Proving Expected Sensitivity
of Probabilistic Programs

Gilles Barthe
Thomas Espitau
Benjamin Grégoire
Justin Hsu
Pierre-Yves Strub

Program Sensitivity

Similar inputs — similar outputs

» Given: distances d;, on inputs, d,,; on outputs
» Want: for all inputs inq, ins,

dout(P(in1), P(ing)) < din(iny,inz)

Program Sensitivity

Similar inputs — similar outputs

» Given: distances d;, on inputs, d,,; on outputs
» Want: for all inputs inq, ins,

dout(P(in1), P(ing)) < din(iny,inz)

If P is sensitive and (@ is sensitive,
then Q) o P is sensitive

Probabilistic Program Sensitivity?

Similar inputs — similar output distributions

» Given: distances d;, on inputs, d,,; on output distributions
» Want: for all inputs inq,ins,

dout(P(inl), P(ZTLQ)) S dm(inl, ’ing)

Probabilistic Program Sensitivity?

Similar inputs — similar output distributions

» Given: distances d;, on inputs, d,,; on output distributions
» Want: for all inputs inq,ins,

dout(P(inl), P(an)) S dm(inl, ’ing)

What distance d,,, should we take?

Our contributions
e Coupling-based definition
of probabilistic sensitivity
e Relational program logic EPRHL

e Formalized examples:
stability and convergence

What is a good definition
of probabilistic sensitivity?

One possible definition: output distributions close

For two distributions ., s Over a set A:

dout k1, p2) = k- maxc |p (B) — pz(E)

One possible definition: output distributions close

For two distributions ., s Over a set A:

dout (P11, pi2) = K - e [(E) — p2(E))

k-Uniform sensitivity

» Larger k — closer output distributions
» Strong guarantee: probabilities close for all sets of outputs

Application: probabilistic convergence/mixing

Probabilistic program forgets initial state

» Given: probabilistic loop, two different input states
» Want: state distributions converge to same distribution

Application: probabilistic convergence/mixing

Probabilistic program forgets initial state

» Given: probabilistic loop, two different input states
» Want: state distributions converge to same distribution

Consequence of k-uniform sensitivity

» As number of iterations T increases, prove k-uniform
sensitivity for larger and larger k(T')

» Relation between k and T describes speed of convergence

Another possible definition: average outputs close

For two distributions ., po over real numbers:

dout(,ula ,u2> = k - |E[M1] _ E[MQH

Another possible definition: average outputs close

For two distributions ., po over real numbers:

dout(,ula ,u2> = k - |E[M1] _ E[MQH

k-Mean sensitivity

» Larger k — closer averages
» Weaker guarantee than uniform sensitivity

Application: algorithmic stability

Machine learning algorithm A

» Input: set S of training examples
» Output: list of numeric parameters (randomized)

Danger: overfitting

» Output parameters depend too much on training set S
» Low error on training set, high error on new examples

Application: algorithmic stability

One way to prevent overfitting

» L maps S to average error of randomized learning
algorithm A

» If |L(S) — L(S")| is small for all training sets S, S’ differing
in a single example, then A does not overfit too much

10

Application: algorithmic stability

One way to prevent overfitting

» L maps S to average error of randomized learning
algorithm A

» If |L(S) — L(S")| is small for all training sets S, S’ differing
in a single example, then A does not overfit too much

L should be mean sensitive

10

Wanted: a general definition that is ...

e Expressive

e Easy to reason about

1"

Ingredient #1: Probabilistic coupling

A coupling models two distributions with one distribution

Given two distributions uq, uo € Distr(A), a joint distribution
u € Distr(A x A) is a coupling if

(@) =1 and mo(p) = o

12

Ingredient #1: Probabilistic coupling

A coupling models two distributions with one distribution

Given two distributions uq, uo € Distr(A), a joint distribution
u € Distr(A x A) is a coupling if

(@) =1 and mo(p) = o

Typical pattern

Prove property about two (output) distributions by
constructing a coupling with certain properties

12

Ingredient #2: Lift distance on outputs

Given:

» Two distributions u1, uo € Distr(A)
» Ground distanced: A x A — RT

13

Ingredient #2: Lift distance on outputs

Given:

» Two distributions u1, uo € Distr(A)
» Ground distanced: A x A — RT

Define distance on distributions:

d7 (py, pg) 2 min E,[d]
p € Cp, p2)

13

Ingredient #2: Lift distance on outputs

Given:

» Two distributions u1, uo € Distr(A)
» Ground distanced: A x A — RT

Define distance on distributions:

A7 (11, p2) =

13

Ingredient #2: Lift distance on outputs

Given:

» Two distributions u1, uo € Distr(A)
» Ground distanced: A x A — RT

Define distance on distributions:

d7 (py, pg) 2 min E,[d]

Typical pattern

Bound distance d# between two (output) distributions by
constructing a coupling with small average distance d

13

Putting it together: Expected sensitivity

Given:

» Afunction f: A — Distr(B) (think: probabilistic program)
» Distances d;,, and d,,; on A and B

14

Putting it together: Expected sensitivity

Given:

» Afunction f: A — Distr(B) (think: probabilistic program)
» Distances d;,, and d,,; on A and B

We say f is (din, dout)-€xpected sensitive if:

& (f(ar), f(az)) < din(a1, ap)

for all inputs ay,as € A.

14

Benefits: Expressive

If dyut (b1, b2) > k for all distinct by, by:

(din, doyt)-€xpected sensitive = k-uniform sensitive

15

Benefits: Expressive

If dyut (b1, b2) > k for all distinct by, by:

(din, doyt)-€xpected sensitive = k-uniform sensitive

If outputs are real-valued and d,y:(b1,b2) = k - [by — bol:

(din, dout)-€Xpected sensitive =—> k-mean sensitive

15

Benefits: Easy to reason about

16

Benefits: Easy to reason about

f: A — Distr(B) is (da,dp)-expected sensitive

16

Benefits: Easy to reason about

f: A — Distr(B) is (da,dp)-expected sensitive
g : B — Distr(C) is (dp, dc)-expected sensitive

16

Benefits: Easy to reason about

f: A — Distr(B) is (da,dp)-expected sensitive
g : B — Distr(C) is (dp, dc)-expected sensitive

go f:A— Distr(C) is (d,dc)-expected sensitive

16

Benefits: Easy to reason about

f: A — Distr(B) is (da,dp)-expected sensitive
g : B — Distr(C) is (dp, dc)-expected sensitive

go f:A— Distr(C) is (d,dc)-expected sensitive

Abstract away distributions

» Work in terms of distances on ground sets
» No need to work with complex distances over distributions

16

How to verify this property?
The program logic EPRHL

A relational program logic EPRHL

The pWhile imperative language

cu=x<+e| x & d |if ethen celse ¢ | whileedoc|skip|¢; ¢

18

A relational program logic EPRHL

The pWhile imperative language

c:::x%e|-lifethencelsec|whileedoc|skip|c;c

18

A relational program logic EPRHL
The pWhile imperative language
cu=x<+e| x & d |if ethen celse ¢ | whileedoc|skip|¢; ¢

Judgments

- {P; d’m} C1 ~ C2 {Q;dout}

» Tagged program variables: z:(1), z(2)
» P and Q: boolean predicates over tagged variables
» d;, and d,: real-valued expressions over tagged variables

18

EPRHL judgments model expected sensitivity

A judgment

- {P; dm} C1 ~ C2 {Q;dout}

is valid if:
for all input memories (m;, m2) satisfying pre-condition P,
there exists a coupling of outputs ([¢1]m1, [e2]m2) with

» support satisfying post-condition @

» Eldout] < din(mi, mo)

19

One proof rule: Sequential composition

= {P;da} c1 ~c2 {Q;dp}
- {Q;dp} ¢} ~ ¢y {R;dc}

= {P;da} ci;c1 ~co5¢5 {R;ydco}

One proof rule: Sequential composition

= {P;da} c1 ~c2 {Q;dp}
- {Q;dp} ¢} ~ ¢y {R;dc}

= {P;da} ci;c1 ~co5¢5 {R;ydco}

One proof rule: Sequential composition

= {P;da} c1 ~c2 {Q;dp}
= {Q;dp} ¢} ~ ¢y {R;dc}

= {P;da} ci;c1 ~co5¢5 {R;ydco}

One proof rule: Sequential composition

= {P;da} c1 ~c2 {Q;dp}
- {Q;dp} ¢} ~ ¢y {R;dc}

= {P;da} ci;c1 ~co5¢5 {R;dco}

One proof rule: Sequential composition

= {P;da} c1 ~c2 {Q;dp}
- {Q;dp} ¢} ~ ¢y {R;dc}

= {P;da} ci;c1 ~ e3¢5 {R;dc}

Expected sensitivity composes

Wrapping up

More in the paper

Theoretical results

» Full proof system (sampling, conditionals, loops, etc.)
» Transitivity principle (internalizes path coupling)

Implementation in EasyCrypt, formalizations of:

» Stability for the Stochastic Gradient Method
» Convergence for the RSM population dynamics
» Mixing for the Glauber dynamics

P

Looking forward

Possible directions
» Other useful consequences of expected sensitivity?
» Formal verification systems beyond program logics?
» How to automate this proof technique?

23

Looking forward

Possible directions
» Other useful consequences of expected sensitivity?
» Formal verification systems beyond program logics?
» How to automate this proof technique?

Shameless plug: Looking for
students at UWisconsin!

23

Proving Expected Sensitivity
of Probabilistic Programs

Gilles Barthe
Thomas Espitau
Benjamin Grégoire

Justin Hsu

Pierre-Yves Strub

24

Our contributions
e Coupling-based definition
of probabilistic sensitivity
e Relational program logic EPRHL

e Formalized examples:
stability and convergence

25

