression to K τ ′ (e . γ′) for some new coercion γ′ showing
F Int ∼ F τ ′. To produce γ′, we need to lift the type F a to a
coercion along the coercion nth1 γ, which shows Int ∼ τ ′.

In previous work, lifting was written σ[a 7→ γ], defined by anal-
ogy with substitution. Because of the similar syntax of types and
coercion proofs, we could think of lifting as replacing a type vari-
able with a coercion to produce a new coercion. That intuition holds
true here, but we require more machinery to make this precise.

Lifting contexts We define lifting with respect to a lifting context
Ψ, which maps type variables to triples (τ1, τ2, γ) and coercion
variables to pairs (η1, η2). The forms τ1 and η1 refer to the original,
uncoerced parameters to the data constructor (Int in our example).
The forms τ2 and η2 refer to the new, coerced parameters to the
data constructor (like τ ′ in our example). Finally, the coercion γ
witnesses the equality of τ1 and τ2. No witness is needed for the
equality between η1 and η2—equality on proofs is trivial.

The lifting operation is defined by structural recursion on its
type argument. This operation is complicated by type forms that
bind fresh variables: ∀ a:κ. τ and ∀ c:φ. τ . Lifting over these types
introduces new mappings in the lifting context, marked with •7→.

Ψ ::= ∅ | Ψ, a:κ 7→ (τ1, τ2, γ) | Ψ, c:φ 7→ (γ1, γ2)

| Ψ, a:κ
•7→ (a1, a2, c) | Ψ, c:φ

•7→ (c1, c2)

(We use the notation ?7→ to refer to a mapping created either with
7→ or with •7→.) A lifting context Ψ induces two multisubstitutions
Ψ1(·) and Ψ2(·), as follows:

Definition 5.1 (Lifting context substitution). Ψ1(·) and Ψ2(·) are
multisubstitutions, applicable to types, coercions, telescopes, typ-
ing contexts, and even other lifting contexts.

1. For each a:κ
?7→ (τ1, τ2, γ) in Ψ, Ψ1(·) maps a to τ1 and Ψ2(·)

maps a to τ2.

2. For each c:φ
?7→ (γ1, γ2) in Ψ, Ψ1(·) maps c to γ1 and Ψ2(·)

maps c to γ2.

The two substitution operations satisfy straightforward substi-
tution lemmas, defined and proved in the extended version of this
paper. The usual substitution lemmas, which substitute a single type
or coercion, are a direct corollary of these lemmas.

We can now define lifting:6

Definition 5.2 (Lifting). We define the lifting of types to coercions,
written Ψ(τ), by induction on the type structure. The following
equations, to be tried in order, define the operation. (Note that the
last line uses the syntactic sugar introduced in Section 4.3.2.)

6 This definition is not just for the proof—it is implemented in GHC as part
of the optimizer to reduce case expressions.



Ψ(a) = γ when a:κ
?7→ (τ1, τ2, γ) ∈ Ψ

Ψ(τ) = 〈τ〉 when τ # dom(Ψ)
Ψ(τ1 τ2) = Ψ(τ1) Ψ(τ2)
Ψ(τ γ) = Ψ(τ)(Ψ1(γ),Ψ2(γ))
Ψ(∀ a:κ. τ) = ∀Ψ(κ)(a1, a2, c).Ψ′(τ)

where Ψ′ = Ψ, a:κ
•7→ (a1, a2, c)

and a1, a2, c are fresh
Ψ(∀ c:σ1 ∼ σ2. τ) = ∀(Ψ(σ1),Ψ(σ2))(c1, c2).Ψ′(τ)

where Ψ′ = Ψ, c:σ1 ∼ σ2
•7→ (c1, c2)

and c1, c2 are fresh
Ψ(τ . γ) = Ψ(τ) .Ψ1(γ) ∼ Ψ2(γ)

The lifting lemma establishes the correctness of the lifting op-
eration and shows that equality is congruent.

Lemma 5.3 (Lifting Lemma). If Ψ is a valid lifting context for
context Γ and the telescope ∆, and Γ,∆ t̀y τ : κ, then

Γ c̀o Ψ(τ) : Ψ1(τ) ∼ Ψ2(τ)

Lifting context creation In the S KPUSH rule, the actual context
Ψ used for lifting is built in two stages. First, context(γ) defines a
lifting context with coercions for the parameters to the datatype.

Definition 5.4 (Lifting context generation). If Γ c̀o γ : T σ ∼
T σ′ , and T: ∀ a:κ. ? ∈ Γ, where the lists σ, σ′, and a:κ are all
of length n, then define context(γ) as

context(γ) = ai:κi 7→ (σi , σ′i ,nth
i γ)

i∈1..n

Intuitively, (context(γ))1(τ) replaces all parameters a in τ
with the corresponding type on the left of ∼ in the type of γ. Simi-
larly, (context(γ))2(τ) replaces a with the corresponding type on
the right of ∼.

Next, this initial lifting context is extended with coercions using
the operation extend(·), which adds mappings for the variables in
∆, the existential parameters to the data constructor K . Due to
the dependency, we define the operation recursively. The intuition
still holds: (extend(Ψ; ρ; ∆))1(τ) replaces free variables in τ with
their corresponding “from” types, while (extend(Ψ; ρ; ∆))2(τ)
replaces a variables with their corresponding “to” types.

Definition 5.5 (Lifting context extension). Define the operation of
lifting context extension, written extend(Ψ; ρ; ∆), as:

extend(Ψ;∅;∅) = Ψ
extend(Ψ; ρ, τ ; ∆, a:κ) =

Ψ′, a:κ 7→ (τ, τ .Ψ′(κ), sym (〈τ〉 .Ψ′(κ)))
where Ψ′ = extend(Ψ; ρ; ∆)

extend(Ψ; ρ, γ; ∆, c:σ1 ∼ σ2) =
Ψ′, c:σ1 ∼ σ2 7→ (γ, sym (Ψ′(σ1)) # γ # Ψ′(σ2))
where Ψ′ = extend(Ψ; ρ; ∆)

5.2 Type preservation
Now that we have explained the most novel part of the operational
semantics, we can state the preservation theorem.

Theorem 5.6 (Preservation). If Γ t̀m e : τ and e −→ e ′ then
Γ t̀m e ′ : τ .

The proof of this theorem is by induction on the typing deriva-
tion, with a case analysis on the small-step. Most of the rules
are straightforward, following directly by induction or by substi-
tution. The “push” rules require reasoning about coercion propaga-
tion. We include the details of the rules that differ from previous
work (Weirich et al. 2010) in the extended version of this paper.

5.3 Correctness of push rules: The type erasure theorem
We care not only that the push rules preserve types, but that they do
“the right thing.” Do these rules reduce to no-ops if we erase types
and coercions?

To state this formally, we define an erasure operation | · | over
expressions. This operation erases types, coercions, and equality
propositions to trivial forms •ty, •co and •prop and removes all casts.
The full definition of this operation appears in the extended version
of this paper, and we present only the interesting cases here:

|e τ | = |e| •ty |e γ| = |e| •co |e . γ| = |e|
With this operation, we can state that erasing types, coercions and
casts does not change how expressions evaluate e .

Theorem 5.7 (Type erasure). If e −→ e ′, then either |e| = |e ′| or
|e| −→ |e ′|.

6. Consistency and the progress theorem
The proof for the progress theorem follows the same course as in
previous work (Weirich et al. 2010). The progress theorem holds
only for closed, consistent contexts. A context is closed if it does
not contain any expression variable bindings—as usual, open ex-
pressions could be stuck. We use the metavariable Σ to denote
closed contexts.

Theorem 6.1 (Progress). Assume Σ is a closed, consistent context.
If Σ t̀m e1 : τ and e1 is not a value v or a coerced value v . γ,
then there exists an e2 such that e1 −→ e2.

The definition of consistent contexts is stated using the notions
of uncoerced values and their types, value types. Formally, we
define values v and value types ξ, with the following grammars:

v ::= λx:σ. e | Λa:κ. e | λc:φ. e | K τ ρ e
ξ ::= σ1 → σ2 | ∀ a:κ. σ | ∀ c:φ. σ | T σ

Definition 6.2 (Consistency). A context Γ is consistent if ξ1 and ξ2
have the same head form whenever Γ c̀o γ : ξ1 ∼ ξ2.

Although the extensions in this paper have little effect on the
structure of this proof compared to prior work, there is still work
to do: we need an new notion of acceptable contexts to allow kind
equalities, and we must prove that these contexts are consistent.

Our consistency argument proceeds in four steps:

1. Because coercion proofs are irrelevant to type equivalence, we
start with an implicitly coerced version of the language, where
all coercion proofs have been erased. Derivations in the explicit
language can be matched up with derivations in the implicit
language (Definition 6.3) so showing consistency in the latter
implies consistency in the former.

2. We define a rewrite relation that reduces types in the implicit
system by firing axioms in the context (Figure 7).

3. We specify a sufficient condition, which we write GoodΓ
(Definition 6.5), for a context to be consistent. This condition
allows the axioms produced by type and kind family definitions.

4. We show that good contexts are consistent by arguing that the
joinability of the rewrite relation is complete with respect to
the implicit coercion proof system. Since the rewrite relation
and erasure preserve the head form of value types, this gives
consistency for both the implicit and explicit systems.

Since we don’t want consistency to depend on particular proofs
of kind equality, we prove our results with an implicit version of the
type language. This implicit language elides coercion proofs and
casts from the type language, and has judgements (denoted with a
turnstile |=) analogous to the explicit language but for a few key



Γ |= τ  τ ′

Γ |= τ  τ
TS REFL

Γ,Γ′ |= κ κ′ Γ, c: a1 ∼ a2,Γ
′ |= σ  σ′

Γ,Γ′ |= ∀ a1:κ. σ  ∀ a2:κ′. σ′
TS ALLT

Γ |= τ1  τ ′1 Γ |= τ2  τ ′2 Γ |= σ  σ′

Γ |= ∀ c: τ1 ∼ τ2. σ  ∀ c: τ ′1 ∼ τ ′2. σ′
TS ALLC

C : ∀∆. (F τ ∼ τ ′) ∈ Γ

σ1 = τ [ρ/∆] σ′1 = τ ′[ρ/∆]

Γ |= F σ1  σ′1
TS RED

c: a ∼ τ ∈ Γ

Γ |= a  τ
TS VARRED

Γ |= τ  τ ′ Γ |= σ  σ′

Γ |= τ σ  τ ′ σ′
TS APP

Γ |= τ  τ ′

Γ |= τ •co  τ ′ •co
TS CAPP

Figure 7. Rewrite relation

differences where coercions are dropped from types. To connect
the explicit and implicit systems, we define an erasure operation:

Definition 6.3 (Coercion Erasure). Given an explicitly typed term
τ or coercion γ, we define its erasure, denoted |τ | or |γ|, by
induction on its structure. The interesting cases follow:

|τ . γ| = |τ | |γ(γ1, γ2)| = |γ|(•co, •co)
|τ γ| = |τ | •co |γ . γ′| = |γ|

|γ@(γ′, γ′′)| = |γ|@(•co, •co)

All other cases follow by simply propagating the | · | operation
down the abstract syntax tree. (The full definition of this operation
appears in the extended version of this paper.)

We further define the erasure of a context Γ, denoted |Γ|, by
erasing the types and equality propositions of each binding.

Lemma 6.4 (Erasure is type preserving). If a judgement holds in
the explicit system, the judgement with coercions erased throughout
the context, types and coercions is derivable in the implicit system.

We define a nondeterministic rewrite relation on open implicit
types in Figure 7. We say that σ1 is joinable with σ2, written
Γ |= σ1 ⇔ σ2, when both can multi-rewrite to a common reduct.

Consistency does not hold in arbitrary contexts, and it is difficult
in general to check whether a context is inconsistent. Therefore,
like in previous work (Weirich et al. 2010), we give sufficient
conditions written GoodΓ, for a context to be consistent. Since
we are working with the implicit language, these conditions are
actually for the erased context.

Definition 6.5 (Good contexts). We have GoodΓ when the fol-
lowing conditions hold:

1. All coercion assumptions and axioms in Γ are of the form
C : ∀∆. (F τ ∼ τ ′) or of the form c: a1 ∼ a2. In the first form,
the arguments to the type function must behave like patterns: for
all ρ, every τi ∈ τ and every τ ′i such that Γ |= τi [ρ/∆]  τ ′i ,
there exists ρ′ such that τ ′i = τi [ρ′/∆] and Γ |= σm  σ′m for
each σm ∈ ρ and σ′m ∈ ρ′.

2. Axioms and coercion assumptions don’t overlap. For each F τ ,
there exists at most one prefix τ1 of τ such that there exist C

and ρ where C : ∀∆.F σ0 ∼ σ1 ∈ Γ and τ1 = σ0[ρ/∆].
These C and ρ are unique for every matching F τ1.

3. For each a , there is at most one assumption of the form c: a ∼
a ′ or c: a ′ ∼ a , and a 6= a′.

4. Axioms equate types of the same kind. For each C : ∀∆. (F τ ∼
τ ′) in Γ, the kinds of each side must equal: for some κ, Γ,∆ |=
F τ : κ and Γ,∆ |= τ ′ : κ and that kind must not mention
bindings in the telescope, Γ |= κ : ?.

The main lemma required for consistency is the completeness
of joinability. Here, we write fcv(γ) ⊆ dom Γ′ to indicate that all
coercion variables and axioms used in γ are in the domain of Γ′.

Lemma 6.6 (Completeness). Suppose that Γ |= γ : σ1 ∼ σ2,
and fcv(γ) ⊆ dom Γ′ for some subcontext Γ′ satisfying GoodΓ′.
Then Γ |= σ1 ⇔ σ2.

The proof of this theorem appears in the extended version of this
paper. Here, we highlight a technical point about coercions between
coercion abstractions. The completeness proof requires that all
coercion variables in a coercion γ must satisfy the requirements
of Good contexts. As a result, we need to restrict the coercion
abstraction equality rule in both the implicit and explicit systems.

Γ |= η1 : σ1 ∼ σ′1 φ1 = σ1 ∼ σ2

Γ |= η2 : σ2 ∼ σ′2 φ2 = σ′1 ∼ σ′2
c1 # γ c2 # γ
Γ, c1:φ1, c2:φ2 |= γ : τ1 ∼ τ2
Γ |= ∀ c1:φ1. τ1 : ? Γ |= ∀ c2:φ2. τ2 : ?

Γ |= ∀(η1,η2)(c1, c2).γ : (∀ c1:φ1. τ1) ∼ (∀ c2:φ2. τ2)

In this rule, the variables c1 and c2 cannot be used in γ due
to the premises c1 # γ and c2 # γ. (The analogous rule in the
explicit system includes the premises c1 # |γ| and c2 # |γ|.) This
restriction is because c1 and c2 may be inconsistent assumptions:
perhaps c1: Int ∼ Bool. If we were to introduce these into the
context, induction would fail.

The consequence of these restrictions is that there are some
types that cannot be shown equivalent, even though they are in-
tuitively equivalent. For example, there is no proof of equivalence
between the types ∀ c1: Int ∼ b. Int and ∀ c2: Int ∼ b. b—a coer-
cion between these two types would need to use c1 or c2. However,
this lack of expressiveness is not significant—in source Haskell, it
could only be observed through exotic uses of first-class polymor-
phism, which are already rare in general. Furthermore, this restric-
tion already exists in GHC7 and other dependently-typed languages
such as Agda and Coq. It is possible that a different consistency
proof would validate a rule that does not restrict the use of these
variables. However, we leave this possibility to future work.

7. Discussion and related work
Collapsing kinds and types Blurring the distinction between
types and kinds is convenient, but is it wise? It is well known that
type systems that include the Γ t̀y ? : ? rule are inconsistent log-
ics (Girard 1972). Does that cause trouble? For FC the answer is
no—inconsistency here means that all kinds are inhabited, but even
without our extensions, all kinds are already inhabited.

The Γ t̀y ? : ? rule often causes type checking to be undecid-
able in dependently typed languages (Cardelli 1986; Augustsson
1998). This axiom permits the expression of divergent terms—if
the type checker tries to reduce them it will loop. However, type
checking in FC is decidable—all type equalities are witnessed by
finite equality proofs, not potentially infinite reductions.

7 Currently, coercions between the types (Int ∼ b) ⇒ Int and (Int ∼
b)⇒ b are disallowed



At the source language level, which does reduce type expres-
sions, it is not clear whether adding the Γ t̀y ? : ? rule could
cause type inference to loop (in the absence of language extensions
such as UndecidableInstances which already make divergence
possible). However, even though this version of FC combines types
and kinds, the Haskell source language need not do so (predictable
type inference algorithms may require more traditional stratifica-
tion). This gap would not be new—differing requirements for the
core and surface languages have already led FC to be more expres-
sive than source Haskell.

Heterogeneous equality Heterogeneous equality is an essential
part of this system. It is primarily motivated by the presence of de-
pendent application (such as rules K INST and K CAPP), where
the kind of the result depends on the value of the argument. We
would like type equivalence to be congruent with respect to appli-
cation, as is demonstrated by rule CT APP. However, if all equal-
ities are required to be homogeneous, then not all uses of the rule
are valid because the result kinds may differ.

For example, consider the datatype TyRep : ∀ k: ? . ∀ b: k. ?. If
we have coercions Γ c̀o γ1 : ? ∼ κ and Γ c̀o γ2 : Int ∼ τ
(with Γ t̀y τ : κ), then we can construct the proof

Γ c̀o 〈TyRep〉 γ1 γ2 : TyRep ? Int ∼ TyRepκ τ

However, this proof requires heterogeneity because the first part
(〈TyRep〉 γ1) creates an equality between types of different kinds:
TyRep ? and TyRepκ. The first has kind ? → ?, whereas the
second has kind κ→ ?.

The coherence rule (CT COH) also requires that equality be het-
erogeneous because it equates types that almost certainly have dif-
ferent kinds. This rule, inspired by Observational Type Theory (Al-
tenkirch et al. 2007), provides a simple way of ensuring that proofs
do not interfere with equality. Without it, we would need coercions
analogous to the many “push” rules of the operational semantics.

There are several choices in the semantics of heterogeneous
equality. We have chosen the most popular, where a proposition
σ1 ∼ σ2 is interpreted as a conjunction: “the types are equal
and their kinds are equal”. This semantics is similar to Epigram
1 (McBride 2002), the HeterogeneousEquality module in the
Agda standard library,8 and the treatment in Coq.9 Epigram 2 (Al-
tenkirch et al. 2007) uses an alternative semantics, interpreted as “if
the kinds are equal then the types are equal”. (This relation requires
a proof of kind equality before coercing types.) Guru (Stump et al.
2008) and Trellys (Kimmell et al. 2012; Sjöberg et al. 2012) use yet
another interpretation which says nothing about the kinds. These
differences reflect the design of the type systems—the syntax-
directed type system of FC makes the conjunctive interpretation
the most reasonable, whereas the bidirectional type system of Epi-
gram 2 makes the implicational version more convenient. As Gu-
ru/Trellys demonstrate, it is also reasonable to not require kind
equality. We conjecture that without the kind γ coercion form, it
would be sound to drop the fourth condition from GoodΓ.

Unlike higher-dimensional type theory (Licata and Harper
2012), equality in this language has no computational content. Be-
cause of the separation between objects and proofs, FC is resolutely
one-dimensional—we do not define what it means for proofs to be
equivalent. Instead, we ensure that in any context the identity of
equality proofs is unimportant.

The implicit language Our proof technique for consistency,
based on erasing explicit type conversions, is inspired by ICC
(Miquel 2001). Coercion proofs are irrelevant to the definition of

8 http://wiki.portal.chalmers.se/agda/agda.php?n=
Libraries.StandardLibrary
9 http://coq.inria.fr/stdlib/Coq.Logic.JMeq.html

type equality, so to reason about type equality it is convenient to
ignore them entirely. Following ICC* (Barras and Bernardo 2008),
we could also view the implicit language as the “real” semantics for
FC, and consider the language of this paper as an adaptation of that
semantics with annotations to make typing decidable. Furthermore,
the implicit language is interesting in its own right as it is closer to
source Haskell, which also makes implicit use of type equalities.

However, although the implicit language allows type equality
assumptions to be used implicitly, it is not extensional type theory
(ETT) (Martin-Löf 1984): it separates proofs from programs so that
it can weaken the former (ensuring consistency) while enriching
the latter (with “type-in-type”). As a result, the proof language of
FC is not as expressive as ETT; besides the limitations on equalities
between coercion abstractions in Section 6, FC lacks η-equivalence
or extensional reasoning for type-level functions.

Explicit equality proofs In concurrent related work, van Doorn,
Geuvers and Wiedijk (Geuvers and Wiedijk 2004; van Doorn et al.
2013) develop a variant of pure type systems that replaces implicit
conversions with explicit convertibility proofs. There are strong
connections to this paper: they too use heterogeneous equality
and must significantly generalize the statement of a lifting lemma
(which they call “equality of substitutions”). However, there are
differences. Their work is based on Pure Type Systems, which gen-
eralize over sorts, rules and axioms; we only consider a single in-
stance here. They also show that the system with explicit equalities
is equivalent to the system with implicit equalities; we only show
one direction. Finally, as their work is based on intensional type
theory, it does not address coercion abstraction. Consequently, their
analogue to rule CT ALLT is the following asymmetric rule.

Γ c̀o η : κ1 ∼ κ2

Γ, a1:κ1 c̀o γ : τ1 ∼ τ2[a1 . η/a2]
Γ t̀y ∀ a1:κ1. τ1 : ?
Γ t̀y ∀ a2:κ2. τ2 : ?

Γ c̀o η a1:κ1. γ : (∀ a1:κ1. τ1) ∼ (∀ a1:κ2. τ2)
CT ALLTA

We conjecture that in our system, the above rule is equivalent to
CT ALLT.

8. Conclusions and future work
This work provides the basis for the practical extension of a popu-
lar programming language implementation. It does so without sac-
rificing any important metatheoretic properties. This extension is a
necessary step towards making Haskell more dependently typed.

The next step in this research plan is to lift these extensions
to the source language, incorporating these features within GHC’s
constraint solving algorithm. In particular, we plan future language
extensions in support of type- and kind-level programming, such
as datakinds (datatypes that exist only at the kind-level), kind syn-
onyms and kind families. Although GHC already infers kinds, we
will need to extend this mechanism to generate kind coercions and
take advantage of these new features.

Going further, we would like to also like to support a true “de-
pendent type” in Haskell, which would allow types to mention ex-
pressions directly, instead of requiring singleton encodings. One
way to extend Haskell in this way is through elaboration: we be-
lieve that the translation between source Haskell and FC could au-
tomatically insert the appropriate singleton arguments (Eisenberg
and Weirich 2012), perhaps using the class system to determine
where they are necessary. This approach would not require fur-
ther extension to FC. Alternatively, Adam Gundry’s forthcoming
dissertation10 includes Π-types in a version of System FC that is

10 Personal communication



strongly influenced by an early draft of this work. If elaboration
does not prove to be sufficiently expressive, Gundry’s work pro-
vides a blueprint for future core language extension.

In either case the interaction between dependent types and type
inference brings new research challenges. However, the results
in this paper mean that these challenges can be addressed in the
context of a firm semantic basis.
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Magalhães. Giving Haskell a promotion. In Proceedings of the 8th ACM
SIGPLAN workshop on Types in Language Design and Implementation,
TLDI ’12, pages 53–66, New York, NY, USA, 2012. ACM.


