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Separated and Shared Effects in Higher-Order Languages
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A fundamental property when reasoning about randomized programs is probabilistic independence, which states
that two random quantities are entirely uncorrelated. By viewing independence as a probabilistic version of

separation, recent works have developed separation logics capturing independence for probabilistic imperative

programs. However, it is not clear how to capture independence in functional, higher-order programs.

In this work, we propose two higher-order languages that can reason about sharing and separation in

effectful programs. Our first language 𝜆INI has a linear type system and probabilistic semantics, where the two

product types capture independent and possibly-dependent pairs. Our second language 𝜆2
INI

is a two-level,

stratified language, inspired by Benton’s linear-non-linear (LNL) calculus. We motivate this language with

a probabilistic model, but we also provide a general categorical semantics and exhibit a range of concrete

models beyond probabilistic programming. We prove soundness theorems for all of our languages; our general

soundness theorem for our categorical models of 𝜆2
INI

uses a categorical gluing construction.
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1 INTRODUCTION
Probabilistic semantics have been undergoing a renaissance in the last decade, due to the rise in

popularity of applications in machine learning, security and privacy, and more. Recent work has

proposed a variety of semantics for probabilistic programming languages, each capturing different

kinds of probabilistic behavior. At the same time, these advances in semantics enable a growing

collection of verification methods and tools for reasoning about probabilistic programs.

Reasoning About Independence. In probabilistic programming languages, independence is a funda-

mental property which is baked into the primitives: sampling commands usually guarantee that

new samples are independent from previously sampled values. In verification, independence is used

to simplify reasoning about programs: if two parts of a program produce independent distributions,

their joint distribution will only depend on their individual probabilities—there are no unexpected

probabilistic interaction between the two parts. Independence can also be an interesting property

to verify; for instance, in cryptographic protocols, basic security properties can be stated in terms

of independence [Barthe et al. 2019].

There are a few aspects of probabilistic independence that makes it approachable from a program-

ming languages and formal methods perspective. For instance, in probabilistic programs, probabilis-

tic independence is often preserved under local operations: if we have functions 𝑓 , 𝑔 : N→ N and

independent, random inputs 𝑥,𝑦 : N, then 𝑓 (𝑥) and 𝑔(𝑦) will be independent as well. Furthermore,

many common operations in programming languages, such as pairing, also preserve independence.

Taking advantage of these compositional properties, prior work has developed program logics that
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can about independence in the context of a first-order, imperative language [Barthe et al. 2019].

Unfortunately, it is unclear how to capture independence in higher-order languages.

Our Work: Higher-Order Languages for Probabilistic Independence. In this work, we use a resource

interpretation of probabilistic samples to establish independence: if two computations use disjoint

resources (i.e., probabilistic samples), then they produce independent random quantities. Our per-

spective yields two linear, higher-order languages that can reason about probabilistic independence.

Both languages have a product type constructor ⊗ that enforces independence, in the sense that

closed programs of type N ⊗ N should be denoted by independent distributions.

Our first language 𝜆INI is an linear 𝜆-calculus with two product types: the ⊗ type constructor

enforces that the components of the pair do not share any resources, while the × type constructor

allows the components to share resources. Intuitively, ⊗ captures pairs of independent values, while

× captures pairs of general, possibly-dependent values. We give a denotational semantics to 𝜆INI
and prove its soundness theorem: the product ⊗ ensures probabilistic independence.

An unfortunate property of 𝜆INI is that it suffers from some expressivity issues, and extending

it with sum types breaks the soundness property. In order to mitigate these issues, we define a

richer, two-level language 𝜆2
INI

, where the two product types of 𝜆INI are restricted to different layers.

Intuitively, one layer allows computations that share randomness, while the other layer prevents

computations from sharing randomness. To enable the layers to interact, the independent language

has a modality that allows to soundly import programs written in the shared language. Furthermore,

we show that the stratified design of 𝜆2
INI

enables two different kinds of sum types: a “shared” sum

in the sharing layer, and a “separated” in the independent layer. We give a denotational semantics

for the 𝜆2
INI
, prove soundness, and give translations of two fragments of 𝜆INI into 𝜆

2

INI
.

Additional Models. We also explore how the reasoning principles enforced by 𝜆2
INI

can also be applied

to other domains. In order to accommodate these other applications, we propose a categorical

semantics for 𝜆2
INI
, along with a general the soundness theorem of our type system. In Section 5.2,

we present examples showing how our semantics can be readily applied to existing semantics of

effectful programming languages.

• Linear logic. Models of linear logic have been used to give semantics to probabilistic

languages with discrete and continuous sampling [Danos and Ehrhard 2011; Ehrhard et al.

2017].We show that these categories, pairedwith the category ofMarkov kernels, yieldmodels

for our 𝜆2
INI
. Our soundness theorem continues to guarantee probabilistic independence; as

far as we know, our method is the first to ensure probabilistic independence in these models.

• Distributed programming. Next, we develop a relational model of our language and

describe an application in distributed programming. In this model, programs in our two-level

language describe the implementation of multiple agents, but the program does not specify

where computations should be executed. Our soundness theorem shows that programs of

type 𝜏1 ⊗ 𝜏2 can be factored as two local programs, i.e., we can compile the global program

into local programs that can execute independently, without communication across machines.

This soundness property is reminiscent of projection properties in choreographic languages

[Montesi 2014].

• Name generation. Programming languages with name generation include a primitive that

generates a fresh identifier. In some contexts, it is important to control when and how many

times a name is generated. For instance, in cryptographic applications, reusing a nonce value
(“number once”) may result in a security bug in the protocol. We define a model of our

language based on name generation. In this context, our soundness theorem says that the

type ⊗ enforces disjointness of the names used in each component.
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• Commutative effects.We generalize the name generation and finite distribution models by

noting that they are both example of monadic semantics of commutative effects. Under a

few assumptions, every commutative monad gives rise to a model of our language by using

categories of algebras for this monad.

• Bunched and separation logics. A long line of work uses bunched logics to reason about

sharing and separation [O’Hearn and Pym 1999; O’Hearn et al. 2001]; however, these works

do not handle effectful programs. We show that models of affine bunched logics are also

models 𝜆2
INI
, but not vice-versa. Thus, 𝜆2

INI
provides a less restrictive model to reason about

sharing and separation of resources in programs. We illustrate this by revisiting Reynolds’

syntactic control of interference (SCI) language, and show that since its original model is

also a model to our language, there is a sound translation of our language into his.

The diversity of models suggests that 𝜆2
INI

is a suitable framework to reason about separation and

sharing in effectful higher-order programs.

Outline. After reviewing mathematical preliminaries (§2), we present our main contributions:

• First, we define a linear, higher-order probabilistic 𝜆-calculus called 𝜆INI, with types that can

capture probabilistic independence and dependence. We give a denotational semantics of our

language and prove that ⊗ captures probabilistic independence (§3).

• Next, we define a two-level, higher-order probabilistic 𝜆-calculus called 𝜆2
INI
. This language

combines a independent fragment and a sharing fragment with two distinct sum types: an

independent sum, and a sharing sum. We give a probabilistic semantics and prove that ⊗
captures probabilistic independence; we also embed two fragments of 𝜆INI into 𝜆

2

INI
(§4).

• Abstracting away from the probabilistic case, we propose a general categorical semantics

for 𝜆2
INI
. Our semantics can be seen as a generalization of Benton’s linear/non-linear (LNL)

model for linear logic [Benton 1994] (§5.1).

• We present a range of models for 𝜆2
INI
, including models inspired by probabilistic models

of linear logic, choreographies and distributed programming, commutative effects, name

generation, and bunched logics. We show that the soundness property of our type system

ensures natural notions of independence in each of these models (§5.2).

• Finally, we prove a general soundness theorem for our categorical models, showing that ⊗
enforces more general independence property: every program of type 𝜏1 ⊗ 𝜏2 can be factored

as two programs 𝑡1 and 𝑡2 of types 𝜏1 and 𝜏2, respectively. Our proof relies on a categorical

gluing argument (§6).

We survey related work in (§7), and conclude in (§8).

2 BACKGROUND
2.1 Monads and their algebras
In order to formalize our semantics we will use some basic concepts from category theory,

including functors, products, coproducts, Cartesian closed categories, and symmetric monoidal

closed categories (SMCC). The interested reader to can read [Leinster 2014; Mac Lane 2013] for

good introductions to the subject.

Monads. We start by defining monads. A monad over a category C is a triple (𝑇, 𝜇, 𝜂) such that

𝑇 : C→ C is a functor, 𝜇𝐴 : 𝑇 2𝐴 → 𝑇𝐴 and 𝜂𝐴 : 𝐴 → 𝑇𝐴 are natural transformations such that

𝜇𝐴 ◦ 𝜇𝑇𝐴 = 𝜇𝐴 ◦𝑇 𝜇𝐴, 𝑖𝑑𝐴 = 𝜇𝐴 ◦𝑇𝜂𝐴 and 𝑖𝑑𝐴 = 𝜇𝐴 ◦ 𝜂𝑇𝐴.
Another useful, and equivalent, presentation of monads requires a natural transformation 𝜂𝐴 and

a lifting operation (−)∗ : C(𝐴,𝑇𝐵) → C(𝑇𝐴,𝑇𝐵) such that objects from C and morphisms𝐴→ 𝑇𝐵

form a category, usually referred to as Kleisli category C𝑇 . This category has the same objects as C,
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and has 𝐻𝑜𝑚CT (𝐴, 𝐵) = 𝐻𝑜𝑚C (𝐴,𝑇𝐵). Following seminal work by [Moggi 1991], Kleisli categories

are frequently used to give semantics to effectful programming languages.

Monad algebras. Given a monad 𝑇 , a 𝑇 -algebra is a pair (𝐴, 𝑓 : 𝑇𝐴→ 𝐴) such that 𝑖𝑑𝐴 = 𝑓 ◦ 𝜂𝐴
and 𝑓 ◦𝜇𝐴 = 𝑓 ◦𝑇 𝑓 . A𝑇 -algebra morphism ℎ : (𝐴, 𝑓 ) → (𝐵,𝑔) is a Cmorphism ℎ : 𝐴→ 𝐵 such that

𝑔 ◦𝑇ℎ = ℎ ◦ 𝑓 . The𝑇 -algebras and their morphisms form a category C𝑇
, called the Eilenberg-Moore

category.

The Kleisli category C𝑇 and the Eilenberg-Moore category C𝑇
are deeply connected. Indeed, for

every C object 𝐴, the object𝑇𝐴 can be equipped with a canonical𝑇 -algebra morphism given by 𝜇𝐴.

Such algebras are called free. More generally, we have:

Theorem 2.1 ([Borceux 1994]). There is a full and faithful functor 𝜄 : C𝑇 → C𝑇 .

2.2 Probability Theory
Distributions over discrete sets can be directly modeled as functions 𝜇 : 𝑋 → [0, 1] such that

its sum is equal to 1. However, when dealing with continuous sets such as the real line, we need

concepts from measure theory to properly define probability distributions.

Measures and measurable spaces. A measurable space combines a set with a collection of subsets,

describing the subsets that can be assigned a well-defined measure or probability.

Definition 2.2. Given a set 𝑋 , a 𝜎-algebra Σ𝑋 ⊆ P(𝑋 ) is a set of subsets such that (i) 𝑋 ∈ Σ𝑋 ,
and (ii) Σ𝑋 is closed complementation and countable union. A measurable space is a pair (𝑋, Σ𝑋 ),
where 𝑋 is a set and Σ𝑋 is a 𝜎-algebra.

A measurable function between measurable spaces (𝑋, Σ𝑋 ) and (𝑌, Σ𝑌 ) is a function 𝑓 : 𝑋 → 𝑌

such that for every 𝐴 ∈ Σ𝑌 , 𝑓
−1 (𝐴) ∈ Σ𝑋 , where 𝑓 −1 is the inverse image function. Measurable

spaces and measurable functions form a category Meas.

Definition 2.3. A probability measure is a function 𝜇𝑋 : Σ𝑋 → [0, 1] such that: (i) 𝜇 (∅) = 0, (ii)

𝜇 (𝑋 ) = 1, and 𝜇 (⊎𝐴𝑖 ) =
∑

𝑖 𝜇 (𝐴𝑖 ).

The Giry Monad. The set G(𝑋 ) of probability distributions over a measurable set 𝑋 can be

equipped with a 𝜎-algebra:

Theorem 2.4. The pair (G(𝑋 ), ΣG(𝑋 ) ) is a measurable set, where ΣG(𝑋 ) is the smallest 𝜎-algebra
such that the functions 𝑒𝑣𝐴 : G(𝑋 ) → [0, 1] are measurable for every measurable set 𝐴 ∈ Σ𝑋 .

Furthermore, G can be given a monad structure on Meas, called the Giry monad. The unit is

𝜂 (𝑎) = 𝛿𝑎 , where 𝛿𝑥 (𝐴) = 1 if 𝑥 ∈ 𝐴 and 0 otherwise, usually referred to as Dirac delta distribution.

Given 𝑓 : 𝐴→ G(𝐵) we define 𝑓 ∗ (𝜇) =
∫
𝐴
𝑓 d𝜇.

This monad is often used to give semantics to probabilistic programs. Indeed, Kleisli arrows

𝐴→ 𝑀𝐵 are in exact correspondence with Markov kernels.

Definition 2.5. A Markov kernel between measurable spaces (𝑋, Σ𝑋 ) and (𝑌, Σ𝑌 ) is a function
𝑓 : 𝑋 × Σ𝑌 → [0, 1] such that:

• For every 𝑥 ∈ 𝑋 , 𝑓 (𝑥,−) is a probability distribution.

• For every 𝐵 ∈ Σ𝑌 , 𝑓 (−, 𝐵) is a measurable function.

A simpler probability monad can be defined for Set. Given a set 𝑋 , we define 𝐷𝑋 as the set of

functions 𝜇 : 𝑋 → [0, 1] which is non zero in a finite set (finite support) and

∑
𝑥 ∈𝑠𝑢𝑝𝑝 (𝜇) 𝜇 (𝑥) = 1.

It is also possible to show that this construction is monadic, replacing integrals by sums in the

operations above.
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Marginals and probabilistic independence. We will need some constructions on distributions and

measures over products.

Definition 2.6. Given a distribution 𝜇 over 𝑋 × 𝑌 , its marginal 𝜇𝑋 is the distribution over 𝑋

defined by 𝜇𝑋 (𝐴) =
∫
𝑌
𝑑𝜇 (𝐴,−). Intuitively, this is the distribution obtained by sampling from 𝜇

and projecting its first component. The other marginal distribution 𝜇𝑌 is defined similarly.

In the discrete case, the marginal is given by a sum: the first marginal is 𝜇𝑋 (𝑥) =
∑

𝑦∈𝑌 𝜇 (𝑥,𝑦),
and the second marginal 𝜇𝑌 is similar.

Definition 2.7. A probability measure 𝜇 over a product 𝐴 × 𝐵 is said to be probabilistically

independent if it can be factored by its marginals 𝜇𝐴 and 𝜇𝐵 , i.e., 𝜇 (𝑋,𝑌 ) = 𝜇𝐴 (𝑋 ) · 𝜇𝐵 (𝑌 ), 𝑋 ∈ Σ𝐴
and 𝑌 ∈ Σ𝐵 .

In the discrete case, probabilistic independence can be defined more simply: a distribution 𝜇 over

𝐴 × 𝐵 is probabilistically independent if 𝜇𝐴 (𝑥) · 𝜇𝐵 (𝑦) = 𝜇 (𝑥,𝑦) for every 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵.

3 A LINEAR LANGUAGE FOR INDEPENDENCE
3.1 Independence Through Linearity

In many probabilistic programs, independent quantities are initially generated through sampling

instructions. Then, a simple way to reason about independence of a pair of random expressions is

to analyze which sources of randomness each component uses: if the two expressions use distinct

sources of randomness, then they are independent; otherwise, they are possibly-dependent.

For instance, consider a simply typed first-order call-by-value language with a primitive ⊢ coin : B
that flips a fair coin. The program

let 𝑥 = coin in let 𝑦 = coin in (𝑥,𝑦)
flips two fair coins and pairs the results. This program will produce a probabilistically independent

distribution, since 𝑥 and 𝑦 are distinct sources of randomness. On the other hand, the program

let 𝑥 = coin in (𝑥, 𝑥)
does not produce an independent distribution: the two components are always equal, and hence

perfectly correlated. These principles resemble the properties enforced by substructural type

systems, which control when resources can be shared and when they must be disjoint. To investigate

this idea, we develop a language 𝜆INI with a linear type system that can reason about probabilistic

independence.

3.2 Introducing the Language 𝜆INI
Syntax. Figure 1 presents the syntax of types and terms. Along with base types (B), there are

two product types: × is the possibly-dependent product, while ⊗ is the independent product. The

language is higher-order, so there is a linear arrow type. The corresponding term syntax is fairly

standard. We have variables, numeric constants, and primitive distributions (coin). The two kinds

of products can be created from two kinds of pairs, and eliminated using projection and let-binding,

respectively. Finally, we have the usual 𝜆-abstraction and application. Our examples use the standard

syntactic sugar let 𝑥 = 𝑡 in 𝑢 ≜ (𝜆𝑥 .𝑢) 𝑡 .

Type system. Figure 2 shows the typing rules for 𝜆INI; the rules are standard from linear logic.

The variable rule Var is linear : it requires all of the variables in the context to be used, and variables

cannot be freely discarded. For the sharing product ×, the introduction rule × Intro shares the

context across the premises: both components can share the same variables. Components can be

projected out of these pairs, one at a time (× Elim). For the independent product ⊗, in contrast, the
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Variables 𝑥,𝑦, 𝑧

Types 𝜏 ::= B | 𝜏 × 𝜏 | 𝜏 ⊗ 𝜏 | 𝜏 ⊸ 𝜏

Expressions 𝑡,𝑢 ::= 𝑥 | 𝑏 ∈ B | coin | (𝑡,𝑢) | 𝜋𝑖 𝑡
| 𝑡 ⊗ 𝑢 | let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 | 𝜆𝑥 . 𝑡 | 𝑡 𝑢

Contexts Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛

Fig. 1. Types and Terms: 𝜆INI

Const

· ⊢ 𝑏 : B

Coin

· ⊢ coin : B

Var

𝑥 : 𝜏 ⊢ 𝑥 : 𝜏

× Intro

Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : 𝜏2
Γ ⊢ (𝑡1, 𝑡2) : 𝜏1 × 𝜏2

× Elim

Γ ⊢ 𝑡 : 𝜏1 × 𝜏2
Γ ⊢ 𝜋𝑖 𝑡 : 𝜏𝑖

⊗ Intro

Γ1 ⊢ 𝑡1 : 𝜏 Γ2 ⊢ 𝑡2 : 𝜏2
Γ1, Γ2 ⊢ 𝑡1 ⊗ 𝑡2 : 𝜏1 ⊗ 𝜏2

⊗ Elim

Γ1 ⊢ 𝑡 : 𝜏1 ⊗ 𝜏2 Γ2, 𝑥 : 𝜏1, 𝑦 : 𝜏2 ⊢ 𝑢 : 𝜏

Γ1, Γ2 ⊢ let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 : 𝜏

Abstraction

Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2
Γ ⊢ 𝜆𝑥 . 𝑡 : 𝜏1 ⊸ 𝜏2

Application

Γ1 ⊢ 𝑡 : 𝜏1 ⊸ 𝜏2 Γ2 ⊢ 𝑢 : 𝜏1

Γ1, Γ2 ⊢ 𝑡 𝑢 : 𝜏2

Fig. 2. Typing Rules: 𝜆INI

introduction rule ⊗ Intro requires both premises to use disjoint contexts. Thus, the components

cannot share variables. Tensor pairs are eliminated by a let-pair construct that consumes both

components at once (⊗ Elim). In substructural type systems, × is called an additive product, while
⊗ is called a multiplicative product. The abstraction and application rules are standard.

An additive arrow? Note that the application rule is multiplicative, in the sense that the function

and the argument cannot share variables. A natural question is whether the arrow should be

additive: can we share variables between the function and its argument? Substructural type systems

like bunched logic [O’Hearn and Pym 1999] include both a multiplicative and an additive arrow.

While we haven’t defined the semantics of our language yet, we sketch an example showing

that having an additive arrow would make it difficult for ⊗ to capture probabilistic independence.

If we allowed variables to be shared between the function and its argument, we would be able to

type-check the program:

· ⊢ let 𝑥 = coin in (𝜆𝑦. 𝑥 ⊗ 𝑦) 𝑥 : B ⊗ B

Under our eager semantics, which we will discuss next, this program has the same behavior as

let 𝑥 = coin in 𝑥⊗𝑥 , which produces a pair of non-independent values. Thus, we take amultiplicative

arrow for our language.
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JBK = B

J𝜏 × 𝜏K = J𝜏K × J𝜏K
J𝜏 ⊗ 𝜏K = J𝜏K × J𝜏K

J𝜏1 ⊸ 𝜏2K = J𝜏1K→ 𝐷 J𝜏2K

J𝑥1 : 𝜏1, · · · , 𝑥𝑛 : 𝜏𝑛K = J𝜏1K × · · · × J𝜏𝑛K

JΓ ⊢ 𝑡 : 𝜏K : JΓK→ 𝐷 J𝜏K

J𝑥K (𝑣) = return 𝑣

J𝑏K (∗) = return 𝑏

JcoinK (∗) = 1

2

(𝛿tt + 𝛿ff)

J(𝑡1, 𝑡2)K (𝛾) = 𝑥 ← J𝑡1K (𝛾);𝑦 ← J𝑡2K (𝛾); return (𝑥,𝑦)
J𝜋𝑖 𝑡K (𝛾) = (𝑥,𝑦) ← J𝑡K (𝛾); return 𝑥

J𝑡1 ⊗ 𝑡2K (𝛾1, 𝛾2) = 𝑥 ← J𝑡1K (𝛾1);𝑦 ← J𝑡2K (𝛾2); return (𝑥,𝑦)
Jlet 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢K (𝛾1, 𝛾2) = (𝑥,𝑦) ← J𝑡K (𝛾1); J𝑢K (𝛾2, 𝑥,𝑦)

J𝜆𝑥. 𝑡K (𝛾) = return (𝜆𝑥. J𝑡K (𝛾))
J𝑡 𝑢K (𝛾1, 𝛾2) = 𝑓 ← J𝑡K (𝛾1);𝑥 ← J𝑢K (𝛾2); 𝑓 (𝑥)

Fig. 3. Denotational Semantics: 𝜆INI

3.3 Denotational Semantics
We can give a semantics to this language using the category Set and the finite probability monad

𝐷 . From top to bottom, Figure 3 defines the semantics of types, contexts, and typing derivations

producing well-typed terms. For types, we interpret both product types as products of sets. Arrow

types are interpreted as the set of Kleisli arrows, i.e., maps J𝜏1K→ 𝐷 J𝜏2K. Contexts are interpreted
as products of sets.

We interpret well-typed terms as Kleisli arrows. We briefly walk through the term semantics,

which is essentially the same as the Kleisli semantics proposed by Moggi [1991]. Variables are

interpreted using the unit of themonad, which is the pointmass distribution𝛿𝑏 . Coins are interpreted

as the fair convex combination of two point mass distributions over tt and ff.
The rest of the constructs involve sampling, which is semantically modeled by composition of

Kleisli morphisms. We use monadic arrow notation to denote Kleisli composition, i.e., 𝑥 ← 𝑓 ;𝑔 ≜
𝑔∗ ◦ 𝑓 . The two pair constructors have the same semantics: we sample from each component, and

then pair the results. The projections for × computes the marginal of a joint distribution, while let-

binding for ⊗ samples from the pair 𝑡 and then uses the sample in the body 𝑢. Lambda abstractions

are interpreted as point mass distributions, while applications are interpreted as sampling the

function, sampling the argument, and then applying the first sample to the second one.

Example 3.1 (Correlated pairs). It may seems as if there is no way of creating non-independent

pairs, since the semantics for × pairs samples each component independently. However, consider
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the program let 𝑥 = coin in (𝑥, 𝑥). By unfolding the definitions, its semantics is

𝑥 ← 1

2

(𝛿0 + 𝛿1);𝑦 ← 𝛿𝑥 ; 𝑧 ← 𝛿𝑥 ;𝛿 (𝑦,𝑧) = 𝑥 ← 1

2

(𝛿0 + 𝛿1);𝛿 (𝑥,𝑥)

=
1

2

(𝛿 (0,0) + 𝛿 (1,1) ).

Thus, programs with our semantics can indeed generate correlated samples.

Example 3.2 (Independent pairs are correlated pairs). In any language that can distinguish between

independent and possibly-dependent distributions, it should be possible to view the former as the

latter. In 𝜆INI, this conversion can be implemented by the following program:

· ⊢ 𝜆𝑧. let 𝑥 ⊗ 𝑦 = 𝑧 in (𝑥,𝑦) : 𝜏1 ⊗ 𝜏2 ⊸ 𝜏1 × 𝜏2.

3.4 Soundness
The design of the type system of 𝜆INI should guarantee that ⊗ enforces probabilistic independence.

Concretely, we want to show that if · ⊢ 𝑡 : 𝜏1 ⊗ 𝜏2 is well-typed, then J𝑡K (∗) is an independent

probability distribution over J𝜏1K× J𝜏2K. We show this soundness theorem by constructing a logical

relation R𝜏 ⊆ 𝐷 (J𝜏K), defined as:

RB = 𝐷 (B)
R𝜏1⊗𝜏2 = {𝜇1 ⊗ 𝜇2 ∈ 𝐷 (J𝜏1K × J𝜏2K) | 𝜇𝑖 ∈ R𝜏𝑖 }
R𝜏1×𝜏2 = {𝜇 ∈ 𝐷 (J𝜏1K × J𝜏2K) | 𝜋𝑖 (𝜇) ∈ R𝜏𝑖 for 𝑖 ∈ {1, 2}}
R𝜏1⊸𝜏2 = {𝜇 ∈ 𝐷 (J𝜏1K→ 𝐷 (J𝜏2K)) | ∀𝜇 ′ ∈ R𝜏1 , 𝑥 ← 𝜇 ′; 𝑓 ← 𝜇; 𝑓 (𝑥) ∈ 𝑅𝜏2 }.

Theorem 3.3. If 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑡 : 𝜏 and 𝜇𝑖 ∈ R𝜏𝑖 then

(𝑥1 ← 𝜇1; · · · ;𝑥𝑛 ← 𝜇𝑛 ; J𝑡K (𝑥1, . . . , 𝑥𝑛)) ∈ R𝜏 .

Proof. Let the distribution above be 𝜈 . Below, we write 𝑥𝑖 as shorthand for 𝑥1, . . . , 𝑥𝑛 , and we

write 𝑥𝑖 ← 𝜇𝑖 as shorthand for 𝑥1 ← 𝜇1; · · · ;𝑥𝑛 ← 𝜇𝑛 . We prove that 𝜈 ∈ R𝜏 by induction on the

typing derivation Γ ⊢ 𝑡 : 𝜏 .
Const/Coin/Var. Trivial. For instance, for variables: 𝜈 = 𝑥 ← 𝜇; return 𝑥 = 𝜇, which is in R𝜏𝑛

by assumption.

× Intro. We have 𝜈 = 𝑥𝑖 ← 𝜇𝑖 ;𝑥 ← J𝑡1K (𝑥𝑖 );𝑦 ← J𝑡2K (𝑥𝑖 ); return (𝑥,𝑦). It is straightforward to

show that the first marginal of 𝜈 is 𝑥𝑖 ← 𝜇𝑖 ;𝑥 ← J𝑡1K (𝑥𝑖 ); return 𝑥 which, by the induction

hypothesis, in an element of R𝜏1 ; similarly, the second marginal of 𝜈 is an element of R𝜏2 .
× Elim. We have 𝜈 = 𝑥𝑖 ← 𝜇𝑖 ; (𝑥,𝑦) ← J𝑡K (𝑥𝑖 ); return 𝑥 . By the induction hypothesis, J𝑡K (𝑥𝑖 ) ∈

R𝜏1×𝜏2 and, by assumption, its marginals are elements of R𝜏1 and R𝜏2 .
⊗ Intro. Let 𝜇𝑖 be the sequence of distributions corresponding to Γ1, and let 𝜂𝑖 be the sequence of

distributions corresponding to Γ2. Since 𝐷 is a commutative monad [Borceux 1994], we may

apply associativity and commutativity to show:

𝜈 = 𝑥𝑖 ← 𝜇𝑖 ;𝑦𝑖 ← 𝜂𝑖 ;𝑥 ← J𝑡1K (𝑥𝑖 );𝑦 ← J𝑡2K (𝑦𝑖 ); return (𝑥,𝑦)
= 𝑥𝑖 ← 𝜇𝑖 ;𝑥 ← J𝑡1K (𝑥𝑖 );𝑦𝑖 ← 𝜂𝑖 ;𝑦 ← J𝑡2K (𝑦𝑖 ); return (𝑥,𝑦)
= (𝑥𝑖 ← 𝜇𝑖 ;𝑥 ← J𝑡1K (𝑥𝑖 ); return 𝑥) ⊗ (𝑦𝑖 ← 𝜂𝑖 ;𝑦 ← J𝑡2K (𝑦𝑖 ); return 𝑦) = 𝜈1 ⊗ 𝜈2.

Furthermore, by induction hypothesis, 𝜈𝑖 ∈ R𝜏𝑖 so 𝜈 = 𝜈1 ⊗ 𝜈2 ∈ R𝜏1⊗𝜏2 as desired.
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⊗ Elim. Let 𝜇𝑖 be the sequence of distributions corresponding to Γ1, and let 𝜂𝑖 be the sequence of

distributions corresponding to Γ2. We have:

𝜈 = 𝑥𝑖 ← 𝜇𝑖 ;𝑦𝑖 ← 𝜂𝑖 ; (𝑥,𝑦) ← J𝑡K (𝑥𝑖 );
= 𝑥𝑖 ← 𝜇𝑖 ; (𝑥,𝑦) ← J𝑡K (𝑥𝑖 );𝑦𝑖 ← 𝜂𝑖 ; J𝑢K (𝑦𝑖 , 𝑥,𝑦)
= (𝑥,𝑦) ← 𝜈1 ⊗ 𝜈2;𝑦𝑖 ← 𝜂𝑖 ; J𝑢K (𝑦𝑖 , 𝑥,𝑦)
= 𝑦𝑖 ← 𝜂𝑖 ;𝑥 ← 𝜈1;𝑦 ← 𝜈2; J𝑢K (𝑦𝑖 , 𝑥,𝑦)

where the third equality is by the induction hypothesis from the first premise. By the induction

hypothesis from the second premise, the final distribution is in R𝜏 , as desired.
Abstraction. By unfolding the definitions, we need to show

𝑥 ← 𝜇; 𝑓 ← (𝑥𝑖 ← 𝜇𝑖 ;𝛿𝜆𝑥.J𝑡K(𝑥𝑖 ) ); 𝑓 (𝑥) ∈ R𝜏2 ,

for some 𝜇 ∈ R𝜏1 . This distribution is equal to 𝑥𝑖 ← 𝜇𝑖 ;𝑥 ← 𝜇; 𝑓 ← 𝛿𝜆𝑥.J𝑡K(𝑥𝑖 ) ; 𝑓 (𝑥), by
associativity and commutativity. By the induction hypothesis and the fact that 𝛿 is the unit

of the monad, we can conclude this case.

Application. This case follows directly from the induction hypotheses. □

Our soundness property for 𝜆INI follows immediately.

Corollary 3.4. If · ⊢ 𝑡 : 𝜏1 ⊗ 𝜏2 then J𝑡K (∗) is an independent probability distribution.

4 A TWO-LEVEL LANGUAGE FOR INDEPENDENCE
As we have seen, the linear type system of 𝜆INI can distinguish between independent random

quantities, and possibly dependent random quantities. However, there are some important limita-

tions of 𝜆INI. We first discuss these issues, and then introduce a stratified, two-level language 𝜆2
INI

that resolves these problems. Finally, we show how to embed two fragments of 𝜆INI into 𝜆
2

INI
.

4.1 Limitations of 𝜆INI: Let-Bindings and Sums
Adding sum types. A notable shortcoming of 𝜆INI is that it does not include sum types. Though

there are base types like B, it is not possible to perform case analysis. Indeed, extending 𝜆INI with

sum types immediately leads to problems. Consider the following program:

if coin then tt ⊗ tt else ff ⊗ ff

Operationally, this probabilistic program flips a fair coin and checks if it comes up true. If so, the

program returns the pair tt⊗tt, otherwise it returns the pair ff⊗ff. Since both tt and ff are constants,

they do not share any variables, both branches can be given type B⊗B and a standard case analysis

rule would assign the whole program B ⊗ B. However, this extension would break Theorem 3.3: the

components of the pair are always equal to each other, and hence not probabilistic independent.
This example illustrates that we should not allow case analysis to produce programs of type

𝜏1 ⊗ 𝜏2; in contrast, it is safe to allow case analysis to produce programs of type 𝜏1 × 𝜏2 since this
product does not assert independence. Thus, incorporating sum types into 𝜆INI while preserving

soundness seems to require ad hoc restrictions on the elimination rule.

Reusing variables. Another restriction in 𝜆INI is that function application is multiplicative. The

limitations can best be seen using let-bindings, which are syntactic sugar for application. In a

let-binding let 𝑥 = 𝑡 in 𝑢, the terms 𝑡 and 𝑢 cannot share any variables.
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For instance, 𝜆INI does not allow the following program:

let 𝑢1 = coin in

let 𝑢2 = coin in

let 𝑥 = 𝑓 (𝑢1, 𝑢2) in
let 𝑦 = 𝑔(𝑢1, 𝑢2) in
(𝑥,𝑦)

There are useful sampling algorithms (e.g., the Box-Muller transform [Box and Muller 1958]) that

follow this template. In order to write a well-typed version of this program in 𝜆INI, we could inline

the definitions of 𝑥 and 𝑦: the pair constructor (−,−) is additive, so the two components can both

mention the variables 𝑢1 and 𝑢2. However, it is awkward to require that a straightforward program

must be inlined.

Similarly, given a term of type 𝜏1 × 𝜏2, we can’t directly project out both components at the same

time. For instance, the program

let 𝑥 = 𝜋1 𝑧 in

let 𝑦 = 𝜋2 𝑧 in

𝑓 (𝑥,𝑦)
is not well-typed, since the outer let-binding shares the variable 𝑧 with its body. These problems

would be solved if function applications (and hence let-bindings) in 𝜆INI were additive; however,

as we have seen in Section 3, allowing a function and an argument to share variables would also

break the soundness property of 𝜆INI.

4.2 The Language 𝜆2INI: Syntax, Typing Rules and Semantics
To address these limitations, we introduce a stratified language. We are guided by a simple

observation about products, sums, and distributions, which might be of more general interest. In

𝜆INI, the product types correspond to two distinct ways of composing distributions with products:

the sharing product 𝜏1 × 𝜏2 corresponds to distributions of products,𝑀 (𝜏1 × 𝜏2), while the separating
product 𝜏1 ⊗ 𝜏2 corresponds to products of distributions,𝑀𝜏1 ×𝑀𝜏2.

Similarly, there are twoways of combining distributions and sums: distributions of sums,𝑀 (𝜏1+𝜏2),
and sums of distributions,𝑀𝜏1 +𝑀𝜏2. We think of the first combination as a sharing sum, since the

distribution can place mass on both components of the sum. In contrast, the second combination is

a separating sum, since the distribution either places all mass on 𝜏1 or all mass on 𝜏2.

Finally, there are interesting interactions between sharing and separating, sums and products.

For instance, the problematic sum example we saw above performs case analysis on coin—a sharing
sum, because it has some probability of returning true and some probability of returning false—but

produces a separating product B ⊗ B. If we instead perform case analysis on a separating sum, then

the program either always takes the first branch, or always takes the second branch—now there is

no problem with producing a separating product.

These observations lead us to design a two-level language, where one layer includes the sharing

connectives, and the other layer includes the separating connectives. We call this language 𝜆2
INI
,

where INI stands for independent/non-independent; as we will see in section 5.2, the semantics of

𝜆2
INI

resembles Benton’s linear/non-linear (LNL) semantics for linear logic [Benton 1994].

Syntax. The program and type syntax of 𝜆2
INI
, summarized in Figure 4, is stratified into two

layers: a non-independent (NI) layer, and an independent (I) layer. We will color-code them: the

NI-language will be orange, while the I-language will be purple.
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The NI layer has base, product, and sum types. The language is mostly standard: we have variables,

constants, and basic distributions (coin), and primitive operations (we assume a set O(𝜏1, 𝜏2) of
operations from 𝜏1 to 𝜏2) along with the usual pairing and projection constructs for products, and

injection and case analysis constructs for sums. The NI layer does not have arrows, but it does

allow let-binding.

The I-layer is quite similar to 𝜆INI: it has its own product and sum types, and a linear arrow type.

The typeM(𝜏) brings a type from the NI-layer into the I-layer. The language is also fairly standard,

with constructs for introducing and eliminate products and sums, and functions and applications.

The last construct sample 𝑥 as 𝑡 in𝑀 is novel: it allows the two layers to interact.

Intuitively, the NI-language allows sharing while the I-language disallows sharing. Each language

has its own sum type, a sharing and separated sum, respectively, each of which interacts nicely

with its own product type. TheM modality can be thought of as an abstraction barrier between

both languages that enables the manipulation of shared programs in a separating program while

not allowing its sharing to be inspected, except when producing another boxed term.

Variables 𝑥,𝑦, 𝑧

NI-types 𝜏 ::= B | 𝜏 × 𝜏 | 𝜏 + 𝜏
I-types 𝜏 ::= 𝜏 ⊗ 𝜏 | 𝜏 ⊕ 𝜏 | 𝜏 ⊸ 𝜏 | M(𝜏)
NI-expressions 𝑀, 𝑁 ::= 𝑥 | 𝑏 ∈ B | coin | 𝑓 ∈ O(𝜏1, 𝜏2) | (𝑀, 𝑁 ) | 𝜋𝑖 𝑀 | ini t

| case 𝑡 of ( |in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) | let 𝑥 = 𝑀 in 𝑁

I-expressions 𝑡,𝑢 ::= 𝑥 | 𝑡 ⊗ 𝑢 | let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 | ini t
| case 𝑡 of ( |in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) | 𝜆𝑥. 𝑡 | 𝑡 𝑢 | sample 𝑥 as 𝑡 in𝑀

NI-contexts Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛
I-contexts Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛

Fig. 4. Types and Terms: 𝜆2INI

Typing rules. The typing rules of 𝜆2
INI

are presented in Figure 5. We have two typing judgments

for the two layers; we use subscripts on the turnstiles to indicate the layer. We start with the first

group of typing rules, for the sharing (NI) layer. These typing rules are entirely standard for a

first-order language with products and sums. Note that all rules allow the context to be shared

between different premises. In particular, the let-binding rule is additive instead of multiplicative as

in 𝜆INI: a let-binding is allowed to share variables with its body.

The second group of typing rules assigns types to the independent (I) layer. These rules are the

standard rules for multiplicative additive linear logic (MALL), and are almost identical to the typing

rules for 𝜆INI. Just like before, the rules treat variables linearly, and do not allow sharing variables

between different premises. The rules for the sum 𝜏1 ⊕ 𝜏2 are new. Again, the elimination (Case)

rule does not allow sharing variables between the guard and the body.

The final rule, Sample, gives the interaction rule between the two languages. The first premise

is from the sharing (NI) language, where the program 𝑀 can have free variables 𝑥1, . . . , 𝑥𝑛 . The

rest of the premises are from the independent (I) language, where linear programs 𝑡𝑖 have boxed

typeM𝜏𝑖 . The conclusion of the rule combines programs 𝑡𝑖 with 𝑀 , producing an I-program of

boxed type. Intuitively, this rule allows a program in the sharing language to be imported into the

linear language. Operationally, sample 𝑥 as 𝑡 in𝑀 constructs a distribution 𝑡 using the independent

language, samples from it and binds the sample to 𝑥 in the shared program𝑀 , and finally boxes

the result into the linear language.
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Semantics. We can now give a semantics to this two-level language. To keep the presentation

concrete, in this section we will work with a concrete semantics motivated by probabilistic inde-

pendence, where programs are probabilistic programs with discrete sampling. In the next section,

we will return to the general categorical semantics of 𝜆2
INI
.

The probabilistic semantics for 𝜆2
INI

is defined in Figure 6. For the NI-layer, we use the same

semantics of 𝜆INI, i.e., well-typed programs are interpreted as Kleisli arrows for the finite distribution

monad 𝐷 . The Kleisli category Set𝐷 has sets as objects, so we may simply define the semantics of

each type to be a set. It is also known that Set𝐷 has products and coproducts, which can be used to

interpret well-typed programs in NI.

For the 𝐼 -language, we are going to use the category of algebras for the finite distribution monad

𝐷 and plain maps, S̃et𝐷 . Concretely, its objects are pairs (𝐴, 𝑓 ), where 𝑓 is an 𝑀-algebra, and a

morphism (𝐴, 𝑓 ) → (𝐵,𝑔) is a function 𝐴→ 𝐵. Given two objects (𝐴, 𝑓 ) and (𝐵,𝑔) we can define a

product algebra𝐴×𝐵. Furthermore, it is also possible to equip the set-theoretic disjoint union𝐴+𝐵
and exponential 𝐴⇒ 𝐵 with algebra structures, making it a model of higher-order programming

with case analysis. We only need to explicitly define the algebraic structure when interpreting

the type constructorM, which is interpreted as the free 𝐷-algebra with the multiplication for the

monad as the algebraic structure.

Now that we have defined the probabilistic semantics of the 𝜆2
INI
, we can prove its soundness

theorem: just like in 𝜆INI, the type constructor ⊗ enforces probabilistic independence.

Theorem 4.1. If · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2 then J𝑡K is an independent distribution.

Proof. The semantics of · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2 is given by a plain, set-theoretic function J𝑡K : 1→
𝐷 J𝜏1K × 𝐷 J𝜏2K, which is isomorphic to an independent distribution. □

4.3 Revisiting Sums and Let-Binding
Now that we have seen 𝜆2

INI
, let us revisit the problematic if-then-else program at the beginning

of the section. The type system of 𝜆2
INI

makes it impossible to produce an independent pair by

pattern matching on values:

dist :M(1 + 1) ⊬𝐼 if dist then (tt ⊗ tt) else (ff ⊗ ff) :MB ⊗MB

where if-statements are simply elimination of sum types over booleans. However, we can write a

well-typed version of this program if we use the sharing product:

dist :M(1 + 1) ⊢𝐼 sample dist as 𝑥 in (if 𝑥 then (tt,tt) else (ff,ff)) :M(B × B)
While we were motivated by adding sums to 𝜆INI, our design also removes the limitations on

let-bindings we discussed before, since the sharing layer has an additive let-binding. In particular,

it is also possible to express the problematic let-binding program we saw before:

· ⊢𝐼 sample coin, coin as 𝑢1, 𝑢2 in

let 𝑥 = 𝑓 (𝑢1, 𝑢2) in
let 𝑦 = 𝑔(𝑢1, 𝑢2) in
𝑀 :M(𝜏)

We can also project both components out of pairs in the sharing layer:

· ⊢𝑁𝐼 let 𝑥 = 𝜋1𝑀1 in

let 𝑦 = 𝜋2𝑀2 in

𝑀 : 𝜏
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Const

𝑏 ∈ B

Γ ⊢𝑁𝐼 𝑏 : B

Coin

Γ ⊢𝑁𝐼 coin : B

Primitive

Γ ⊢𝑁𝐼 𝑀 : 𝜏1 𝑓 ∈ O(𝜏1, 𝜏2)
Γ ⊢𝑁𝐼 𝑓 (𝑀) : 𝜏2

Var

Γ, 𝑥 : 𝜏 ⊢𝑁𝐼 𝑥 : 𝜏

Let

Γ ⊢𝑁𝐼 𝑡 : 𝜏1 Γ, 𝑥 : 𝜏1 ⊢𝑁𝐼 𝑢 : 𝜏

Γ ⊢𝑁𝐼 let 𝑥 = 𝑡 in 𝑢 : 𝜏

Pair

Γ ⊢𝑁𝐼 𝑀 : 𝜏1 Γ ⊢𝑁𝐼 𝑁 : 𝜏2

Γ ⊢𝑁𝐼 (𝑀, 𝑁 ) : 𝜏1 × 𝜏2

Proj1

Γ ⊢𝑁𝐼 𝑀 : 𝜏1 × 𝜏2
Γ ⊢𝑁𝐼 𝜋1𝑀 : 𝜏1

Proj2

Γ ⊢𝑁𝐼 𝑀 : 𝜏1 × 𝜏2
Γ ⊢𝑁𝐼 𝜋2𝑀 : 𝜏2

In1

Γ ⊢𝑁𝐼 𝑀 : 𝜏1

Γ ⊢𝑁𝐼 in1𝑀 : 𝜏1 + 𝜏2

In2

Γ ⊢𝑁𝐼 𝑀 : 𝜏2

Γ ⊢𝑁𝐼 in2𝑀 : 𝜏1 + 𝜏2

Case

Γ ⊢𝑁𝐼 𝑀 : 𝜏1 + 𝜏2 Γ, 𝑥 : 𝜏1 ⊢𝑁𝐼 𝑁1 : 𝜏 Γ, 𝑥 : 𝜏2 ⊢𝑁𝐼 𝑁2 : 𝜏

Γ ⊢𝑁𝐼 case𝑀 of ( | in1 𝑥 ⇒ 𝑁1 | in2 𝑦 ⇒ 𝑁2) : 𝜏

Var

𝑥 : 𝜏 ⊢𝐼 𝑥 : 𝜏

Abstraction

Γ, 𝑥 : 𝜏1 ⊢𝐼 𝑡 : 𝜏2

Γ ⊢𝐼 𝜆𝑥. 𝑡 : 𝜏1 ⊸ 𝜏2

Application

Γ1 ⊢𝐼 𝑡 : 𝜏1 ⊸ 𝜏2 Γ2 ⊢𝐼 𝑢 : 𝜏1

Γ1, Γ2 ⊢𝐼 𝑡 𝑢 : 𝜏2

Tensor

Γ1 ⊢𝐼 𝑡 : 𝜏1 Γ2 ⊢𝐼 𝑢 : 𝜏2

Γ1, Γ2 ⊢𝐼 𝑡 ⊗ 𝑢 : 𝜏1 ⊗ 𝜏2

LetTensor

Γ1 ⊢𝐼 𝑡 : 𝜏1 ⊗ 𝜏2 Γ2, 𝑥 : 𝜏1, 𝑦 : 𝜏2 ⊢𝐼 𝑢 : 𝜏

Γ1, Γ2 ⊢𝐼 let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 : 𝜏

In1

Γ ⊢𝐼 𝑡 : 𝜏1

Γ ⊢𝐼 in1 𝑡 : 𝜏1 ⊕ 𝜏2

In2

Γ ⊢𝐼 𝑡 : 𝜏2

Γ ⊢𝐼 in2 𝑡 : 𝜏1 ⊕ 𝜏2

Case

Γ1 ⊢𝐼 𝑡 : 𝜏1 ⊕ 𝜏2 Γ2, 𝑥 : 𝜏1 ⊢𝐼 𝑢1 : 𝜏 Γ2, 𝑥 : 𝜏2 ⊢𝐼 𝑢2 : 𝜏

Γ1, Γ2 ⊢𝐼 case 𝑡 of ( | in1 𝑥 ⇒ 𝑢1 | in2 ⇒ 𝑢2) : 𝜏

Sample

𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 ⊢𝑁𝐼 𝑀 : 𝜏 Γ𝑖 ⊢𝐼 𝑡𝑖 :M𝜏𝑖 0 < 𝑖 ≤ 𝑛

Γ1, . . . , Γ𝑛 ⊢𝐼 sample 𝑡𝑖 as 𝑥𝑖 in𝑀 :M𝜏

Fig. 5. Typing Rules: 𝜆2INI
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LBM = B

L𝜏 × 𝜏M = L𝜏M × L𝜏M
L𝜏 + 𝜏M = L𝜏M + L𝜏M

L𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛M = L𝜏1M × · · · × L𝜏𝑛M

LΓ ⊢ 𝑀 : 𝜏M ∈ Set𝐷 (LΓM, L𝜏M)

JM𝜏K = (𝐷 J𝜏K , 𝜇J𝜏K)
J𝜏 ⊗ 𝜏K = J𝜏K × J𝜏K

J𝜏 ⊸ 𝜏K = J𝜏K→ J𝜏K
J𝜏 ⊕ 𝜏K = J𝜏K + J𝜏K

q
𝑥1 : 𝜏

1
, . . . , 𝑥𝑛 : 𝜏

𝑛

y
=

q
𝜏
1

y
× · · · ×

q
𝜏
𝑛

y

JΓ ⊢ 𝑡 : 𝜏K ∈ S̃et𝐷 (JΓK , J𝜏K)

J𝑥K (𝛾, 𝑣𝑥 ) = 𝑣𝑥

J𝑡 ⊗ 𝑢K (𝛾1, 𝛾2) = J𝑡K (𝛾1) × J𝑢K (𝛾2)
Jlet 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢K (𝛾1, 𝛾2) = J𝑢K (𝛾2, J𝑡K (𝛾1))

J𝜆𝑥 . 𝑡K (𝛾) (𝑥) = J𝑡K (𝛾) (𝑥)
J𝑡 𝑢K (𝛾1, 𝛾2) = J𝑡K (𝛾1, J𝑢K (𝛾2)

Jin𝑖𝑡K (𝛾) = 𝑖𝑛𝑖 (J𝑡K (𝛾))

Jcase 𝑡 of ( |in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2)K (𝛾1, 𝛾2) =
{
J𝑢1K (𝛾2, 𝑣), J𝑡K (𝛾1) = 𝑖𝑛1 (𝑣)
J𝑢2K (𝛾2, 𝑣), J𝑡K (𝛾1) = 𝑖𝑛2 (𝑣)

Jsample 𝑡𝑖 as 𝑥𝑖 in 𝑁 K = 𝜇 ◦ 𝐷L𝑁 M ◦ (J𝑡1K × · · · × J𝑡𝑛K)

Fig. 6. Concrete Semantics: 𝜆2INI

4.4 Embedding from 𝜆INI to 𝜆2INI

Given 𝜆INI and 𝜆2
INI
, a natural question is how these languages are related. We show that it is

possible to embed the fragment without arrow types of 𝜆INI into 𝜆
2

INI
. Since its semantics is given

by a Kleisli category, there is an obvious translation of it into the NI-layer of 𝜆2
INI
.

T (B) = B

T (𝜏1 × 𝜏2) = T (𝜏1 ⊗ 𝜏2) = T (𝜏1) × T (𝜏2)
At the term-level, the translation is the identity function.

Theorem 4.2. If Γ ⊢ 𝑀 : 𝜏 in 𝜆INI then T (Γ) ⊢𝑁𝐼 T (𝑀) : T (𝜏) in 𝜆2INI.
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Furthermore, it is easy to show that this translation preserves equations between programs and

is fully abstract.

Theorem 4.3. Let Γ ⊢ 𝑡1 : 𝜏 and Γ ⊢ 𝑡2 : 𝜏 in 𝜆INI then J𝑡1K = J𝑡2K if, and only if, JT (𝑡1)K = JT (𝑡2)K.

Proof. The proof follows from the fact that the translation is a faithful functor. □

It is also possible to translate the multiplicative (⊗,⊸) fragment of 𝜆INI into the I-layer of 𝜆2
INI
.

T ′(B) =MB

T ′(𝜏1 ⊗ 𝜏2) = T ′(𝜏1) ⊗ T ′(𝜏2)
T ′(𝜏1 ⊸ 𝜏2) = T ′(𝜏1) ⊸ T ′(𝜏2)

Once again, the term translation is the identity function.

Theorem 4.4. If Γ ⊢ 𝑡 : 𝜏 in 𝜆INI then T ′(Γ) ⊢𝐼 T ′(𝑡) : T ′(𝜏) in 𝜆2INI.

Proof. The proof follows by induction on the typing derivation Γ ⊢ 𝑡 : 𝜏 . □

This translation is functorial and faithful, and therefore is sound and fully abstract with respect

with the denotational semantics of 𝜆INI and 𝜆
2

INI
.

Remark 4.5 (Translating the full language). It is not possible to translate the whole 𝜆INI into 𝜆
2

INI
.

Since only one of the languages of 𝜆2
INI

has arrow types and there is no way of moving from I

into NI, the translation would need to map 𝜆INI programs into I programs, which can only write

probabilistically independent programs, making it impossible to translate the × type constructor.

By adding an additive function type to the NI-layer of 𝜆2
INI
, it would be possible to extend the first

translation so that it encompasses the whole language; however, some of the other concrete models

that we will consider in the next section do not support an additive function type in the NI-layer.

5 CATEGORICAL SEMANTICS AND CONCRETE MODELS
The language 𝜆2

INI
and its probabilistic semantics defines a probabilistic calculus with sharing and

separation of resources, and it has a simple soundness proof showing that the product ⊗ captures

probabilistic independence. However, the concrete semantics is based on the probability monad. In

this section, we first present the full, categorical semantics of 𝜆2
INI
, by abstracting the probabilistic

semantics we saw in the previous section. Then, we present a variety of concrete models for 𝜆2
INI
.

5.1 Categorical Semantics of 𝜆2INI
Motivation. Suppose we have two effectful languages, L1 and L2. The first one has a product

type × which allows for the sharing of resources, while the second one has the disjoint product

type ⊗. Furthermore, we assume that L2 has a unary type constructorM linking both languages.

The intuition behind this decision is that an element of typeM𝜏 is a computation which might

share resources. From a language design perspective, the constructorM serves to encapsulate a

possibly dependent computation in an independent environment. Indeed, if we have a term of type

M(𝜏 × 𝜏), we should not be able to use its components to produce a term of typeM𝜏 ⊗M𝜏 .

An important question to understand is how the type constructors × and ⊗ should be interpreted.

We have seen that C̃𝑇
has products whenever C has them. However, the typing rules in Figure 5

suggest that it only required a monoidal product, which is exactly the formalism we will choose. On

the other hand, though we want to be able to copy arguments using ×, we are not interested in the

universal property of products, only in its comonoidal structure, i.e. being able to duplicate and erase

computation. This kind of structure is captured by CD categories, which are monoidal categories
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where every object 𝐴 comes equipped with a commutative comonoid structure 𝐴 → 𝐴 ⊗ 𝐴 and

𝐴→ 𝐼 making certain diagrams commute [Cho and Jacobs 2019].

Finally, as we have mentioned above, independent distributions are, in particular, possibly

dependent distributions. Therefore there should be a programM𝜏1 ⊗M𝜏2 ⊢ M(𝜏1 × 𝜏2), which we

interpret asM being an applicative functor. An applicative functor is also known as a lax monoidal

functor, which is defined as a functor 𝐹 : (C, ⊗𝐶 , 𝐼𝐶 ) → (D, ⊗𝐷 , 𝐼𝐷 ) between monoidal categories

equipped with morphisms 𝜇𝐴,𝐵 : 𝐹 (𝐴) ⊗𝐷 𝐹 (𝐵) → 𝐹 (𝐴 ⊗𝐶 𝐵) and 𝜖 : 𝐼𝐷 → 𝐹𝐼𝐶 making certain

diagrams commute [Borceux 1994].

Categorical model. These considerations motivate our categorical model for 𝜆2
INI
.

Definition 5.1. A semantics to our language is given by a CD category with coproducts M , a

symmetric monoidal closed category with coproducts C and a lax monoidal functorM : M→ C.

The denotational semantics is given in Figures 7 and 8 and the equational theory is presented in

Figures 9 and 10. Due to some categorical subtleties, we also require M to be distributive in the

sense that the monoidal structure must preserve coproducts: 𝐴 ⊗ (𝐵 + 𝐶) � (𝐴 ⊗ 𝐵) + (𝐴 ⊗ 𝐶).
Distributivity on C comes without further assumptions.

Lemma 5.2. In every symmetric monoidal closed category with coproducts, the following isomorphism
holds: 𝐴 ⊗ (𝐵 +𝐶) � (𝐴 ⊗ 𝐵) + (𝐴 ⊗ 𝐶).
Proof. By assumption, the functor 𝐴 ⊗ (−) is a left adjoint and, therefore, preserves coproducts

and we can conclude the isomorphism 𝐴 ⊗ (𝐵 +𝐶) � (𝐴 ⊗ 𝐵) + (𝐴 ⊗ 𝐶). □

jarso

Soundness. In categorical models, the soundness theorem of 𝜆2
INI

can be stated abstractly as

follows:

Theorem 5.3 (Soundness). Let · ⊢𝐼 𝑡 : 𝜏1 ⊗ 𝜏2 then J𝑡K = 𝑓 ⊗ 𝑔, where 𝑓 and 𝑔 are morphisms
𝐼 → J𝜏1K and 𝐼 → J𝜏2K, respectively.

From a proof-theoretic perspective, the soundness theorem states that for every proof of type

· ⊢ 𝜏1 ⊗ 𝜏2, we can assume that the last rule is the introduction rule for ⊗. From a semantic

perspective, the soundness theorem means that for every closed term · ⊢ 𝑡 : 𝜏1 ⊗ 𝜏2, the semantics

J𝑡K can be factored as two morphisms 𝑓1 and 𝑓2 such that J𝑡K = 𝑓1 ⊗ 𝑓2.

Establishing soundness requires additional categorical machinery, so we defer the proof to

Section 6. Here, we will exhibit a range of concrete models for 𝜆2
INI
.

5.2 Concrete models
5.2.1 Discrete Probability. Our first concrete model is a different semantics for discrete probability.

For the sharing category, we consider the category CountStoch of countable sets as objects and

transition matrices as morphisms, i.e. functions 𝑓 : 𝐴×𝐵 → [0, 1] such that for every 𝑎 ∈ 𝐴, 𝑓 (𝑎,−)
is a probability distribution [Fritz 2020]. For the sake of simplicity we will denote its monoidal

product using ×, even though it is not a Cartesian product; note that our categorical model does

not require categories to be Carteisan.

For the independent category, we take the probabilistic coherence space model of linear logic,

which has been extensively studied in the context of semantics of discrete probabilistic lan-

guages [Danos and Ehrhard 2011].

Definition 5.1 (Probabilistic Coherence Spaces [Danos and Ehrhard 2011]). A probabilistic coherence

space (PCS) is a pair ( |𝑋 |,P(𝑋 )) where |𝑋 | is a countable set and P(𝑋 ) ⊆ |𝑋 | → R+ is a set, called
the web, such that:
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Var

𝜏 × Γ 𝑖𝑑𝜏×𝑑𝑒𝑙Γ−−−−−−→ 𝜏

Let

Γ
𝑀−→ 𝜏1 Γ × 𝜏1

𝑁−→ 𝜏2

Γ
𝑐𝑜𝑝𝑦;(𝑖𝑑×𝑀) ;𝑁
−−−−−−−−−−−−→ 𝜏2

× Intro

Γ
𝑀−→ 𝜏1 Γ

𝑁−→ 𝜏2

Γ
𝑐𝑜𝑝𝑦;𝑀×𝑁
−−−−−−−−→ 𝜏1 × 𝜏2

× Elim1

Γ
𝑀−→ 𝜏1 × 𝜏2

Γ
𝑀 ;(𝑖𝑑𝜏

1
×𝑑𝑒𝑙)

−−−−−−−−−−→ 𝜏1

× Elim2

Γ
𝑀−→ 𝜏1 × 𝜏2

Γ
𝑀 ;(𝑖𝑑𝜏

2
×𝑑𝑒𝑙)

−−−−−−−−−−→ 𝜏2

+ Intro1
Γ

𝑀−→ 𝜏1

Γ
𝑀 ;𝑖𝑛1−−−−→ 𝜏1 + 𝜏2

+ Intro2
Γ

𝑀−→ 𝜏2

Γ
𝑀 ;𝑖𝑛2−−−−→ 𝜏1 + 𝜏2

+ Elim
Γ1

𝑁−→ 𝜏1 + 𝜏2 Γ2 × 𝜏1
𝑀1−−→ 𝜏 Γ2 × 𝜏2

𝑀2−−→ 𝜏

Γ1, Γ2
𝑁⊗𝑖𝑑Γ

2−−−−−−→ (𝜏1 + 𝜏2) ⊗ Γ2 � (𝜏1 ⊗ Γ2) + (𝜏2 ⊗ Γ2)
[𝑀1,𝑀2 ]−−−−−−→ 𝜏

Fig. 7. Categorical Semantics for 𝜆2INI: NI-layer

Axiom

𝜏
𝑖𝑑𝜏−−→ 𝜏

⊗ Intro

Γ1
𝑡−→ 𝜏1 Γ2

𝑢−→ 𝜏2

Γ1 ⊗ Γ2
𝑡⊗𝑢−−−→ 𝜏1 ⊗ 𝜏2

⊗ Elim

Γ1
𝑡−→ 𝜏1 ⊗ 𝜏2 Γ2 ⊗ 𝜏1 ⊗ 𝜏2

𝑢−→ 𝜏

Γ1 ⊗ Γ2
(𝑖𝑑⊗𝑡 ) ;𝑢
−−−−−−→ 𝜏

Abstraction

Γ ⊗ 𝜏1
𝑡−→ 𝜏2

Γ
cur(𝑡 )
−−−−→ 𝜏1 ⊸ 𝜏2

Application

Γ1
𝑡−→ 𝜏1 ⊸ 𝜏2 Γ2

𝑢−→ 𝜏1

Γ1 ⊗ Γ2
(𝑡⊗𝑢) ;ev
−−−−−−→ 𝜏2

⊕ Intro1

Γ
𝑡−→ 𝜏1

Γ
𝑡 ;𝑖𝑛1−−−→ 𝜏1 + 𝜏2

⊕ Intro2

Γ
𝑡−→ 𝜏2

Γ
𝑡 ;𝑖𝑛2−−−→ 𝜏1 + 𝜏2

⊕ Elim

Γ1
𝑢−→ 𝜏1 + 𝜏2 𝜏1 ⊗ Γ2

𝑡1−→ 𝜏 𝜏2 ⊗ Γ2
𝑡2−→ 𝜏

Γ1, Γ2
𝑢⊗𝑖𝑑Γ

2−−−−−→ (𝜏1 + 𝜏2) ⊗ Γ2 � (𝜏1 ⊗ Γ2) + (𝜏2 ⊗ Γ2)
[𝑡1,𝑡2 ]−−−−−→ 𝜏

Sample

𝜏1 × · · · × 𝜏𝑛
𝑀−→ 𝜏 Γ𝑖

𝑡𝑖−→M𝜏𝑖

Γ1 ⊗ · · · ⊗ Γ𝑛
𝑡1⊗···⊗𝑡𝑛−−−−−−−→M𝜏1 ⊗ · · · ⊗ M𝜏𝑛

𝜇
−→M(𝜏1 × · · · × 𝜏𝑛)

𝐹𝑀−−→M𝜏

Fig. 8. Categorical Semantics for 𝜆2INI: I-layer
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case (in1𝑀) of ( |in1𝑥 ⇒ 𝑁1 | in2𝑥 ⇒ 𝑁2) ≡ 𝑁1{𝑀/𝑥}
case (in2𝑀) of ( |in1𝑥 ⇒ 𝑁1 | in2𝑥 ⇒ 𝑁2) ≡ 𝑁2{𝑀/𝑥}

let 𝑥 = 𝑡 in 𝑥 ≡ 𝑡

let 𝑥 = 𝑥 in 𝑡 ≡ 𝑡

let 𝑦 = (let 𝑥 = 𝑀1 in𝑀2) in𝑀3 ≡ let 𝑥 = 𝑀1 in (let 𝑦 = 𝑀2 in𝑀3)

Fig. 9. Equational Theory: NI-layer

(𝜆𝑥 . 𝑡) 𝑢 ≡ 𝑡{𝑢/𝑥}
let 𝑥1 ⊗ 𝑥2 = 𝑡1 ⊗ 𝑡2 in 𝑢 ≡ 𝑢{𝑡1/𝑥1}{𝑡2/𝑥2}

case (in1𝑡) of ( |in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) ≡ 𝑢1{𝑡/𝑥}
case (in2𝑡) of ( |in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) ≡ 𝑢2{𝑡/𝑥}

sample 𝑡 as 𝑥 in 𝑥 ≡ 𝑡

sample (sample 𝑡 as 𝑥 in𝑀) as 𝑦 in 𝑁 ≡ sample 𝑡 as 𝑥 in (let 𝑦 = 𝑀 in 𝑁 )

Fig. 10. Equational Theory: I-layer

• ∀𝑎 ∈ 𝑋 ∃𝜀𝑎 > 0 𝜀𝑎 · 𝛿𝑎 ∈ P(𝑋 ), where 𝛿𝑎 (𝑎′) = 1 iff 𝑎 = 𝑎′ and 0 otherwise;

• ∀𝑎 ∈ 𝑋 ∃𝜆𝑎 ∀𝑥 ∈ P(𝑋 ) 𝑥𝑎 ≤ 𝜆𝑎 ;

• P(𝑋 )⊥⊥ = P(𝑋 ), where P(𝑋 )⊥ = {𝑥 ∈ 𝑋 → R+ | ∀𝑣 ∈ P(𝑋 ) ∑𝑎∈𝑋 𝑥𝑎𝑣𝑎 ≤ 1}.

We can define a category PCoh where objects are probabilistic coherence spaces and morphisms

𝑋 ⊸ 𝑌 are matrices 𝑓 : |𝑋 | × |𝑌 | → R+ such that for every 𝑣 ∈ P(𝑋 ), (𝑓 𝑣) ∈ P(𝑌 ), where
(𝑓 𝑣)𝑏 =

∑
𝑎∈ |𝐴 | 𝑓(𝑎,𝑏)𝑣𝑎 .

Definition 5.2. Let ( |𝑋 |,P(𝑋 )) and ( |𝑌 |,P(𝑌 )) be PCS, we define 𝑋 ⊗ 𝑌 = ( |𝑋 | × |𝑌 |, {𝑥 ⊗ 𝑦 |
𝑥 ∈ P(𝑋 ), 𝑦 ∈ P(𝑌 )}⊥⊥), where (𝑥 ⊗ 𝑦) (𝑎, 𝑏) = 𝑥 (𝑎)𝑦 (𝑏)

Wewant to define a functorM : CountStoch→ PCoh. First, we will define amap from countable

sets to PCS as follows.

Lemma 5.4. Let 𝑋 be a countable set, the pair (𝑋, {𝜇 : 𝑋 → R+ | ∑𝑥 ∈𝑋 𝜇 (𝑥) ≤ 1}) is a PCS.

Proof. The first two points are obvious, as the Dirac measure is a subprobability measure and

every subprobability measure is bounded above by the constant function 𝜇1 (𝑥) = 1.

To prove the last point we use the — easy to prove — fact that P𝑋 ⊆ P𝑋⊥⊥. Therefore we must

only prove the other direction. First, observe that, if 𝜇 ∈ {𝜇 : 𝑋 → R+ | ∑𝑥 ∈𝑋 𝜇 (𝑥) ≤ 1}, then we

have

∑
𝜇 (𝑥)𝜇1 (𝑥) =

∑
1𝜇 (𝑥) = ∑

𝜇 (𝑥) ≤ 1, 𝜇1 ∈ {𝜇 : 𝑋 → R+ | ∑𝑥 ∈𝑋 𝜇 (𝑥) ≤ 1}⊥.
Let 𝜇̃ ∈ {𝜇 : 𝑋 → R+ | ∑𝑥 ∈𝑋 𝜇 (𝑥) ≤ 1}⊥⊥. By definition,

∑
𝜇̃ (𝑥) = ∑

𝜇̃ (𝑥)𝜇1 (𝑥) ≤ 1 and,

therefore, the third point holds. □

We define howM acts on morphisms using the following lemma.

Lemma 5.5. Let 𝑋 → 𝑌 be a CountStoch morphism. It is also a PCoh morphism.

Theorem 5.6. There is a lax monoidal functorM : CountStoch→ PCoh.
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Proof. The functor is defined using the lemmas above. Functoriality holds due to the functor

being the identity on arrows. The lax monoidal structure is given by 𝜖 = 𝑖𝑑1 and 𝜇𝑋,𝑌 = 𝑖𝑑𝑋×𝑌 □

In PCoh it is possible to show thatM𝜏1 ⊗M𝜏2 ⊆ M(𝜏1 × 𝜏2) meaning that well typed programs

of typeM𝜏1 ⊗ M𝜏2 are denoted by joint distributions over 𝜏1 × 𝜏2. Furthermore, our soundness

theorem says that they are only denoted by independent probability distributions. This model

was originally used to explore the connections between probability theory and linear logic. Since

its creation this model has been used to interpret recursive probabilistic programs and recursive

types [Tasson and Ehrhard 2019]; it is also fully-abstract for probabilistic PCF [Ehrhard et al. 2018].

5.2.2 Continuous Probability. Next, we consider models for continuous probability. The general-

ization of CountStoch to continuous probabilities is BorelStoch, which has standard Borel spaces

as objects and Markov kernels as morphisms [Fritz 2020].

The category Meas can be used to interpret continuous probability, but it can’t interpret higher-

order functions. However, there are a few models of linear logic that can interpret continuous

randomness and higher-order functions. We choose to use a model based on perfect Banach lattices.

Definition 5.3 ([Azevedo de Amorim and Kozen 2022]). The category PBanLat1 has perfect Banach
lattices as objects and order-continuous linear functions with norm ≤ 1 as morphisms.

Theorem 5.7. There is a lax monoidal functorM : BorelStoch→ PBanLat1.

Proof. The functor acts on objects by sending a measurable space to the set of signed measures

over it, which can be equipped with a PBanLat1 structure. On morphisms it sends a Markov kernel

𝑓 to the linear functionM(𝑓 ) (𝜇) =
∫
𝑓 𝑑𝜇.

The monoidal structure of PBanLat1 satisfies the universal property of tensor products and,

therefore, we can define the natural transformation 𝜇𝑋,𝑌 :M(𝑋 ) ⊗ M(𝑌 ) → M(𝑋 × 𝑌 ) as the
function generated by the bilinear functionM(𝑋 );M(𝑌 ) ⊸ M(𝑋 × 𝑌 ) which maps a pair of

distributions to its product measure. The map 𝜖 is, once again, equal to the identity function.

The commutativity of the lax monoidality diagrams follows from the universal property of the

tensor product: it suffices to verify it for elements 𝜇𝐴 ⊗ 𝜇𝐵 ⊗ 𝜇𝐶 . □

This model can be seen as the continuous generalization of the previous model, since there is

are full and faithful embeddings CountStoch ↩→ BorelStoch and PCoh ↩→ PBanLat1 [Azevedo de

Amorim and Kozen 2022]. In this model, our soundness theorem once again ensures probabilistic

independence, i.e. programs of typeM𝜏1 ⊗M𝜏2 are denoted by independent distributions.

5.2.3 Non-Determinism and Communication. Imagine that we want to program a system that

might run in several computers concurrently and guarantee local reasoning, i.e., we can reason

equationally about an individual program without worrying about the code it communicates with.

If we assume that each program is pure and that communication is perfect then this is straight

forward to do. However, if we assume that communication might be faulty – a message might drop,

for instance – or that the programs being run are effectful then this becomes more complicated.

Suppose that we have two languages: one for writing local programs and a second one to

orchestrate the communication between local code. We claim that 𝜆2
INI

provides abstractions for

this situation, whereM𝜏 corresponds to local computations which can be manipulated by the

communication language. To align the syntax with this new interpretation, we change sample to
send 𝑡𝑖 𝑎𝑠 𝑥𝑖 in𝑀 which sends the values computed by the local programs 𝑡𝑖 , binds them to 𝑥𝑖 and

continues as the local program𝑀 .

For the concrete semantics, we will assume that local programs may be non-deterministic, to

account for messages that might be dropped. Therefore, we choose the Kleisli category for the
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powerset monad as our CD category and the linear category Rel, a well-known model of classical

linear logic.

In this model, our soundness result ensures that if we have a closed program of typeM𝜏 ⊗M𝜏 ,

then it can be factored into two local programs which can be run locally, and do not require any

extra communication other than explicit send instructions.

This approach to programming with communication is reminiscent of session types and chore-

ographic programming. Session types consist of linearly-typed languages which can be used to

specify and program communication protocols with explicit communication. One of their meta

theoretic guarantees is that well-typed programs will never deadlock. Choreographic programming

is a monolithic approach to distributed computation. The programmer writes the entire system

in a single program which can be compiled (projected, as it is used in the literature) into several

local programs with explicit communication. They also guarantee deadlock-freedom and keep the

invariant that the projection function is well-defined while not enforcing a linear typing discipline.

We see our model for 𝜆2
INI

as a sort of compromise between both approaches. Though we

require communication to be linear, the modality M allows to safely encapsulate non-linear

computations. Our soundness theorem can be seen as a kind of existence of projection functions

from the choreography literature.

It is a interesting research question that goes well beyond the scope of this paper to understand

how these approaches are related. With the introduction of higher-order choreographies [Hirsch

and Garg 2022] it seems like our approach is overly conservative since our soundness theorem is

also valid for, say, programs of type (𝜏 ⊸ 𝜏) ⊗ 𝜏 , not only programs of typeM𝜏 ⊗M𝜏 , which are

the only types that should matter when projecting into local programs.

5.2.4 Commutative Effects. In this section we will present a large class of models based on com-

mutative monads which, are monads where, in a Kleisli semantics of effects, the program equation

(let 𝑥 = 𝑡 in let 𝑦 = 𝑢 in𝑤) ≡ (let 𝑦 = 𝑢 in let 𝑥 = 𝑡 in𝑤) holds.
The Kleisli category of commutative monads has many useful properties.

Theorem 5.8 ([Fritz 2020]). Let C be a Cartesian category and 𝑇 a commutative monad over it. The
category C𝑇 is a CD category.

Lemma 5.9. Let C be a distributive category and 𝑇 a monad over it. Its Kleisli category C𝑇 has
coproducts and is also distributive.

Proof. It is straightforward to show that Kleisli categories inherit coproducts from the base

category. Furthermore, by using the distributive structure of C, applying 𝑇 to it and using the

functor laws, it follows that C𝑇 is distributive. □

Another useful category of algebras is the category of algebras and plain maps C̃𝑇
which has 𝑇

algebras as objects and C̃𝑇 ((𝐴, 𝑓 ), (𝐵,𝑔)) = C(𝐴, 𝐵).

Theorem 5.10 ([Simpson 1992]). Let C be a Cartesian category and 𝑇 a commutative monad over it.
The category of 𝑇 -algebras and plain maps is Cartesian closed.

Therefore, we choose the Kleisli category to interpret NI and the category of 𝑇 -algebras and

plain maps to interpret I. We only have to show that there is an applicative functor between them.

Theorem 5.11. There exists an applicative functor C𝑇 → C̃𝑇 .

Proof. The functor acts by sending objects 𝐴 to the free algebra (𝑇𝐴, 𝜇𝐴) and morphisms

𝑓 : 𝐴 → 𝑇𝐵 to 𝑓 ∗. Now, for the lax monoidal structure, consider the natural transformation

𝜇 ◦𝑇𝜏 ◦ 𝜎 : 𝑇𝐴 ×𝑇𝐵 → 𝑇 (𝐴 × 𝐵) and 𝜂1 : 1→ 𝑇1. It is possible to show that this corresponds to
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an applicative functor by using the fact that 𝑇 is commutative and that the comonoid structure

𝐴→ 1 is natural. □

Something which needs further clarification is what is the intuitive interpretation for the

sample 𝑥 as 𝑡 in 𝑀 construct. Originally, categories of algebras and plain maps were used as

a denotational foundation for call-by-name programming languages while Kleisli categories can

be used to interpret call-by-value languages. In this context, the I language should be seen as a

CBN interpretation of effects while NI should be seen as a CBV interpretation of effects. Therefore,

we rename Sample to Force and its operational interpretation is forcing the execution of CBN

computations 𝑡𝑖 , binding the results to 𝑥𝑖 and running them in an eager setting.

As a concrete example, the name generation monad is used to give semantics to the 𝜈-calculus,

a language that has a primitive that generates a “fresh” symbol [Stark 1996]. This is a useful

abstraction, for instance, in cryptography, where a new symbol might be a secret that you might

not want to share with adversaries. As such, enforcing the separability of names used is useful

when reasoning about security property of programs.

A concrete semantics to the 𝜈-calculus was presented by Stark [1996] where the base category is

the functor category [Inj, Set], where Inj is the category of finite sets and injective functions. In

this case the name generation monad acts on functor as

𝑇 (𝐴) (𝑠) = {(𝑠 ′, 𝑎′) | 𝑠 ′ ∈ Inj, 𝑎′ ∈ 𝑆 (𝑠 + 𝑠 ′)}/∼

where (𝑠1, 𝑎1) ∼ (𝑠2, 𝑎2) if, and only if, for some 𝑠0 there are injective functions 𝑓1 : 𝑠1 → 𝑠0 and

𝑓2 : 𝑠2 → 𝑠0 such that 𝐴(𝑖𝑑𝑠 + 𝑓1)𝑎1 = 𝐴(𝑖𝑑𝑠 + 𝑓2)𝑎2. The intuition is that 𝑇 (𝐴) is a computation

that, given a finite set of names used 𝑠 , produces a distinct set of names 𝑠 ′ and a value 𝑎′.
In the context of name generation, our soundness theorem says that in a program of type

M𝜏 ⊗M𝜏 , the names used in the first component are disjoint from the ones used in the second

component.

It is also possible to define a variant to this algebra model using the Eilenberg-Moore category

since; this category is known to be symmetric monoidal closed, under a few light conditions.
1

5.2.5 Affine Bunched Typing. The logic of bunched implications (BI) [O’Hearn and Pym 1999] is

a substructural logic. A primary motivation of BI is reasoning about sharing and separation of

abstract resources, whether pointers to a heap memory [O’Hearn et al. 2001], or permissions to

enter some critical section in concurrent code [O’Hearn 2007].

The proof theory of BI gives rise to functional languages with bunched type systems, where

contexts are defined using trees (so-called bunches) as opposed to lists [O’Hearn 2003]. Concretely,

there are two context concatenation operations Γ, Γ and Γ; Γ. The first operation means that the

two contexts are disjoint, whereas the second one means that they might share resources.

It is natural to wonder how BI is related to 𝜆2
INI
. Semantically, bunched calculi are interpreted

using a single category that has both a Cartesian closed and a (usually distinct) monoidal closed

structure. In order to understand how these systems are related, let us consider the affine variant

of the bunched calculus, i.e., when the monoidal unit is a terminal object and there is a discard

operation 𝐴 ⊗ 𝐵 → 𝐴. Given an affine BI model C, we can define a trivial lax monoidal functor

𝑖𝑑 : (C,×, 1) → (C, ⊗, 𝐼 ) which maps every object and morphism to itself. Thus:

Theorem 5.12. Every model of affine BI gives rise to a model of 𝜆2INI.

1
The monoidal structure is given by a coequalizer to the following diagram: https://ncatlab.org/nlab/show/tensor+product+

of+algebras+over+a+commutative+monad#for_monoidal_closed_categories
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Remark 5.13. From a more abstract point of view, by initiality of the syntactic model of 𝜆2
INI

(Theorem A.1), there is a translation from 𝜆2
INI

to the bunched calculus. Thus, affine bunched calculi

can be seen as a degenerate version of our language, where the two layers are collapsed into one.

To illustrate a useful model of the bunched calculus, let us consider Reynolds’ system for syntactic

control of interference control (SCI). Reynolds introduced an affine 𝜆-calculus that can enforce the

non-aliasing of local state. Its denotational semantics was defined by O’Hearn [1993] and consists

of the functor category SetP(𝐿𝑜𝑐) , where P(𝐿𝑜𝑐) is the poset category of subsets of 𝐿𝑜𝑐 , an infinite

set of names (memory addresses). The Cartesian closed structure is given by the usual construction

on presheafs. The monoidal closed structure is given by a different product on presheafs, called the

Day convolution [Borceux 1994].

The presheaf model for SCI gives rise to a presheaf model for 𝜆2
INI

. In this context, our soundness

theorem implies that programs of type 𝜏1 ⊗ 𝜏2 do not share local state and, therefore, there can be

no aliasing of memory locations.

6 SOUNDNESS THEOREM
So far we have seen two proofs of soundness. For 𝜆INI, we proved soundness using logical

relations (Theorem 3.3). For 𝜆2
INI

with a probabilistic semantics, we used an observation about

algebras for the distribution monad (Theorem 4.1). This proof is slick, but the strategy does not

generalize to other models of 𝜆2
INI
.

Thus, to prove our general soundness theorem for 𝜆2
INI
, we will return to logical relations. The

statement of our soundness theorem is as follows.

Theorem 6.1. If · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2 then J𝑡K can be factored as two morphisms J𝑡K = 𝑓1 ⊗ 𝑓2, where
𝑓1 : 𝐼 →M J𝜏1K and 𝑓2 : 𝐼 →M J𝜏2K.

Logical relations are frequently used to prove metatheoretical properties of type theories and

programming languages. However, they are usually used in concrete settings, i.e., for a concrete

model where we can define the logical relation explicitly. In our case, however, this approach is not

enough, since we are working with an abstract categorical semantics of 𝜆2
INI

. Thus, we will leverage

the categorical treatment of logical relations, called Artin gluing, a construction originally used in

topos theory [Hyland and Schalk 2003; Johnstone et al. 2007].

A detailed description of this technique is beyond the scope of this paper. However, we highlight

some of the essential aspects here. We have already introduced our class of models for 𝜆2
INI
. Let

· ⊢𝐼 𝑡 : 𝜏 be a well-typed program. For every concrete model (M,C,M), we want to show that the

interpretation J𝑡K in this model satisfies some properties. At a high level, there are three steps to

the gluing argument:

(1) Define a category of models of 𝜆2
INI

, and show that every interpretation J·K can be encoded as

a map from the syntactic model Syn to (M,C,M); where the syntactic model has types as

objects and typing derivations (modulo the equational theory of 𝜆2
INI
) as morphisms. This

property follows by showing that the syntactic model is initial.

(2) Define a triple (M,Gl(C), M̃)—where objects of the categoryGl(C) are pairs (𝐴,𝑋 ⊆ C(𝐼 , 𝐴)),
the subsets 𝑋 are viewed as predicates on 𝐴, and morphisms preserve these predicates—and

show that this structure is a model of 𝜆2
INI
. We call this the glued model.

(3) Define a map L·M from the syntactic model Syn to the glued model. The data of this map

associates every I-type 𝜏 in 𝜆2
INI

to an object (𝐴𝜏 , 𝑋𝜏 ⊆ C(𝐼 , 𝐴𝜏 )); intuitively, 𝐴𝜏 ∈ C is the

interpretation of 𝜏 under J·K, and the subset 𝑋𝜏 encodes the logical relation at type 𝜏 , so this

map defines a logical relation. The proof that map from Syn to the glued model is indeed a

map of models encodes the logical relations proof.
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Finally, we can use L·M to map any morphism in the syntactic category, i.e., well-typed term · ⊢𝐼 𝑡 : 𝜏 ,

to an element of𝑋𝜏 . By initiality of Syn, J𝑡K also is an element of𝑋𝜏 , completing the proof by logical

relations proof. We defer the details to Appendix A.

7 RELATEDWORK
Linear logics and probabilistic programs. A recent line of uses linear logic as a powerful framework

to provide semantics for probabilistic programming languages. Notably, Ehrhard et al. [2018] show

that a probabilistic version of the coherence-space semantics for linear logic is fully abstract for

probabilistic PCF with discrete choice, and Ehrhard et al. [2017] provide a denotational semantics

inspired by linear logic for a higher-order probabilistic language with continuous random sam-

pling; probabilistic versions of call-by-push-value have also been developed [Tasson and Ehrhard

2019]. Linear type systems have also been developed for probabilistic properties, like almost sure

termination [Dal Lago and Grellois 2019] and differential privacy [Azevedo de Amorim et al. 2019;

Reed and Pierce 2010].

As we have mentioned, our categorical model for 𝜆2
INI

is inspired by models of linear logic

based on monoidal adjunctions, most notably Benton’s LNL [Benton 1994]. From a programming

languages perspective, these models decompose the linear 𝜆-calculus with exponentials in two

languages with distinct product types each: one is a Cartesian product and the other is symmetric

monoidal. The adjunction manifests itself in adding functorial type constructor in each language,

similar to ourM modality. These two-level languages are very similar to 𝜆2
INI
, and indeed it is

possible to show that every LNL model is a 𝜆2
INI

model. At the same time, the class of models for

𝜆2
INI

is much broader than LNL—none of the models presented in Section 5.2 are LNL models.

Higher-order programs and effects. There is a very large body of work on higher-order programs

effects, which we cannot hope to summarize here. The semantics of 𝜆INI is an instance of Moggi’s

Kleisli semantics, from his seminal work on monadic effects [Moggi 1991]; the difference is that

our one-level language uses a linear type system to enforce probabilistic independence.

Another well-known work in this area is Call-by-Push-Value (CBPV) [Levy 2001]. It is a two-level

metalanguage for effects which subsumes both call-by-value and call-by-name semantics. Each

level has a modality that takes from one level to the other one. There is a resemblance to 𝜆2
INI
, but

the precise relationship is unclear—none of our concrete models are CBPV models.

Our two-level language 𝜆2
INI

can also be seen as an application of a novel resource interpretation

of linear logic developed by Azevedo de Amorim [2022], which uses an applicative modality to

guarantee that the linearity restriction is only valid for computations, not values. We consider a

more general class of categorical models, and we investigate the role of sum types.

Bunched type systems. Our focus on sharing and separation is similar to the motivation of another

substructural logic, called the logic of bunched implicates (BI) [O’Hearn and Pym 1999]. Like our

system, BI features two conjunctions modeling separation of resources, and sharing of resources.

Like in 𝜆INI, these conjunctions in BI belong to the same language. Unlike our work, BI also features

two implications, one for each conjunction. The leading application of BI is in separations logic for

concurrent and heap-manipulating programs [O’Hearn 2007; O’Hearn et al. 2001], where pre- and

post-conditions are drawn from BI.

Most applications of BI use a truth-functional, Kripke-style semantics [Pym et al. 2004]. By

considering the proof-theoretic models of BI, O’Hearn [2003] developed a bunched type system for

a higher-order language. Its categorical semantics is given by a doubly closed category: a Cartesian
closed category with a separate symmetric monoidal closed structure.While O’Hearn [2003] showed

different models of this language for reasoning about sharing and separation in heaps, few other
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concrete models are known. It is not clear how to incorporate effects into the bunched type system;

in contrast, our models can reason about a wide class of monadic effects.

There are natural connections to both of our languages. Our language 𝜆INI resembles O’Hearn’s

system, with two differences. First, 𝜆INI only has a multiplicative arrow, not an additive arrow—as

we described in Section 3, it is not clear how to support an additive arrow in 𝜆INI without breaking

our primary soundness property. Second, contexts in 𝜆INI are flat lists, not tree-shaped bunches; it

would be interesting to use bunched contexts to represent more complex dependency relations.

Our stratified language 𝜆2
INI

is also similar to O’Hearn’s system. Though our categorical model

only has a single multiplicative arrow, in the I-layer, many—but not all—of our concrete models

also support an additive arrow, in the NI-layer. Furthermore, by assuming a single category, instead

of two categories as in our approach, in BI it is possible to layer the connectives × and ⊗ to

create intricate dependency structures. In contrast our two-layer language only allows to create

dependencies of the formM(𝜏 × · · · × 𝜏) ⊗ · · · ⊗ M(𝜏 × · · · × 𝜏). At the same time, it is not clear

how the two sum types in 𝜆2
INI

would function in a bunched type system.

Probabilistic independence in higher-order languages. There are a few probabilistic functional

languages with type systems that model probabilistic independence. Probably themost sophisticated

example is due to Darais et al. [2019], who propose a type system combining linearity, information-

flow control, and probability regions for a probabilistic functional language. Darais et al. [2019]

show how to use their system to implement and verify security properties for implementations of

oblivious RAM (ORAM). Our work aims to be a core calculus capturing independence, with a clean

categorical model.

Lobo Vesga et al. [2021] present a probabilistic functional language embedded in Haskell, aiming

to verify accuracy properties of programs from differential privacy. Their system uses a taint-based

analysis to establish independence, which is required to soundly apply concentration bounds, like

the Chernoff bound. Unlike our work, Lobo Vesga et al. [2021] do not formalize their independence

property in a core calculus.

Probabilistic separation logics. A recent line of work develops separation logics for first-order,

imperative probabilistic programs, using formulas from the logic of bunched implications to

represent pre- and post-conditions. Systems can reason about probabilistic independence [Barthe

et al. 2019], but also refinements like conditional independence [Bao et al. 2021], and negative

association [Bao et al. 2022]. These systems leverage different Kripke-style models for the logical

assertions; it is unclear how these ideas can be adapted to a type system or a higher-order language.

There are also quantitative versions of separation logics for probabilistic programs [Batz et al. 2022,

2019].

8 CONCLUSION AND FUTURE DIRECTIONS
We have presented two linear, higher-order languages with types that can capture probabilis-

tic independence, and other notions of separation in effectful programs. We see several natural

directions for further investigation.

Other variants of independence. In some sense, probabilistic independence is a trivial version

of dependence: it captures the case where there is no dependence whatsoever between two ran-

dom quantities. Researchers in statistics and AI have considered other notions that model more

refined dependency relations, such as conditional independence, positive association, and negative

dependence (e.g., [Dubhashi and Ranjan 1998]). Some of these notions have been extended to other

models besides probability; for instance, Pearl and Paz [1986] develop a theory of graphoids to
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axiomatize properties of conditional independence. It would be interesting to see whether any of

these notions can be captured in a type system.

Bunched type systems for independence. Our work bears many similarity to work on bunched

logics; most notably, bunched logics feature an additive and a multiplicative conjunction. While

bunched logics have found strong applications in Hoare-style logics, the only bunched type system

we are aware of is due to O’Hearn [2003]. This language features a single layer with two product

types and also two function types, and the typing contexts are tree-shaped bunches, rather than

flat lists. Developing a probabilistic model for a language with a richer context structure would be

an interesting avenue for future work.

Non-commutative effects. Our concrete models encompass many kinds of effects, but we only

support effects modeled by commutative monads. Many common effects are modeled by non-

commutative monads, e.g., the global state monad. It may be possible to extend our language to

handle non-commutative effects, but we would likely need to generalize our model and consider

non-commutative logics.

Towards a general theory of separation for effects. We have seen how in the presence of effects,

constructs like sums and products come in two flavors, which we have interpreted as sharing and

separate. Notions of sharing and separation have long been studied in programming languages

and logic, notably leading to separation logics. We believe that there should be a broader theory of

separation (and sharing) for effectful programs, which still remains to be developed.
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A CATEGORICAL SOUNDNESS PROOF: DETAILS
A.1 Category of Models
A model for 𝜆2

INI
is given by a CD category M with coproducts, a symmetric monoidal closed

category (SMCC) C with coproducts and a lax monoidal functorM : M→ C. A morphism between

two models (M1,C1,M1) and (M2,C2,M2) is a pair of functors (𝐹 : M1 → M2,𝐺 : C1 → C2) that
preserves the logical connectives.

If we define composition component-wise, it is possible to define a category Mod of models

of the language. An important model is the syntactic category Syn, whose objects are types, and
morphisms are typing derivations modulo the equational theory presented in Figures 9 and 10. The

syntactic category is the initial object of Mod.

Theorem A.1. Syn is the initial object of Mod.

Proof. Let (C,M,M) be a model. The functor J·K : Syn→ (C,M,M) is defined by two functors
J·K

1
and J·K

2
. It is possible to define their action on objects by induction on the types. In order to

define the action on morphisms we proceed by induction on the typing derivation.

There is a subtlety in this definition because the morphisms of the components of Syn are typing

derivations modulo the equational theory of the language, meaning that we need to quotient the

definition above. Since, by definition of model, the construction above is invariant with respect

with the equational theory, it is well-defined.

To prove uniqueness we assume the existence of two semantics and show, by induction on the

typing derivation, that they are equal. □

A.2 Glued category
We construct the logical relations category by using a comma category. Formally, a comma

category along functors 𝐹 : C1 → D and 𝐺 : C2 → D has triples (𝐴,𝑋,ℎ) as objects, where 𝐴
is an C1 object, 𝑋 is an C2 objects and ℎ : 𝐹𝐴 → 𝐺𝑋 , and its morphisms (𝐴,𝑋,ℎ) → (𝐴′, 𝑋 ′, ℎ′)
are pairs 𝑓 : 𝐴 → 𝐴′ and 𝑔 : 𝑋 → 𝑋 ′ making certain diagrams commute. In Computer Science

applications of gluing, it is usually assumed that 𝐹 is the identity functor and D = Set. Furthermore,

to simplify matters, sometimes it is also assumed that we work with full subcategories of the glued

category, for instance we can assume that we only want objects such that 𝐴→ 𝐺𝐵 is an injection,

effectively representing a subset of 𝐺𝐵.

Therefore, in the context of our applications, a glued category along a functor 𝐺 : C→ Set has
pairs (𝐴,𝑋 ⊆ 𝐺 (𝐴)) as objects and its morphisms (𝐴,𝑋 ) → (𝐵,𝑌 ) is a C morphism 𝑓 : 𝐴 → 𝐵

such that𝐺 (𝑓 ) (𝑋 ) ⊆ 𝑌 . Note that this condition can be seen as a more abstract way of phrasing the

usual logical relations interpretation of arrow types: mapping related things to related things. At an

intuitive level we want to use the functor 𝐺 to map types to predicates satisfied by its inhabitants.

Now, we are ready to define the glued category and show that it constitutes a model for the

language. Given a triple (M,C,M) we define the triple (M,Gl(C), M̃), where the objects of Gl(C)
are pairs (𝐴 ∈ C, 𝑋 ⊆ C(𝐼 , 𝐴)) and the morphisms are C morphisms that preserve 𝑋 . The functor

M : M→ C is lifted to a functor M̃ : C→ Gl(C) by mapping objects 𝑋 to (M 𝑋,C(𝐼 ,M 𝑋 )) and
by mapping morphisms 𝑓 toM 𝑓 .2 Now we have to show that the triple is indeed a model of our

language.

Something that simplifies our proofs is that morphisms inGl(C) are simply morphisms in Cwith

extra structure and composition is kept the same. Therefore, once we establish that a Cmorphism is

2
Note that its predicate set is every C morphism 𝐼 → M𝑋 , similar to how ground types are interpreted in usual logical

relations proofs.
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also a Gl(C) morphism all we have to do in order to show that a certain Gl(C) diagram commutes

is to show that the respective C diagram commutes.

Theorem A.2. Gl(C) is SMCC with coproducts.

Proof. Let (𝐴,𝑋 ) and (𝐵,𝑌 ) be Gl(C) objects, we define (𝐴,𝑋 ) ⊗ (𝐵,𝑌 ) = (𝐴 ⊗ 𝐵, {𝑓 : 𝐼 →
𝐴 ⊗ 𝐵 | 𝑓 = 𝑓𝐴 ⊗ 𝑓𝐵, 𝑓𝐴 ∈ 𝑋, 𝑓𝐵 ∈ 𝑌 }). The monoidal unit is given by (𝐼 ,C(𝐼 , 𝐼 )).

Let (𝐴,𝑋 ) and (𝐵,𝑌 ) be Gl(C) objects, we define (𝐴,𝑋 ) ⊸ (𝐵,𝑌 ) = (𝐴 ⊸ 𝐵, {𝑓 : 𝐼 → (𝐴 ⊸
𝐵) | ∀𝑓𝐴 ∈ 𝑋𝐴, 𝜖𝐵 ◦ (𝑓𝐴 ⊗ 𝑓 ) ∈ 𝑋𝐵}, where 𝜖𝐵 : (𝐴 ⊸ 𝐵) ⊗ 𝐴 → 𝐵 is the counit of the monoidal

closed adjunction.

To show 𝐴 ⊗ (−) ⊣ 𝐴 ⊸ (−) we can use the (co)unit characterization of adjunctions, which

corresponds to the existence of two natural transformations 𝜖𝐵 : 𝐴 ⊗ (𝐴 ⊸ 𝐵) → 𝐵 and 𝜂𝐵 : 𝐵 →
𝐴 ⊸ (𝐴⊗𝐵) such that 1𝐴⊗− = 𝜖 (𝐴⊗−) ◦ (𝐴⊗−)𝜂 and 1𝐴⊸− = (𝐴 ⊸ −)𝜖 ◦𝜂 (𝐴 ⊸ −), where 1𝐹 is

the identity natural transformation between 𝐹 and itself. By choosing these natural transformations

to be the same as in C, since the adjoint equations hold for them by definition, all we have to do is

show that they are also Gl(C) morphisms, which follows by unfolding the definitions.

Finally, we can show that Gl(C) has coproducts. Let (𝐴1, 𝑋1) and (𝐴2, 𝑋2) be Gl(C) objects, we
define (𝐴1, 𝑋1) ⊕ (𝐴2, 𝑋2) = (𝐴1 ⊕ 𝐴2, {ini 𝑓𝑖 | 𝑓𝑖 ∈ 𝑋𝑖 }). To show that it satisfies the universal

property of sum types. Let 𝑓1 : 𝐴1 → 𝐵 and 𝑓2 : 𝐴2 → 𝐵 be Gl(C) morphisms. Consider the

C morphism [𝑓1, 𝑓2]. We want to show that this morphism is also a Gl(C) morphism. Consider

𝑔 ∈ 𝑋𝐴1⊕𝐴2
which, by assumption, 𝑔 = in1𝑔1 or 𝑔 = in2. By case analysis and the facts 𝑓𝑖 ◦ 𝑔𝑖 ∈ 𝑌

and [𝑓1, 𝑓2] ◦ in𝑖𝑔𝑖 = 𝑓𝑖 ◦ 𝑔𝑖 we can conclude that [𝑓1, 𝑓2] is indeed a Gl(C) morphism. □

Since every construction so far uses the same objects as the ones in C, it is possible to show that

the forgetful functor 𝑈 : Gl(C) → C preserves every type constructor and is a Mod morphism.

Next, we have to show that M̃ is lax monoidal which follows from the fact that 𝜇 and 𝜖 preserve

the plot sets, by a simple unfolding of the definitions. We can now easily conclude that the lax

monoidality diagrams commute, since composition is the same andM is lax monoidal.

Thus, the glued category is a model.

Theorem A.3. The triple (M,Gl(C), M̃) is a Mod object.

There is a forgetful map from the glued model to the original model.

Theorem A.4. There is aMod morphism𝑈 : (M,Gl(C), M̃) → (M,C,M).

The key step is constructing a map from the syntactic model to the glued model. This map

encodes the logical relation, categorically.

Theorem A.5. There is aMod morphism L·M : Syn→ (M,Gl(C), M̃).

Sketch. In order to define a map, we must associate each object 𝑋 in Syn with an object of the

glued category (𝐴 ∈ C, 𝑋 ⊆ C(𝐼 , 𝐴)). Recall that each object in Syn is a type in 𝜆2
INI
. We will just

define the map for I-types. Each 𝜏 is mapped to (𝜏, 𝑋𝜏 ⊆ C(𝐼 , 𝜏)) where:
𝑋M𝜏 = C(𝐼 ,M𝜏)

𝑋𝜏1⊗𝜏2 = {𝑓1 ⊗ 𝑓2 | 𝑓1 ∈ 𝑋𝜏1 , 𝑓2 ∈ 𝑋𝜏2 }
𝑋𝜏1⊸𝜏2 = {𝑓 : 𝐼 → (𝜏1 ⊸ 𝜏2) | ∀𝑓𝜏1 ∈ 𝑋𝜏1 , 𝜖𝜏2 ◦ (𝑓𝜏1 ⊗ 𝑓 ) ∈ 𝑋𝜏2 }
𝑋𝜏1⊕𝜏2 = {in𝑖 𝑓𝑖 | 𝑓𝑖 ∈ 𝑋𝜏𝑖 } □

With this map in hand, we may now construct a functor 𝑈 ◦ L·M : Syn→ (M,C,M) which, by
initiality of Syn, is equal to the functor J·K, as illustrated by Figure 11.
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Syn

(M,Gl(C), M̃) (M,C,M)

L·M
J·K

𝑈

Fig. 11. The essence of the soundness proof

A.3 General Soundness Theorem
Theorem A.6. If · ⊢𝐼 𝑡 : 𝜏 , then J𝑡K ∈ 𝑋𝜏 .

Proof. We know that J·K = 𝑈 ◦ L·M and that L𝑡M is a Gl(C) morphism. As such we have that

J𝑡K = L𝑡M = L𝑡M ◦ 𝑖𝑑𝐼 ∈ 𝑋𝜏 . □

Theorem 5.3 follows immediately, as a corollary.

Corollary A.7. If · ⊢𝐼 𝑡 : M𝜏1 ⊗ M𝜏2 then J𝑡K can be factored as two morphisms J𝑡K = 𝑓1 ⊗ 𝑓2,
where 𝑓1 : 𝐼 →M J𝜏1K and 𝑓2 : 𝐼 →M J𝜏2K.

Proof. By Theorem A.6, if · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2, then J𝑡K ∈ 𝑋M𝜏1⊗M𝜏2 which, by unfolding the

definitions, means that there exists 𝑓1 : 𝐼 →M J𝜏1K and 𝑓2 : 𝐼 →M J𝜏2K such that J𝑡K = 𝑓1 ⊗ 𝑓2. □
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