
Formal Certification of Randomized Algorithms

Abstract
Randomized algorithms are a rich and fascinating class of
algorithms, with broad applications in computer science and
beyond. They also pose a formidable challenge for formal
certification: even intuitive properties of simple programs
can have elaborate proofs, requiring complex probabilistic
invariants and sophisticated theorems from probability theory.

We present Ellora, a deductive verification system de-
signed for general properties of randomized algorithms, like
probabilistic independence, high-probability bounds on er-
ror, and expected running time. Our system consists of three
principal components. First, a rich assertion logic that can
express the complex properties needed to verify randomized
algorithms. Second, a formalized suite of higher-level tools
from probability theory including probabilistic independence
and expectation, along with common tools like the Cher-
noff bound and Markov’s inequality. Third, a probabilistic
program logic for general reasoning about probabilistic pro-
grams. Our logic supports useful reasoning principles for
programs exhibiting a variety of termination behavior.

We prove soundness for a core version of Ellora, and
we demonstrate our tool by formally verifying a broad
collection of examples from the algorithms literature. The
examples demonstrate various uses of randomization, diverse
properties, and different proof styles.

1. Introduction
Randomized algorithms are one of the richest areas in the-
oretical computer science. Blessed with the power to draw
random samples during computation, simple randomized al-
gorithms can achieve efficiency unmatched by known deter-
ministic algorithms. Moreover, they offer provable guaran-
tees that deterministic algorithms simply cannot achieve, like
cryptographic indistinguishability and differential privacy.

At first glance, randomized algorithms seem to be a perfect
target for formal certification: interesting properties, rigorous
proofs that are difficult to check manually, pseudocode often
included—what’s not to like? In reality, however, formal
certification of randomized algorithms has proven to be a
formidable task. Broadly, there are three major challenges.

1. Diverse properties and invariants. Properties for random-
ized algorithms typically model (i) correctness: the algorithm
should compute the right probabilistic answer; (ii) precision:
the algorithm should have low probability of failure; and (iii)
computational efficiency, expressed probabilistically. How-
ever, randomized algorithms have many different applica-
tions, and there is a multitude of specific properties for var-
ious notions of “right answer”, “failure”, and “efficiency”.

Furthermore, their proofs can require first showing ad hoc
intermediate invariants.

2. Intricate proofs. Algorithms implemented in just a few
lines of code can require pages of arguments to justify their
correctness. Not only do these proofs reason about the proba-
bilities of various events, they also use higher-level properties
like independence of random variables and assertions about
the distribution law of certain samples, enabling sophisticated
tools from probability theory. A typical tool is a concentration
bound, which bounds the deviation of a sum of independent
random variables from its average. Applying such a bound
requires stating (and proving!) probabilistic independence,
and getting a handle on the expected value of the sum.

In contrast, existing verification systems work at a low
level of abstraction—typically reasoning only about about
raw probabilities rather than distributions. This weakness
leads to complex formal proofs and renders many algorithms
simply infeasible to verify.

3. Complex control flow. Randomized algorithms are often
presented as pseudocode in a plain imperative language with
commands for random sampling and loops. The complexity
stems from the control flow, which can be probabilistic. This
setting poses serious challenges for verification; handling
even basic properties like termination may not be cut-and-
dried, to say nothing of designing useful reasoning principles.

Our contributions. We present Ellora, a verification plat-
form for concise, high-level formal reasoning about random-
ized algorithms. The system consists of three components.

1. A rich assertion logic. We base our development on a two-
layer assertion language (§ 4), which can concisely express
key notions like probability, expectation, and independence.
The language also supports big operators, which are critical
for handling the complex invariants that are common in
randomized algorithms.

2. High-level libraries for probability theory. We pair the
assertion language with extensive formalized libraries for
probability theory, including formalizations of common tools
like concentration bounds and Markov’s inequality, and
theorems about probabilistic independence (§ 5). These
libraries enable verification to proceed at a level of abstraction
closer to the existing paper proofs, enabling more concise
and natural formal proofs.

3. A core program logic and metatheory. We define an
expressive program logic for pWhile, a core imperative
language with probabilistic sampling, and prove its soundness
(§ 6). This language is quite general: both the control flow
and termination behavior can be probabilistic.

1 2015/11/20

001 101

011

010

111

000 100

110

Figure 1. Hypercube path from 111 to 100 (D = 3)

To support useful reasoning, we propose two rules for
handling while loops. Each rule is an instance of the usual
rule for deterministic loops, with a pair of additional premises:
one to constrain the termination behavior of the loop, the other
to constrain the form of the loop invariant for soundness. Our
rules under certain termination, almost-sure termination, and
arbitrary termination.

We implement Ellora (§ 7) and demonstrate it on a diverse
set of examples from the theoretical computer science litera-
ture (§ 8). We are optimistic that machine-checked proofs of
complex randomized algorithms are now within reach.

2. A motivating example: hypercube routing
To illustrate the challenges in formally verifying randomized
algorithms, we will consider the hypercube routing algorithm
[28, 29]. While the code is relatively straightforward, the
proof is not—this work received the best paper award at the
theory conference STOC 1981. Along the way, we will see
how our system can handle different parts of this proof.

To set the stage, consider a network where each node
is labeled by a bitstring of length D, and two nodes are
connected by an edge if and only if the two corresponding
labels differ in exactly one bit position. This network topology
is known as a hypercube, a D-dimensional version of the
standard cube (a simple example with D = 3 is in Figure 1).
In this network, there is initially one packet at each node, and
each packet has a unique destination. Our goal is to design a
routing strategy that will move the packets from node to node,
following the edges, until all packets reach their destination.
In other words, we want to implement a permutation routing—
we want to permute the packets, where the permutation π is
an input to the algorithm. Furthermore, the routing should be
oblivious: each packet selects a path without considering the
behavior of the other packets.

To model the flow of packets, each packet’s current po-
sition is a node in the graph. We assume that time proceeds

in a series of steps, and at each step at most one packet can
traverse any single edge. If several packets want to use the
same edge simultaneously, one packet will be selected to
move (the precise strategy for selecting this packet will not
be important, as long as some packet is selected). The other
packets will wait at their current position; these packets are
delayed and make no progress this time step.

The routing strategy is based on bit fixing: if the current
position has bitstring i, and the target node has bitstring j, we
compare the bits in i and j from left to right, moving along
the edge that corrects the first differing bit. For instance, if we
are at 111 and we wish to reach 100, we will move along the
edge corresponding to the second position: from 111 to 101,
and then along the edge corresponding to the third position:
from 101 to 100. See Figure 1 for a picture.

While this strategy is simple and oblivious, there are
permutations π that require a total number of steps growing
linearly in the number of packets to route all packets. Valiant
proposes a simple modification, so that the total number of
steps grows logarithmically in the number of packets. In the
first phase, each packet i will first select an intermediate
destination ρ(i) uniformly at random from all nodes, and use
bit fixing to reach ρ(i). In the second phase, each packet will
use bit fixing to go from ρ(i) to the destination π(i). We will
focus on the first phase, since the reasoning for the second
phase is nearly identical. We can model the strategy with the
following code (using some syntactic sugar for the loops).

proc route (D T : int) :
var rho, pos, edgeUser : node array;
var path : path; var nextEdge : edge;
rho = pos = Array.make; edgeUser = Array.make;

for i = 0 to (numNodes D) do: rho[i] $← unifNode D end
for t = 0 to T do:

edgeUser = Array.clear edgeUser;
for i = 0 to (numNodes D) do:
path = mk i rho[i];
if (pos[i] 6= rho[i]) then

nextEdge = getEdge p pos[i];
if (edgeUser[e] = ⊥) then

edgeUser[next] = i; // Mark edge used
pos[i] = dest e // Move packet

fi
fi

end
end
return (pos,rho)

Our goal is to show that if the number of timesteps T
is 4D + 1, then all packets are reach their intermediate
destination in at most T steps, except with a small probability
2−2D of failure. Put differently, the number of timesteps
grows linearly in D, which is logarithmic in the number of
packets. At a high level, the analysis involves three steps.

Average path load: reasoning about expectation. The first
step is to consider a single packet traveling from i to ρ(i),
and to calculate the average number R(i) of other packets
that share at least one edge with i’s path P .

We can specify R(i) in Ellora as follows.

2 2015/11/20

op H (i j:node) (rho:node array) =
1(i 6= j ∧ cross (mk i rho[i]) (mk j rho[j]))

op R (i:node) (rho:node array) =
Σ [0, N) (fun j⇒ H i j rho)

Roughly, H(i, j) is 1 if the paths of packets i and j share at
least one edge, and we define the load R(i) on i’s path as the
sum of H(i,j) over all the other packets j.

In more detail, Ellora can reason about two layers of
expressions and assertions. First, state expressions are defined
in a single memory, and state assertions are predicates on
single memories. For instance, the state expression H uses
the indicator function 1(φ) which is 0 if the state assertion
φ is false, 1 if φ is true. H uses two user-defined operators to
build the state assertion: cross is true if the two input paths
share at least one edge, mk takes two nodes a, b and returns
the bit-fixing path from a to b. The system also supports big
operators: Σ is a summation with range and summand given
by the two arguments; big operators are needed to sum a
variable number of terms.

The second layer of Ellora consists of probability expres-
sions, which can represent probabilities and expectations, and
probability assertions, which are predicates on probability ex-
pressions. This layer of Ellora is interpreted in a distribution
on memories, rather than a single memory.

The basic probability expression in Ellora is
∮
e, which

stands for the expected value of expression e. Thus, we can
define the expectation of the state expression R(i):

E[R(i)] ,
∮

R(i).

We can bound this expression by using facts from the theory
of expected values and big operators in Ellora. For instance,
expectations commute with summations. In mathematics:

E

 ∑
i∈[0,N)

Xi

 =
∑

i∈[0,N)

E[Xi].

Or as a lemma in Ellora’s libraries about expected value:
lemma linexp (d:mem distr) (Xi:int⇒ real var) :
E[Σ [0, n) Xi | d] =
Σ [0, n) (fun (j:int)⇒ E[Xi j | d])

Here, d is a distribution over program memories mem, and Xi

is a function mapping integers to real-valued variables in the
memory, i.e., a family of variables indexed by an integer. The
expectation of a variable X in distribution d is written E[X | d].

High-probability bound: independence and concentration.
In the second step, we move from a bound on the expecta-
tion of R(i) to a high-probability bound: we want to show
that R(i) < 3D holds except with a small probability of
failure. The key tool is the Chernoff bound, which gives high
probability bounds of sums of independent samples:
lemma Chernoff (d:mem distr) (Xi:int→ bool var) :
let X = Σ [0, n) Xi in
E[X | d] ≤ µ ∧ indep [0, n) Xi d

⇒ Pr[X > (1 + δ)µ | d] ≤ (eδ /(1 + δ)1+δ)µ

For simplicity we have left off some of the parameters; see
§ 5 for more detail. There are two new components. First, the
conclusion is a probability assertion bounding the probability.
In Ellora, the probability of an event is simply

Pr[φ] ,
∮
1(φ),

where φ is state assertion. The other novelty is the probabilis-
tic assertion

indep [0, n) Xi d,

which asserts that a set of variables Xi for indexes in [0, n)
are mutually independent in distribution d; this assertion is
defined in Ellora’s libraries as an assertion on probabilities.

The Chernoff bound is a theorem in pure probability
theory, and the proof is complex. The libraries in Ellora
include a mechanized proof of a generalized Chernoff bound,
as well as other useful theorems like Markov’s inequality.

Back to the proof, we bounded the expectation of R
in the previous step. To apply the bound, we just need
to show that for any packet i, the expressions H(i, j) are
independent for all j. This is not precisely true, sinceH(i, j1)
and H(i, j2) both depend on the (random) destination ρ(i)
of packet i. However, it suffices to show that these variables
are independent if we fix the value of ρ(i); more precisely,
H(i, j1) and H(i, j2) are conditionally independent. The
proof relies on Ellora’s formalization of independence of
random variables and related theorems.

Bounding the delay. Finally, we put everything together to
bound the total delay of any packet. This portion of the proof
utilizes the program logic of Ellora, and rests on an intricate
loop invariant assigning an imaginary “coin” for each delay
step to some packet that crosses P . By showing that each
packet holds at most one coin, we can conclude that the i’s
delay is at most the number R(i) of crossing packets. With
our high probability bound from the previous step, we can
show that T = 4D + 1 timesteps is sufficient to route all
packets i to ρ(i), except with some small probability. More
precisely, we can prove the following judgment in Ellora’s
program logic:

{T = 4D+1} route(D,T) {Pr[∃i. pos[i] 6= rho[i]] ≤ β(D)]}

where β(D) = 2−2D, as desired.

This example demonstrates many features of our system
but it does not show an important class of reasoning: handling
algorithms with probabilistic loops, where the guard depends
on samples from the loop body. Our system has several fea-
tures (§ 6) for such programs, involving a careful termination
analysis. We will see these features later in the paper.

3. Programs
We base our development on pWhile, an extension of the
While language with two constructs: abort, which halts

3 2015/11/20

the computation with no result, and probabilistic assignment
x $← g, which assigns a value sampled according to the
distribution g to the program variable x. The syntax of
statements is defined by the grammar:

s ::= skip | abort | x := e | x $← g | s; s
| if e then s else s | while e do s

where x, e, and g range over variables in X , expressions in E
and distribution expressions in D respectively. E is defined
inductively from X and a set F of function symbols, whileD
is defined by combining a set of distribution symbols S with
expressions in E . For instance, e1 + e2 is a valid expression,
and Bern(e), the Bernoulli distribution with parameter e, is
a valid distribution expression. We assume that expressions,
distribution expressions, and statements are typed in the usual
way with D T the type for probability distributions over the
ground type T . Ellora can be flexibly extended with user-
defined functions, symbols, and types.

Semantics. Our semantics is based on sub-distributions
over a discrete (finite or countably infinite) set A, i.e., a
function µ : A→ R+ such that

wt(µ) =
∑
a∈A

µ(a) ≤ 1.

When the weight wt(µ) is equal to 1, we call µ a (proper) dis-
tribution. We let Distr A denote the set of sub-distributions
over A. A trivial example of a sub-distribution is the null
sub-distribution 0A ∈ DistrA, which maps each element of
A to 0. Note that the probabilities of µ can be real numbers;
in particular, Distr A is not discrete.

We interpret every ground type T as a discrete set [[T]] and
D as the function that maps every discrete set A to the set
Distr A; other constructors C are interpreted as functions
[[C]] from Set to Set such that the image of a discrete set is
discrete. The set State contains well-typed finite maps from
variables to values, where values are elements of V =

⋃
T [[T]],

with T a discrete type. State is countable by construction.
The set pState of probabilistic states is Distr State. One
can equip pState with the standard monadic constructions
for lifting a state to a probabilistic state (unit m), and for
monadic composition (Mlet x = µ in M).

The semantics of expressions and distribution expressions
is parametrized by a state m, and is defined in the usual way
where we require all distribution expressions to be interpreted
as proper distributions. The semantics [[s]]µ of a statement is
parametrized by a probabilistic state µ, and is defined by the
equations of Figure 2. It will be convenient to have an explicit
semantics of while as the limit of its truncated iterates. Given
a loop while b do s, we define:

• its nth truncated iterate as (if b then s)n;assert¬b
• its nth iterate as (if b then s)n,

for every natural number n, where if b then s is shorthand
for if b then s else skip, and assert¬b is shorthand for

if b then abort. Then, the semantics of a while loop is:

[[while b do s]]µ = lim
n→∞

[[(if b then s)n;assert¬b]]µ.

The sequence is increasing and bounded, so the limit is
defined.

Termination and preservation of weight. In our sub-
distrubtion semantics, the probability of non-termination
is 1 − wt(µ). A statement s is lossless iff for every sub-
distribution µ, wt([[s]]µ) = wt(µ). Programs that are not
lossless strictly reduce the sub-distribution weight, and are
called lossy. We consider two notions of termination for loops
and we will show how to enforce them with a proof system
(§ 6). A loop while b do s is:

• certainly (c.) terminating if there exists N such that for
every sub-distribution µ:

wt([[whilebdos]]µ) = wt([[(ifbthens)N ;assert¬b]]µ).

This is sufficient to ensure that the semantics of the loop
coincides with the semantics of its N -th iterate.

• almost surely (a.s.) terminating if it is lossless.

Certain termination is similar to termination in deterministic
programs, whereas almost sure termination is probabilistic
in nature: the program always terminates eventually, but we
may not be able to give a single finite bound for all executions
since particular executions may proceed arbitrarily long. Note
that certain termination does not entail losslessness.

4. Assertions
Now that we have seen the programs, we turn next to as-
sertions on programs. The assertion language is the key to
the expressivity of Ellora, allowing the user to state complex
invariants involving probability and expectation. It also forms
the foundation for the probability theory libraries we will see
in the next section, which define various properties in terms
of the assertion language.

For simplicity, we present a simplified, core version of the
assertion language. Full Ellora provides a higher-order logic,
with support for user-defined predicates and additional big
operations. As outlined in Figure 3, the core logic consists
of S-assertions and P-assertions, interpreted over states and
probabilistic states respectively. We introduce the two classes
of assertions and then follow with their semantics.

State layer. State assertions are formulas over state expres-
sions ẽ, and predicate over elements of State. They are built
from program expressions e and two classes of variables only
present in assertions: logical variables ẏ which are bound by
quantifiers and big operators, and integral variables t̂ which
are bound by integrals.

State expressions can be combined by big operators which
have the form O{ẏ|φ}ẽ, where O is a “big” version of a
commutative and associative binary operation with a neutral

4 2015/11/20

[[skip]]µ = µ

[[abort]]µ = 0

[[x := e]]µ = Mletm = µ in unitm[x := [[e]]m]

[[x $← g]]µ = Mletm = µ in Mlet v = [[g]]m in unitm[x := v]

[[s1; s2]]µ = [[s2]][[s1]]µ

[[if e then s1 else s2]]µ = Mletm = µ in (if [[e]]m then [[s1]](unit m) else [[s2]](unit m))

[[while e do s]]µ = [[if e then s;while e do s]]µ

Figure 2. Equational theory of programs

v ::= ẏ | t̂ (Extended variables)

ẽ ::= e | v | 1φ | ẽ+ ẽ | ẽ× ẽ |
∑
{ẏ|φ}

ẽ |
∏
{ẏ|φ}

ẽ (S-expr.)

φ ::= ẽ ./ ẽ | FO(φ) (S-assn.)

p ::=

∮
Γ

ẽ | p+ p | p× p |
∑
{ẏ|φ}

p |
∏
{ẏ|φ}

p (P-expr.)

η ::= p ./ p | FO(η) | η ⊕ η (P-assn.)

Figure 3. Assertion syntax

element—think Σ for +, or Π for ×. The bound logical
variable ẏ represents the index, which ranges over the natural
numbers satisfying the state assertion φ; we require this filter
to be deterministic and true for at most finitely many indices.
State expressions also contain characteristic functions 1φ of
state assertions φ, which take a statem and return 1 if φ holds
on m and 0 otherwise.

State assertions φ are built from atomic state assertions
using the usual connectives and quantifiers of first-order logic
(FO(φ) in the syntax). Atomic state assertions are well-typed
applications of predicates to state expressions; in the figure,
we only consider binary predicates ./, typically < and =.

Probabilistic layer. Since our program state is represented
by a sub-distribution µ ∈ pState, we need assertions that
predicate over elements of pState. These are probability as-
sertions, or P-assertions, and they form the second assertion
layer. P-assertions express pre- and post-conditions in our
program logic.

We begin by defining the probabilistic counterpart of state
expressions, which we call probability expressions p. These
are generalized polynomial expressions (built using constants,
addition, multiplication, and their corresponding big opera-
tors) over integral expressions

∮
Γ
ẽ, where ẽ is a state expres-

sion, and Γ is list of pairs (t̂, g) binding integration variables
to distribution expressions. Integral expressions calculate the
expected value of ẽ on the state, where integration variables t̂
are drawn from their corresponding distribution g. When Γ is
empty, we will write the integral expression as simply

∮
ẽ.

[[ẏ]]ρm , ρ(ẏ)

[[1φ]]ρm , 1[[φ]]ρm

[[
∑
{ẏ|φ} ẽ]]

ρ
m ,

∑
{t|[[φ]]ρm}[[ẽ]]

ρ[ẏ:=t]
m

[[o(ẽ)]]ρm , o([[ẽ]]ρm)

[[ẽ1 ./ ẽ2]]ρm , [[ẽ1]]ρm ./ [[ẽ2]]ρm ./ ∈{=, <}
[[FO(φ)]]ρm , FO([[φ]]ρm)

[[
∮

Γ
ẽ]]ρµ ,

∑
m

∑
tg

[[ẽ]]ρm
∏

(−,g)∈Γ [[g]]ρm(tg) µ(m)

[[o(p)]]ρµ , o([[p]]ρµ)

[[p1 ./ p2]]ρµ , [[p1]]ρµ ./ [[p2]]ρµ ./ ∈{=, <}
[[η1 ⊕ η2]]ρµ , ∃µ1, µ2, µ = µ1 + µ2 ∧ [[η1]]ρµ1

∧ [[η2]]ρµ2

[[FO(η)]]ρµ , FO([[η]]ρµ)

Figure 4. Semantics of assertions (excerpt)

Probabilistic assertions η are built from assertions on
probabilistic expressions using the usual connectives and
quantifiers, and a binary connective⊕ called split. Informally,
a probabilistic state µ satisfies the assertion η1 ⊕ η2 if µ can
be split as µ = µ1 +µ2 such that µ1 and µ2 satisfy η1 and η2

respectively; we use this connective to model the split control
flow for branching commands.

Semantics of assertions. The interpretation of logical vari-
ables is given by a logical valuation ρ mapping logical vari-
ables to values, while the interpretation of program variables
depends on the assertion layer. S-expressions and S-assertions
are interpreted in a state. Accordingly, their interpretations
[[ẽ]]ρm and [[φ]]ρm are parametrized by a state m. S-expressions
are interpreted as values, while S-assertions are interpreted
as booleans. P-expressions and P-assertions are interpreted
in a probabilistic state; their interpretations [[p]]ρµ and [[η]]ρµ
are parametrized by a probabilistic state µ. P-expressions are
interpreted as real numbers; P-assertions are interpreted as
booleans. The validity of a P-assertion η in µ with logical
variables ρ is denoted µ; ρ |= η , [[η]]ρµ = >.

An excerpt of the semantics for assertions (along with
state and probability expressions) is presented in Figure 4. We

5 2015/11/20

highlight the atomic P-expressions, the integral expressions∮
Γ
ẽ. When interpreted in a probabilistic state µ, the outer

sum is a sum over all memories m ∈ State, weighted by
µ(m). Inside the outer sum, we create one integral variable
tg for each binding (t, g) ∈ Γ, and we compute a weighted
sum over all tg with tg ranging over all values in the ground
type of distribution g weighted by g(tg). We require all sums
to be well-defined and finite.

Probability, expectation and necessity. The assertion logic
is very powerful and is sufficient to define standard concepts
from probability theory. Integral expressions can represent the
probability of state formulas: the quantity

∮
Γ
1φ interpreted

in some probabilistic state µ is simply the probability that φ
holds when for each (t, g) ∈ Γ, t is drawn from g, and when
the program variables are drawn according to the distribution
µ. Recall that we will use the notations

Pr[φ] ,
∮
1φ and E[ẽ] ,

∮
ẽ.

These are the usual definitions of probability and expec-
tation, but for sub-distributions. For instance, Pr[>] is not
always interpreted as 1—in general, it is the total weight of
the probabilistic state, which can range from 0 to 1. However,
we continue to have Pr[φ] + Pr[¬φ] = Pr[>] for every state
assertion φ in any probabilistic state.

Frequently, we want to assert that a sub-distribution is
a proper distribution with weight 1: L , Pr[>] = 1. We
also often want to assert that a state formula φ holds on all
possible terminating executions: �φ , Pr[¬φ] = 0. This �
operator is similar to a necessity operator in modal logic.

5. Libraries for probability theory
When proving properties of randomized algorithms, theorems
from probability theory are an invaluable tool. Accordingly,
a central part of Ellora is a collection of libraries defining
high-level assertions for mathematical tools like expected
value and independence of random variables, and supplying
formalized versions of associated theorems. This toolbox
allows complex reasoning in the assertion logic, especially
useful for reasoning steps that aren’t closely tied to the
program code. Ellora builds on a wide variety of useful
libraries, for instance for containers (e.g., sets and maps), base
types (e.g., real numbers), derived types (e.g., bitstrings), and
pure mathematics (e.g., basic real analysis and group theory).
The library for probabilty theory is new, and we will focus on
three useful tools. Simple versions of the definitions can be
expressed in the core logic, while the most general definitions
require the higher-order logic of full Ellora.

Distribution shapes. When analyzing a random draw from
a distribution, a fundamental piece of information is the
shape of the distribution—e.g., whether it is a coin flip
distribution or a normal distribution—along with associated
parameters like the probability of flipping heads, or the mean

and variance. We can model this information with shape
assertions: x ∼ g states that x is distributed according to the
distribution expression g. For example, we can record that a
variable has a Bernoulli (coin flip) distribution with bias w:

x ∼ Bern(w) , Pr[x] = w ∧ Pr[¬x] = 1− w,

or a geometric distribution with infinite support:

x ∼ Geom(w) , ∀ẏ ∈ N. Pr[x = ẏ] = (1− w)ẏw.

Shape assertions also provide a convenient hook where
we can access with facts about the distribution, like its range:

ẽ ∼ Unif(0, 1)⇒ �(0 ≤ ẽ ≤ 1),

or its expectation and variance:

ẽ ∼ Geom(c)⇒ E[ẽ] = 1/c ∧ E[ẽ · ẽ] = (1− c)/c2.

Independence. As we saw in the analysis of hypercube
routing, a powerful tool for analyzing randomized algorithms
is independence of random variables. Informally, a collection
of samples are independent if they are drawn from distinct
sources of randomness. To reduce notation, we will write x̄
for a list of {xi}, and x = y to mean that the two lists are the
same length, and xi = yi for each index i. Then, we define:

#〈x1, . . . , xn〉 , ∀a ∈ Z.
(Pr[>])

n−1
Pr[x = a] = Pr[x1 = a1]× · · · × Pr[xn = an].

This is the textbook definition of independence, plus a nor-
malization term depending on Pr[>] for sub-distributions.

We can also reason about independence between groups
of random variables, even if the variables inside a group may
not be independent:

〈x〉 # 〈y〉 ,∀a ∈ Z, b ∈ Z.
Pr[>] Pr[x = a ∧ y = b] = Pr[x = a] Pr[y = b].

These definitions of independence extend naturally to non-
integer variables.

This classical definition is quite low level, awkward for
proving more general properties of independent random
variables. For this reason, Ellora provides a second, more
abstract definition of independence.1 This definition relies on
Ellora’s axiomatization of discrete distributions, along with
its theory for the monadic operations on distributions:

op dunit : ’a→ ’a distr
op dbind : ’a distr→ (’a→ ’b distr)→ ’b distr

We can define marginalization (projection) and product dis-
tributions in terms of these operations:

1 Ellora provides a third definition of independence for lists of heterogenous
random variables even though Ellora is not dependently typed; the encoding
is slick but rather technical, so we omit the details here.

6 2015/11/20

op dprj (d:’a distr) (f : ’a→ ’b) : ’b distr =
dbind d (dunit ◦ f)

op dprd (d1:’a distr) (d2:’b distr) : (’a*’b) distr =
dbind d1 (fun a⇒ dbind d2 (fun b⇒ dunit (a, b))

allowing a simple definition of eindep: independence in terms
of equality of distributions (denoted by ==).

op fpair (X:mem→’a) (Y:mem→’b) (m:mem) = (X m, Y m)
op eindep (d:mem distr) (X:mem→ ’a) (Y:mem→ ’b) =
(dprj d (fpair X Y)) == dprd (dprj d X) (dprj d Y)

(For simplicity, we omit the scaling for sub-distributions.)
We prove equivalence between the abstract definition and

the pointwise definition of independence above, and use the
abstract definition to prove general facts about independence.
For instance, we can permute and project independence:

〈x〉 # 〈y〉 ⇒ 〈y〉 # 〈x〉 and x′ ⊂ x ∧ #〈x〉 ⇒ #〈x′〉;

independence is preserved by deterministic functions:

#〈x, y〉 ⇒ #〈f(x), g(y)〉;

and expectation commutes with multiplication for indepen-
dent variables:

#〈x, y〉 ⇒ Pr[>] · E[x · y] = E[x] · E[y].

Anticipating the next section, our program logic features
introduction rules for sampling commands to link indepen-
dence to the concrete program. The first rule reflects the intu-
ition behind independence—if variables x are independent,
then a new sample is also independent of x:

IND
x∗ /∈ x

{#〈x〉} x∗ $← D {#〈x, x∗〉} .

The second rule generalize to parameterized distribution:

IND-G
x∗ /∈ x

{#〈x〉 ∧ 〈x〉 # 〈x′〉} x∗ $← D(x′) {#〈x, x∗〉} .

That is, if x are independent and independent of the parame-
ters x′, then a sample from D(x′) is independent from x.

Concentration bounds. A particularly common tool in an-
alyzing probabilistic algorithms is applying concentration
bounds. Roughly, these theorems state that the sum of inde-
pendent random samples should be close to the expectation.
While some random samples may be larger than the mean,
other random samples should be smaller than the mean. Thus,
these errors should cancel out if we take many samples.

We have formalized the multiplicative Chernoff bound, a
bound for sums of independent 0/1 variables. In Ellora:

lemma Chernoff (d:mem distr) (Xi:int→ mem→ bool)
(n:int) (µ δ:real) :
let X = Σ [0, n) Xi in
0 ≤ n⇒ 1 < δ ⇒ Pr[> | d] = 1
⇒ E[X | d] ≤ µ ⇒ indep [0, n) Xi d

⇒ Pr[X > (1 + δ)µ | d] ≤ (eδ /(1 + δ)1+δ)µ

The proof is rather involved, and relies on another common
tool called Markov’s inequality, which bounds the probabili-
tiy of a large deviation in terms of the expected value:
lemma Markov (d:mem distr) (X:mem→ real) (a:real) :
0 < a⇒ �[0 ≤ X | d]
⇒ Pr[X ≥ a | d] ≤ E[X | d] / a

Ellora includes a complete formalization of both results.

6. Proof system
To connect the assertions to the program, Ellora includes a
program logic. Judgments are of the form {η} s {η′}, where
η and η′ are P-assertions.

Definition 1. A judgment {η} s {η′} is valid, written
|= {η} s {η′}, iff [[s]]µ; ρ |= η′ for every probabilistic state µ
and logical valuation ρ such that µ; ρ |= η.

6.1 Non-looping constructs
Figure 5 gathers the rules for non-looping constructs, we omit
the standard structural rules. The rules for skip, assignments
and sequences are all straightforward. The rule for abort
requires �⊥ to hold after execution; this assertion uniquely
characterizes the resulting null sub-distribution.

The rule for random assignment is a generalization of the
usual rule for deterministic assignment, using a probabilistic
substitution operator P . Informally, Pgx(η) replaces all occur-
rences of x in η with a new integration variable t̂, and records
that t̂ should be drawn distributed according to g. Formally,
Pgx(η) is defined as a substitution on η. For integrals,

Pgx
(∮

Γ′
ẽ

)
=

∮
(t̂,g)::Γ′[t̂/x]

ẽ[t̂/x].

Note that we do not perform the substitution in the distribu-
tion g. Moreover, P acts as the identity on constants.

The rule for conditionals is unusual in that the post-
condition must be of the form η1 ⊕ η2; this reflects the
semantics of a conditional statement, which first splits the
initial probabilistic state depending on the guard, runs both
branches, and recombines the results.

6.2 Loops
A well-known issue with probabilistic programs is that the
standard Hoare rule for while loops is unsound. For instance,
the judgment {�>} while true do skip {�>} is not valid,
although {�>} skip {�>} is valid. In order to recover
soundness, our rules for while loops (Figure 6) constrain the
termination behavior of the loop and the assertions used for
the loop invariant, using two kinds of side-conditions.

Probabilistic variants. When proving termination of de-
terministic programs, a typical tool is to find a variant—
an expression in the language—that decreases by a fixed
amount every iteration, with the loop exiting when the mea-
sure reaches 0. The situation is more complicated in the
probabilistic case, since a loop with a probabilistic guard may

7 2015/11/20

{η} skip {η} {η[x := e]} x := e {η}

{η} abort {�⊥} {Pgx(η)} x $← g {η}

{η0} s1 {η1} {η1} s2 {η2}
{η0} s1; s2 {η2}

{η1} s1 {η′1} {η2} s2 {η′2}
{(η1 ∧�e)⊕ (η2 ∧�¬e)} if e then s1 else s2 {η′1 ⊕ η′2}

Figure 5. Core rules: non-looping constructs

not have a measure that always decreases. Nonetheless, we
can use two probabilistic versions of the variant:

1. Deterministic variant. The first kind of variant de-
creases deterministically each iteration, just like variants for
deterministic program. This kind of variant proves certain
termination of loops if the variant is initially bounded above,
and forms part of rule [WHILE-C].

2. Bounded variant. The second kind of variant decreases
probabilistically, but with probability at least ε > 0. When
the variant does not decrease, it can either stay constant or
increases. We require that throughout all iterations, the variant
must be bounded above by some fixed constantK. Both ε and
K are fixed constants for the loop. This variant ensures a.s.
termination of loops, and forms part of rule [WHILE-PVB].

These variants are reflected in the premises of our rules
for loops (Figure 6). Ellora supports additional loop rules for
programs that terminate almost surely but have unbounded
variant, and programs that do not terminate with probability
1; we omit these rules here.

Closedness properties. Besides termination, we require the
loop invariant to satisfy certain closedness properties. Closed-
ness is a predicate on assertions useful for the soundness of
the while rules. It guarantees that the invariant is preserved
under the limit construction used to interpret while loops.

We consider here the case where the loop is lossless (the
lossy case is in the supplemental material). If the while loop is
lossless, its semantics is the limit of its non-truncated iterates:

[[while b do s]]µ = lim
n→∞

[[(if b then s)n]]µ.

Intuitively, this is because the assert statement for the nth
truncated iterate filters out executions that have not terminated
after n steps, but the weight of such executions tends to 0 as
n grows since the while loop is lossless.

Now assume that |= {η} if b then s {η}. Then for every
n ∈ N, we also have |= {η} (if b then s)n {η}. In order
to conclude that |= {η} while b do s {η}, it is therefore
sufficient to know that η is stable under limits. This precisely
corresponds to the notion of topological closedness, which

we require for our rules for almost-surely terminating loops
([WHILE-PVB] and [WHILE-PVU]).

Definition 2. An assertion η is t-closed iff for every sequence
(µn)n∈N of sub-distributions and logical valuation ρ s.t.
limn→∞ µn = µ, if µn; ρ |= η for all n ∈ N then µ; ρ |= η.

We establish the closedness side-conditions via syntactic
conditions, deferred to the supplemental material.

Proof rules. The rule [WHILE-C] (Figure 6) applies to
certainly terminating loops, by requiring a state expression
ẽ that certainly decreases at each iteration until it is 0, when
the guard of the loop must be false. There is no requirement
on the closedness of the loop invariant.

The rule [WHILE-PVB] (Figure 6) requires that the loop
invariant is t-closed, and enforces a.s. termination of the loop.
Informally, it assumes that the variant ẽ is (B)ounded and
decreases with strictly positive probability; the amount of
decrease ε is a strictly positive real constant.

6.3 Soundness
We can now prove soundness of our logic; details are in the
supplemental material.

Theorem 1 (Soundness). Every judgment {η} s {η′} prov-
able using the rules of our logic is valid.

Proof. By induction on the derivation of {η} s {η′}.

7. Implementation and evaluation
We have built a prototype implementation of Ellora on top
of WizWoz [name blinded], a tool-assisted framework for
cryptographic proofs. WizWoz combines the benefits of proof
assistants and program verifiers by letting users invoke exter-
nal tools, like SMT-solvers, at any point during interactive,
tactic-based proofs. Moreover, WizWoz provides a mature
set of libraries (for sets, maps, lists, arrays, etc.), which we
extended with new libraries for probability theory.

We verified all the programs presented in § 8 as well as
some additional examples from the randomized algorithm
literature (such as polynomial identity test, private running
sums, properties about random walks, etc.) with our prototype.
The verified proofs follow the corresponding proofs quite
closely. The length of these paper proofs varies from few
lines (like in the case of vertex-cover) to a page (like in the
case of hypercube routing). We summarize in Table 1 the
length of the verified program (LC) and the length of the
formal proof (FPLC) for each example.

Ellora, WizWoz, and examples are available at [url blinded].

8. Examples
In this section, we will demonstrate Ellora on a selection of
examples (more examples are available in the supplemental
material). Together, they exhibit a wide variety of different
proof techniques and reasoning principles, while demonstrat-
ing various uses of randomization in algorithmic design.

8 2015/11/20

GENERIC RULE:

WHILE-X
{η} if b then s {η} CX
{η} while b do s {η ∧�¬b}

SIDE CONDITIONS:

CC , {L ∧�(ẽ = k ∧ 0 < k ∧ b)} s {L ∧�(ẽ < k)}
|= η ⇒ (∃ẏ. �ẽ ≤ ẏ ∧�(ẽ = 0⇒ ¬b))

ẽ : N

CPVB , {L ∧�(ẽ = k ∧ 0 < k ≤ K ∧ b)} s {L ∧�(0 ≤ ẽ ≤ K) ∧ Pr[ẽ < k] ≥ ε}
|= η ⇒ �(0 ≤ ẽ ≤ K ∧ ẽ = 0⇒ ¬b)
|= η tclosed

ẽ : N

Figure 6. Core rules: loops

Example LC FPLC
hypercube routing 100 691
coupon collector 27 270

vertex cover 30 70
pairwise-independent bits 30 240

private running sums 22 80
polynomial identity testing 22 45

random walk 16 50
dice sampling 10 55

matrix product testing 20 85

Table 1. Benchmarks

8.1 Randomization for approximation: vertex cover
We begin with a classical application of randomization:
approximation algorithms for computationally hard problems.
For problems that take long time to solve in the worst case, we
can sometimes devise efficient algorithms that find a solution
that is “nearly” as good as the true solution.

Our first example illustrates a famous approximation
algorithm for the vertex cover problem. The input is a graph
described by vertices V and edges E. The goal is to output a
vertex cover: a subset C ⊆ V such that each edge has at least
one endpoint in C, and such that C is as small as possible.

It is known that this problem is NP-complete, but there is
simple randomized algorithm that returns a vertex cover that
is at on average at most twice the size of the optimal vertex
cover. The algorithm proceeds by maintaining a current cover
(initially empty) and considering each edge in order. If neither
endpoint is in current cover, the algorithm adds one of the
two endpoints uniformly at random. The Ellora program is:

proc VC (E : set<edge>) :
var set<node> C = ∅;
for (e1,e2) in E do
if (e1 /∈ C) ∧ (e2 /∈ C) then

b $← {0,1};
C ← (b ? e1 : e2) ∪ C;

fi
end

Here, we represent edges as a finite set of pairs of nodes. We
loop through the edges, adding one point of each uncovered

edge to the cover C uniformly at random. The operator
b ? e1 : e2 returns e1 if b is true, and e2 if not.

To prove the approximation guarantee, we first assume
that we have a set of nodes C∗. We only assume that C∗ is a
valid vertex cover; i.e., each edge has at least one endpoint in
C∗. Then, we use the following loop invariant:

E[size(C \ C∗)] ≤ E[size(C ∩ C∗)]. (1)

Given the loop invariant, we can prove the conclusion by
letting C∗ be the cover OPT of minimal size, and reasoning
about intersections and differences of sets.

Clearly the invariant is initially true. To see why the
invariant is preserved, let e be the current edge, with both
endpoints out of C. Since C∗ is a vertex cover, it has at least
one endpoint of e. Since our algorithm includes an endpoint
of e uniformly at random, the probability we choose a vertex
not in C∗ is at most 1/2, so the expectation on the left in
Equation (1) increases by at most 1/2. If e is not covered in
C but is covered by C∗, there is at least a 1/2 probability that
we increase the intersection C ∩ C∗, so the right side in eq. (1)
increases by at least 1/2. Thus, the invariant is preserved, and
we can prove

{isVC(C∗, E)} VC(E) {E[size(C \ C∗)] ≤ E[size(C ∩ C∗)]}

and by reasoning on intersection and difference of sets,

{isVC(C∗, E)} VC(E) {E[size(C)] ≤ 2 · E[size(C∗)]}.

8.2 Modeling infinite processes: the coupon collector
Our second example is the coupon collector process. The
algorithm draws a uniformly random coupon on each day,
terminating when it has drawn at least one of each kind of
coupon. Our goal is to bound the average number of steps we
need before terminating. In Ellora,

proc coupon (N : int) :
var int cp[N], time[N];
var int X = 0;
for p = 1 to N do:
ct ← 0;

cur $← Unif[N];
while (cp[cur] = 1) do:

9 2015/11/20

ct ← ct + 1;

cur $← Unif[N];
end
time[p] ← ct;
cp[cur] ← 1;
X ← X + time[p];

end

The code uses the array cp to keep track of the coupons seen
so far. We divide the loop into a sequence of phases (the outer
loop) where in each phase we repeatedly sample coupons and
wait until we see a new coupon (the inner loop). We keep
track of the number of steps we spend in each phase p in
time[p], and the total number of steps in X.

The code involves two nested loops, and so we have
two loop invariants. Handling the inner while loop has a
probabilistic guard: every iteration, there is a finite probability
that the loop terminations (i.e., if we draw a new coupon), but
there is no finite bound on the number of iterations we need
to run. We will show that we can apply rule [WHILE-PVB].

For the termination analysis, we use an variant that is 1 if
we have not seen a new coupon, and 0 if we have seen a new
coupon. Note that each iteration, we have a strictly positive
probability ρ(p) of seeing a new coupon and decreasing the
variant. Furthermore, the variant is bounded by 1, and the
loop exits when the invariant reaches 0. So, the termination
precondition of [WHILE-PVB] holds.

For the inner loop invariant ηin, we use the formula:

∀c ∈ N.



(�(cp[cur] = 1⇒ c ≤ ct)
∧ Pr[cp[cur] = 0 ∧ c = ct] = (1− ρ(p))cρ(p))
∨
(∃k ∈ [0, c). �(cp[cur] = 1⇒ ct = k)
∧ �(cp[cur] = 0⇒ ct < k)
∧ Pr[cp[cur] = 1 ∧ ct = k] = (1− ρ(p))k).

Note that this is a t-closed formula; there is an existential in
the second disjunction, but it has finite domain (for fixed c).

For intuition, for every natural number c there are two
cases: Either we have already unrolled more than c iterations,
or not. The first disjunction corresponds to the first case,
since loops where the guard is true all have ct ≥ c, and the
probability of stopping at c iterations is (1− ρ(p))cρ(p)—we
see c old coupons, and then a new one.

Otherwise, we have the second disjunction. The integer k
represents the current number of unfoldings of the loop. If
the loop is continuing then k = ct. If the loop terminated, it
terminated before the current iteration: ct < k. Furthermore,
the probability of continuing at iteration k is (1− ρ(p))k.

At the end of the loop we have �cp[cur] = 0. So, by the
first conjunct and some manipulations,

∀c ∈ N. Pr[c = ct] = (1− ρ(p))cρ(p)

holds when the inner loop exits, precisely describing the
distribution of iterations ct as Geom(ρ(p)) by definition.

The outer loop is easier to handle, since the loop has a
fixed bound N on the number of iterations so we can use rule

[WHILE-C]. For the loop invariant, we take:

ηout ,


∀i ∈ [p− 1]. t[i] ∼ Geom(ρ(i))

∧ �
(
X =

∑
i∈[p−1] t[i]

)
∧ �

(∑
i∈[N] cp[i] = p− 1

)
∧ ∀i ∈ [N]. �(cp[i] ∈ {0, 1}).

The first conjunction states that the previous waiting times
follow a geometric distribution with parameter ρ(i); this
assertion is verified by the previous reasoning on the inner
loop. The second assertion asserts that we are keeping track
of the total waiting time so far. The final two assertions state
that there are at most p− 1 flags set in cp. Thus,

{L} coupon(N)
{
∀i ∈ [N]. time[i] ∼ Geom(ρ(i))
∧ �X =

∑
i∈[N] time[i]

}
.

at the end of the outer loop. By applying linearity of ex-
pectations and a fact about the expectation of the geometric
distribution, we can bound the expected running time:

{L} coupon(N)
{
E[X] =

∑
i∈[N]

(
N

N−i+1

)}
.

8.3 Limited randomness: pairwise-independent bits
As we have seen in the routing example, independent random
bits are a powerful tool in randomized algorithms. However,
they are also scarce resource—fresh randomness for each bit
is needed. For many applications, e.g. hashing, the weaker
notion of pairwise independence suffices.

If we have a collection of random variables Xi, we can
express pairwise independence with the following assertion:

∀i, j ∈ N. i 6= j ⇒ Xi # Xj .

Informally, pairwise independence says that if we see the
result of Xi, we do not gain information about all other
variables Xk. However, if we see the result of two variables
Xi, Xj , we may gain information about Xk.

There are many constructions in the algorithms literature
that magnify a small number of mutually independent bits
into more pairwise-independent bits. Here is one procedure:

proc pwInd (N : int) :

var bool X[2N], B[N];
for i = 1 to N do:

B[i] $← Ber(1/2);
end

for j = 1 to 2N do:
X[j] ← 0;
for k = 1 to N do:
if k ∈ bits(j) then X[j] ←X[j] ⊕ B[k] fi

end
end

Above, ⊕ is the boolean XOR operation; bits(j) returns the
set of bit positions that are set in the binary expansion of j.

Guaranteeing pairwise-independence requires delicate rea-
soning about the independence of random variables. Roughly,

10 2015/11/20

we rely on a key fact about independence (which we fully
verify): for a uniformly distributed random boolean random
variable Y , and a random variable Z (of any type),

Y # Z ⇒ Y ⊕ f(Z) # g(Z) (2)

for any two boolean functions f, g. Then, note that

X[i] =
⊕

{j∈bits(i)}

B[j]

where the big XOR operator ranges over the indices j
where the bit representation of i has bit j set. For any two
i, k ∈ [1, . . . , 2N] distinct, there is a bit position in [1, . . . , N]
where i and k do not agree. Call this position r and suppose
it is set in i but not in k. By rewriting,

X[i] = B[r]⊕
⊕

{j∈bits(i)\r}

B[j] and X[k] =
⊕

{j∈bits(k)\r}

B[j].

Since B[j] are all independent, X[i] # X[k] follows from
eq. (2) takingZ to be the distribution on tuples 〈B[1], . . . , B[N]〉
excluding B[r]. This verifies the claimed specification:

{L} pwInd(N) {L ∧ ∀i, k ∈ [2N]. i 6= k ⇒ X[i] # X[k]}.

9. Related work
There is a long tradition of research in the formal verifi-
cation of probabilistic programs. Early works by Kozen
[17], Ramshaw [22], Reif [24], Sharir et al. [27] laid the
groundwork for verification of randomized algorithms.

Program logics for probabilistic programs. In a series of
works initiated by Morgan et al. [21] and described in their
textbook [18], McIver, Morgan, and their collaborators de-
velop deductive verification methods for programs written
in pGCL, an imperative language with probabilistic choice
and (demonic) non-determinism; there are many works build-
ing on top of this language [10, 11, 14, 16]. In pGCL, the
semantics of programs is based on weakest preconditions,
and assertions are interpreted as positive-real-valued func-
tions over states. We use Hoare-style rules, but more impor-
tantly we use two different kinds of assertions interpreted as
boolean-valued functions on states and probabilistic states
respectively. Moreover, our language supports general dis-
tribution expressions while pGCL is limited to distributions
built using probabilistic choice. The two-layer assertion lan-
guage and the primitive support for distribution expressions
are key for supporting expressive and concise assertions.

den Hartog [8] uses a logic similar pGCL (but in Hoare-
style). Additionally, his while rule is based on a semantic
closure condition. The use of semantic conditions is unde-
sirable for verification, because it requires reasoning about
the semantics of programs. Moreover, neither pGCL nor the
logic by den Hartog [8] support big operations, another key
ingredient to have expressive and concise assertions.

More recent works develop program logics for restricted
settings. Chadha et al. [3] give a decidable Hoare logic
similar to ours for a probabilistic language without while
loops; decidability imposes strong restrictions on program
values. Rand and Zdancewic [23] formalize a Hoare logic
for probabilistic programs; their setting is more restrictive
than ours, both for the assertion language and for the class
of programs considered. In particular, they impose strong
restrictions on while loops.

Formalizations of probability theory. Formalizations of
measure and integration theory in general purpose interactive
theorem provers were investigated in several works [6, 12,
13, 19, 25]. Audebaud and Paulin-Mohring [1] propose an
axiomatic approach for discrete distributions, and use it for
reasoning about functional probabilistic programs. These
formalizations have been used to verify several case studies,
but they all rely on general-purpose theorem provers. We
focus on randomized algorithms, aiming for more concise
and lightweight verification similar to paper proofs. None of
these works formalize concentration bounds, but Avigad et al.
[2] recently completed a proof of the Central Limit theorem,
which is the principle underlying concentration bounds.

Other approaches. There have been many other significant
works to verify probabilistic program using different formal
approaches. Techniques range from model checking (see e.g.,
Katoen [15]) to abstract interpretation (see e.g., Cousot and
Monerau [7], Monniaux [20]), etc. An elegant method based
on martingales is used by Chakarov and Sankaranarayanan
[4, 5] for inferring expectation invariants and other properties.
Using their method, they compute the expected time of the
coupon collector process for N = 5—fixing N lets them
focus on a program where the outer while loop is fully
unrolled. Martingales are also used by Fioriti and Hermanns
[9] for analyzing probablistic termination. Sampson et al. [26]
use a mix of static and dynamic analysis to check probabilistic
programs from the approximate computing literature.

10. Conclusion and perspective
We have developed and implemented a general verification
platform for randomized programs, and shown the feasibility
of proving examples with complex proofs. We believe our sys-
tem is already powerful enough to contemplate formalization
in many areas of theoretical computer science. Prime targets
include accuracy and differential privacy of algorithms, lower
bounds, and distributed algorithms.

We also view our work as an important step towards build-
ing a foundational system for reasoning about probabilistic
programs based on a clear separation between the underlying
proof assistant and the code for program logic. We envision an
extensible system where the trusted computing base consists
exclusively of a simple and readable checker for a lightweight
higher-order logic, with rules for program logics built on top.

11 2015/11/20

References
[1] P. Audebaud and C. Paulin-Mohring. Proofs of randomized

algorithms in Coq. Sci. Comput. Program., 74(8):568–589,
2009.

[2] J. Avigad, J. Hölzl, and L. Serafin. A formally verified proof
of the central limit theorem. CoRR, abs/1405.7012, 2014.

[3] R. Chadha, L. Cruz-Filipe, P. Mateus, and A. Sernadas. Rea-
soning about probabilistic sequential programs. Theoretical
Computer Science, 379(1-2):142–165, 2007.

[4] A. Chakarov and S. Sankaranarayanan. Probabilistic program
analysis with martingales. In N. Sharygina and H. Veith,
editors, Computer Aided Verification - 25th International
Conference, CAV 2013, volume 8044 of Lecture Notes in
Computer Science, pages 511–526. Springer, 2013.

[5] A. Chakarov and S. Sankaranarayanan. Expectation invariants
as fixed points of probabilistic programs. In Static Analysis
Symposium (SAS), volume 8723 of Lecture Notes in Computer
Science, pages 85–100. Springer-Verlag, 2014.

[6] A. R. Coble. Anonymity, information, and machine-assisted
proof. Technical Report UCAM-CL-TR-785, University of
Cambridge, Computer Laboratory, 2010.

[7] P. Cousot and M. Monerau. Probabilistic abstract interpretation.
In H. Seidl, editor, 21st European Symposium on Programming,
ESOP 2012, volume 7211 of Lecture Notes in Computer
Science, pages 169–193. Springer, 2012.

[8] J. den Hartog. Probabilistic extensions of semantical models.
PhD thesis, Vrije Universiteit Amsterdam, 2002.

[9] L. M. F. Fioriti and H. Hermanns. Probabilistic termination:
Soundness, completeness, and compositionality. In S. K.
Rajamani and D. Walker, editors, Proceedings of the 42nd
ACM Symposium on Principles of Programming Languages,
POPL 2015, pages 489–501. ACM, 2015.

[10] F. Gretz, J. Katoen, and A. McIver. Prinsys - on a quest for
probabilistic loop invariants. In Quantitative Evaluation of
Systems - 10th International Conference, QEST 2013, pages
193–208, 2013.

[11] F. Gretz, N. Jansen, B. L. Kaminski, J. Katoen, A. McIver, and
F. Olmedo. Conditioning in probabilistic programming. In
Mathematical Foundations of Programming Semantics, 2015.

[12] J. Hölzl and A. Heller. Three chapters of measure theory
in isabelle/hol. In M. C. J. D. van Eekelen, H. Geuvers,
J. Schmaltz, and F. Wiedijk, editors, Interactive Theorem
Proving, ITP 2011, volume 6898 of Lecture Notes in Computer
Science, pages 135–151. Springer, 2011.

[13] J. Hurd. Formal verification of probabilistic algorithms. Tech-
nical Report UCAM-CL-TR-566, University of Cambridge,
Computer Laboratory, 2003.

[14] J. Hurd, A. McIver, and C. Morgan. Probabilistic guarded
commands mechanized in HOL. Theor. Comput. Sci., 346(1):
96–112, 2005.

[15] J. Katoen. Perspectives in probabilistic verification. In 2nd
IEEE/IFIP International Symposium on Theoretical Aspects
of Software Engineering, TASE 2008, pages 3–10. IEEE Com-
puter Society, 2008.

[16] J. Katoen, A. McIver, L. Meinicke, and C. C. Morgan. Linear-
invariant generation for probabilistic programs. In R. Cousot
and M. Martel, editors, Static Analysis - 17th International

Symposium, SAS 2010, volume 6337 of Lecture Notes in
Computer Science, pages 390–406. Springer, 2010.

[17] D. Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):
162–178, 1985.

[18] A. McIver and C. Morgan. Abstraction, Refinement, and Proof
for Probabilistic Systems. Monographs in Computer Science.
Springer, 2005.

[19] T. Mhamdi, O. Hasan, and S. Tahar. On the formalization of
the Lebesgue integration theory in HOL. In 1st International
Conference on Interactive Theorem Proving, ITP 2010, volume
6172 of Lecture Notes in Computer Science, pages 387–402.
Springer, 2010.

[20] D. Monniaux. Abstract interpretation of probabilistic seman-
tics. In J. Palsberg, editor, Static Analysis, 7th International
Symposium, SAS 2000, volume 1824 of Lecture Notes in Com-
puter Science, pages 322–339. Springer, 2000.

[21] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate
transformers. ACM Trans. Program. Lang. Syst., 18(3):325–
353, 1996.

[22] L. H. Ramshaw. Formalizing the Analysis of Algorithms. PhD
thesis, Computer Science, 1979.

[23] R. Rand and S. Zdancewic. VPHL: A Verified Partial-
Correctness Logic for Probabilistic Programs. In Mathematical
Foundations of Program Semantics (MFPS XXXI), 2015.

[24] J. H. Reif. Logics for probabilistic programming (extended
abstract). In 12th ACM Symposium on Theory of Computing,
STOC 1980, pages 8–13. ACM, 1980.

[25] S. Richter. Formalizing integration theory with an application
to probabilistic algorithms. In K. Slind, A. Bunker, and
G. Gopalakrishnan, editors, Theorem Proving in Higher Order
Logics, 17th International Conference, TPHOLs 2004, volume
3223 of Lecture Notes in Computer Science, pages 271–286.
Springer, 2004.

[26] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley,
D. Grossman, and L. Ceze. Expressing and verifying proba-
bilistic assertions. In M. F. P. O’Boyle and K. Pingali, editors,
ACM Conference on Programming Language Design and Im-
plementation, PLDI ’14, page 14. ACM, 2014.

[27] M. Sharir, A. Pnueli, and S. Hart. Verification of probabilistic
programs. SIAM J. Comput., 13(2):292–314, 1984.

[28] L. G. Valiant. A scheme for fast parallel communication. SIAM
journal on computing, 11(2):350–361, 1982.

[29] L. G. Valiant and G. J. Brebner. Universal schemes for parallel
communication. In Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing, STOC ’81, pages 263–
277, New York, NY, USA, 1981. ACM.

12 2015/11/20

http://arxiv.org/abs/1405.7012
http://arxiv.org/abs/1405.7012
http://doi.acm.org/10.1145/800076.802479
http://doi.acm.org/10.1145/800076.802479

	Introduction
	A motivating example: hypercube routing
	Programs
	Assertions
	Libraries for probability theory
	Proof system
	Non-looping constructs
	Loops
	Soundness

	Implementation and evaluation
	Examples
	Randomization for approximation: vertex cover
	Modeling infinite processes: the coupon collector
	Limited randomness: pairwise-independent bits

	Related work
	Conclusion and perspective

