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A new approach to formulating privacy goals: the

risk to one’s privacy, or in general, any type of risk
.should not substantially increase as a result of
part|C|pat|ng in a statistical database.

This is captured by differential privacy.

— Cynthia Dwork
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- Donna Ernie
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D ratio bounded




Dwork, McSherry, Nissim, and Smith

Let € > 0 be a parameter, and suppose there is a binary adjacency
relation Adj on D. A randomized algorithm M : D — Distr(R) is

e-differentially private if for every set of outputs S C R and every

pair of adjacent inputs di, d», we have

Prowma)[x € S] < exp(e) - Prowmar)[x € S]



Composition properties

:>




Composition properties

:>

Consider randomized algorithms M : D — Distr(R) and
M : R — D — Distr(R’). If M is e-private and for every r € R,
M'(r) is €-private, then the composition is (e + €’)-private:

r & M(d); res & M(r,d); return(res)



Differential privacy is a:

relational property of
probabilistic programs.



When privacy follows from composition. . .




When privacy follows from composition. . .

(Linear types, refinement types, self products, relational Hoare logics, .. .)



When privacy doesn't follow from composition. . .




When privacy doesn't follow from composition. . .

Sragons’

How to formally verlfy7



Use approximate coupling view of
privacy to extend the logic apRHL

Combine smaller, pointwise proofs to
prove differential privacy in apRHL

Get new, much simpler proofs using
coupling composition principle

10



A crash course: apRHL [BKOZB]

Imperative language with sampling

x & L(e)
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A crash course: apRHL [BKOZB]

Imperative language with sampling

x & L(e)

approximate probabilistic Relational Hoare Logic
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Non-probablistic
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A crash course: apRHL [BKOZB]

Imperative language with sampling

x & L(e)

approximate probabilistic Relational Hoare Logic
{0 ~ |\
{®} a~c {V}

Numeric index
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Approximate liftings [BKOZB, BO]

Definition
Let R C A x A be a relation and € > 0. Two distributions
11, o € Distr(A) are related by the e-approximate lifting of R if

there exists yu;, ug € Distr(A x A) with:
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Approximate liftings [BKOZB, BO]

Definition
Let R C A x A be a relation and € > 0. Two distributions
11, o € Distr(A) are related by the e-approximate lifting of R if

there exists yu;, ug € Distr(A x A) with:

» support in R ;
» mi(pe) = p1 and mo(pRr) = p2 ;
> for every S C A X A,

Prou [z € S] <exp(e) - Prouslz € S]

Write: 17 R 149
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Interpreting judgments

F{®} ¢ ~c » {V}
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Memories related by @



Interpreting judgments

F{®} ¢ ~c 0 {V}

Memories related by @

|

Distributions related by P
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Differential privacy in apRHL

- {Adj(d1,dr)} ¢ ~cc {res; = resp}
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Differential privacy in apRHL

- {Adj(d1,dr)} ¢ ~cc {res; = resp}

Exactly e-differential privacy

14



Proof system

= {‘I/ {61(1), €2<2>/£I:1(1>.:152<2>}} T1 < €1~ T2 < €2 {‘I/}[ASSN]

|
F{ler —e2] <k} z1 & Le(e1) ~re z2 & Le(e2) {z1= 1‘2}[ A7l

FA{®} c1 ~eca {¥'} F{¥'} c) ~ech {T}
F{®} ci;¢) ~erer co5ch {T}
F{@Ab (1)} c1~veca {U} F{®A-b1(1)} di ~cdo {VT}
F{® A bi(1) = b2(2)} if by then ¢y else dy ~ if by then ¢z elsedy {¥}

[SEQ]

[ConD]

O Ae(l) <0 = —bi(1)
F{OAbI(1) Aba(2) Ak =e(l) Ae(l) < n} c1~ve ca {©Ab1(L) =ba(2) Ak < e(1)}

F{O Abi{1) = b2(2) Ae(l) < n} while by doc; ~yy_ o, while by docz {0 A —bi (L) A —b2(2)} [WHILE]

F{®} cimeca {T} &=@ =T <e 6<6

F 0] o~ e (U] [CoNsEQ]
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Proof system

= {‘I/ {61(1), €2<2)/£I:1<1>.:152<2>}} T1 < €1~ T2 < €2 {‘I’}[ASSN]

Y
F{ler —e2] <k} z1 & Le(e1) ~re z2 & Le(e2) {z1= 1‘2}[ A7)

FA{®} c1 ~eca {¥'} F{¥'} ¢} ~ech {T}
F{®} ci;¢) ~erer co5ch {T}
F{@Ab (1)} c1~veco {U} F{®PA-b1(1)} di ~cdo {VU}
F{® A bi1(1) = b2(2)} if by then c; else dy ~ if by then co else dy {¥}

[SEQ]

[ConD]

O Ae(l) <0 = —bi(l)
F{OAb1(1) Ab2(2) Ak =e(l) ANe(l) < n} 1~ ca {OAbI(1) =b2(2) Nk < e(l)}
F{OAb1(1) =b2(2) Ae(l) < n} whileb; docy ~ while by do ca {© A —b1 (1) A —ba(

37 [WHILE]

=1 €k

F{®} cime e {T} &=@ =T <e 6<6

F 0] o~ e {9} [CoNSEQ]

15



(Laplace) Sampling rule

F{ler — e <k} x1 & Le(er) ~ke x2 & Le(e2) {x1 = x2}

LaAp

16



(Laplace) Sampling rule

LaAp

F{ler — e| <k} x1 & Le(e1) ~ke X2 & Le(€2) {x1 =x}

“Pay” distance between centers

4

Assume samples are equal

16



Sequence rule

F{®} a~e {8} FH{O} ¢~ {V}
F{®} a;d ~ete O ¢, {w}

SEQ

Generalizes privacy composition

> O, W assert equality on outputs

17



Sequence rule

F{®} a~ee {0} F{O} qr~vg {V}

SE
F{®} a;d ~ete! o, {V} ©

Generalizes privacy composition

> O, W assert equality on outputs

“Costs” sum up
Assume “paid” facts in rest of program

17



The coupling perspective

Approximate liftings are
approximate versions of
probabilistic couplings
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The coupling perspective

Approximate liftings are
approximate versions of
probabilistic couplings

New liftings <= New proof rules

18



New sampling rule: [LAPNULL]

x1 ¢ FV(e1),x2 ¢ FV(e2)

F{T} x1 & Lc(e1) ~ox2 & Le(e2) {x1 —x2=e1 — e}

19



New sampling rule: [LAPNULL]

x1 ¢ FV(e1),x2 ¢ FV(e2)

F{T} x1 & Le(er1) ~ox2 & Le(e2) {x1 —x0=e1 — &}

“Pay" zero cost

4

Distance between samples

Distance between centers

19



New sampling rule: [LAPGEN]

X1 ¢ F\/(el),Xz §é FV(G2)
F{ler — (&2 + )| < k} x1 & Le(e1) ~ke x2 & Le(€2) {x1 = x2 + s}

20



New sampling rule: [LAPGEN]

x1 ¢ FV(e1),x2 ¢ FV(e2)
Fller — (&2 +5)| < k} x1 & Le(e1) ~ke x2 & Le(€2) {x1 =x + s}

“Pay” distance to shift centers

4

Assume shifted samples

20



New lifting principle: combining pointwise liftings

forallv, F{®} cg~c {(1=V)—= (e2=V)}

F{®} a1~ {1 = e}

PW-EqQ
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New lifting principle: combining pointwise liftings

forallv, F{®} c1~c {(e1=v)—= (& =)}
F{®} a1~ {1 = e}

PW-EqQ

Separate proofs for each output

21



New lifting principle: combining pointwise liftings

forall v, F{®} ci~cc {(e1=V)— (e2=V)}
F{®} a~c o {a=e}

PW-EqQ

Separate proofs for each output

4

Combine for differential privacy

21



Logical interpretation

Leibniz equality
(VV, (e1 = V) — (82 = V)) — €1 = &
Internalizing a universal quantifier

> Not sound in general

» Sound for certain equality predicates

22



Logical interpretation

V values, 3 a lifting such that . ..

4

3 a lifting such that V values, ...

28



Logical interpretation

V values, 3 a lifting such that . ..

4

3 a lifting such that V values, ...

28



Logical interpretation

V values, 3 a lifting such that . ..

4

3 a lifting such that V values, ...
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Putting it all together

24



A brief preview: the Above Threshold algorithm

AT (t,d) =1

i+ 1;x+0;

T ‘66/2(1-);

while i < k do
s & L.a(alil(d));
if (s>t Ax=0) then x < i
i<+ i+ 1;

return x

}

2
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A brief preview: the Above Threshold algorithm

AT (t,d) =1

i+ 1;x <+ 0;

ts 56/2(1'.);

while i < k do
s & L./a(qlil(d));
if (s>t Ax=0) then x < i
i<+ i+ 1;

return x

}
Stametard oA y-iaeeeprs

In fact: AT (t,—) is e-private

2



Complicated privacy proof

3.1 Privacy PmuﬂurAlgurilhm\l\
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Many slightly different versions

Input/Output shared by all SVT Algorithms

Input: A private database D, a stream of queries Q = 4,0z,
T =TTy, orasingle theshold T (sec footnote *),and c, the maximum number of queries t be answered with 1.

Output: A stream of answers as, az, -+, where

i proposc
Tnput: D,Q, AT =TT

1 (2

: for each quéry g, € Q do

: ap (42)

else
Outputa; = L

o endif

10: end for

3
4
&
7
s

‘Algorithm 3 SV in Rot's 2011 Lecture Notes
a

Algorithm 5 SVT in Stoddard ot al. 2014 [18].
Tnput: D,Q,A,T.
1 p=Lap (%2)

Figure 1: A Selection of SVT Variants

ch a; € {T, L} U R and R denotes the set of all real numbers.

in this paper._ Algorithm 2 SVT in Dwork and Roth 2014 (8]

D,Q,A,Tyc
2). count =0

for cach query g: € Q do

v = Lap (<

i£q,(D) + v > T+ pthen
Outputac = T, p = Lap (2)
count = count + 1, Abort if count
else

Outputa; = L
if

o
10: end for

Algorithm 4 SVT in Lee and Clifton 2014 [13].
Iy

: p=Lap
: for each query g, € Q do

Algorithm 6 SVT in Chen et al. 2015 [11.
Tnput: D,Q,A,T =175,

1: p=Lap (%2)

: for cach quéry g, € Q do

s Lap

e of threshold noise p__| 2A/c | 2¢A,
~

of query noise ¥,

—
S
et
Seie

‘Ouiputing g, + v, nstead of T
Stop afte oupuiting ¢ T

ier cach output of T
D
Ty Tapes

Privaey Prope

Figure 2: Differences among Algorithms (156,

each with sensitivity 10 more than A, either a sequence of thresholds

— Lyu, Su, Dong
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Use approximate coupling view of
privacy to extend the logic apRHL

Combine smaller, pointwise proofs to
prove differential privacy in apRHL

Get new, much simpler proofs using
coupling composition principle
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Use approximate coupling view of
privacy to extend the logic apRHL

Combine smaller, pointwise proofs to
prove differential privacy in apRHL

Get new, much simpler proofs using
coupling composition principle

(Also, | might be looking for a job ...)
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