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Machine learning brings social disruption at scale 
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Healthcare 
Source: Peng and Gulshan (2017) 

Education 
Source: Gradescope 

Transportation 
Source: Google 

Energy 
Source: Deepmind 



Machine learning is not magic (training time) 
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Training data 



Machine learning is not magic (inference time) 
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Machine learning is deployed in adversarial 
settings 
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YouTube filtering 
 

Content evades detection at inference 

Microsoft’s Tay chatbot 
 

Training data poisoning 



Machine learning does not always generalize well 
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Training data Test data 



ML reached “human-level performance”  on 
many IID tasks circa 2013 

...solving CAPTCHAS and  
reading addresses... 

...recognizing objects  
and faces…. 

(Szegedy et al, 2014) 

(Goodfellow et al, 2013) 

(Taigmen et al, 2013) 

(Goodfellow et al, 2013) 



Caveats to “human-level” benchmarks 

Humans are not very good  
at some parts of the  

benchmark 

The test data is not very  
diverse. ML models are fooled  
by natural but unusual data. 

(Goodfellow 2018) 



ML (Basics) 

• Supervised learning  
• Entities 

• (Sample Space) 𝑍 = 𝑋 × 𝑌  
• (data, label) 𝑥, 𝑦  
 

• (Distribution over 𝑍 ) 𝐷 
 
• (Hypothesis Space) 𝐻 
 
• (loss function) 𝑙: 𝐻 × 𝑍 → 𝑅 

 



ML (Basics) 

• Learner’s problem  
• Find 𝑤 ∈ 𝐻 that minimizes  

• 𝑅 (regularizer) 
• 𝐸 𝑧∼𝐷  𝑙 𝑤, 𝑧  + 𝜆 𝑅 𝑤  

• 1
𝑚  

𝑙 𝑤, 𝑥𝑖, 𝑦𝑖  + 𝜆 𝑅(𝑤)𝑚
𝑖=1  

• Sample set 𝑆 = { 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚 } 
• SGD 

• (iteration) 𝑤 𝑡 + 1 = 𝑤 𝑡  − 𝜂𝑡𝑙′(𝑤 𝑡 , 𝑥 𝑖𝑡 , 𝑦 𝑖𝑡 ) 
• (learning rate) 𝜂𝑡 
• … 



ML (Basics) 

• SGD 
• How learning rates change? 
• In what order you process the data? 

• Sample-SGD 
• Random-SGD 

• Do you process in mini batches? 
• When do you stop? 



ML (Basics) 

• After Training 
• 𝐹𝑤: 𝑋 → 𝑌 
 
• 𝐹𝑤(𝑥)  =  argmax𝑦∈𝑌

  𝑠 𝐹𝑤 (𝑥) 
 
• (softmax layer) 𝑠(𝐹𝑤) 
 
• Sometimes we will write 𝐹𝑤 simply as 𝐹 

• 𝑤  will be implicit 
 



ML (Basics) 

• Logistic Regression 
• 𝑋 = ℜ𝑛 , 𝑌 = +1,−1  
• 𝐻 = ℜn 
• Loss function 𝑙 𝑤, 𝑥, 𝑦  

• log 1 + exp −𝑦 𝑤𝑇𝑥  
• 𝑅 𝑤 = | 𝑤 |2 

• Two probabilities 𝑠(𝐹) = (𝑝 −1 , 𝑝 +1 ) 
• ( 1

1+exp 𝑤𝑇𝑥  ,
1

1+exp −𝑤𝑇𝑥   ) 
• Classification 

• Predict -1 if 𝑝 −1 > 0.5 
• Otherwise predict +1 

  
  

 
 
 



Adversarial Learning is not new!! 

• Lowd: I spent the summer of 2004 at Microsoft Research working 
with Chris Meek on the problem of spam.  
• We looked at a common technique spammers use to defeat filters: adding 

"good words" to their emails.  
• We developed techniques for evaluating the robustness of spam filters, as 

well as a theoretical framework for the general problem of learning to defeat 
a classifier (Lowd and Meek, 2005) 

• But… 
• New resurgence in ML and hence new problems 
• Lot of new theoretical techniques being developed  

• High dimensional robust statistics, robust optimization, … 



Attacks on the machine  learning pipeline 

✓ 
Learning algorithm 

Test input 
Test output 

X  
Training data  
Training set 

poisoning 
Model theft Adversarial Examples 

 
y 

Learned Parameters 
Training data Attack 



I.I.D. Machine Learning 
Train Test I: Independent  

I: Identically  
D: Distributed 

All train and test examples  
drawn independently from  
same distribution 



Security Requires Moving  Beyond I.I.D. 

• Not identical: attackers can use unusual inputs 

(Eykholt et al, 2017) 
• Not independent: attacker can repeatedly send a single mistake (“test  

set attack”) 



Training Time Attack 



Attacks on the machine  learning pipeline 

✓ 
Learning algorithm 

Test input 
Test output 

X  
Training data  
Training set 

poisoning 
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Training data Attack 



Training time  
 

• Setting: attacker perturbs training set to fool a model on a 
test set 

• Training data from users is fundamentally a huge security 
hole 

• More subtle and potentially more pernicious than test time 
attacks, due to coordination of multiple points 
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Lake Mendota Ice Days 



Poisoning Attacks  



Formalization 

• Alice picks a data set 𝑆 of size 𝑚 
• Alice gives the data set to Bob 
• Bob picks  

• 𝜖 𝑚 points 𝑆𝐵 
• Gives the data set 𝑆 ∪ 𝑆𝐵 back to Alice 
• Or could replace some points in 𝑆 

• Goal of Bob 
• Maximize the error for Alice 

• Goal of Alice 
• Get close to learning from clean data 

 



Representative Papers 

• Being Robust (in High Dimensions) Can be Practical  
I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, A. Stewart  
ICML 2017 

• Certified Defenses for Data Poisoining Attacks. Jacob Steinhardt, Pang 
Wei Koh, Percy Liang. NIPS 2017 

• …. 
 



Attacks on the machine  learning pipeline 

✓ 
Learning algorithm 

Test input 
Test output 

X  
Training data  
Training set 

poisoning 
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Model Extraction/Theft Attack 



Model Theft 

• Model theft:  extract model parameters by queries 
 (intellectual property theft)  
• Given a classifier 𝐹 
• Query 𝐹 on 𝑞1, … , 𝑞𝑛 and learn a classifier 𝐺 
• 𝐹 ≈ 𝐺  

• Goals:   leverage active learning literature to 
 develop new attacks and preventive techniques 

• Paper: Stealing Machine Learning Models using Prediction APIs, 
Tramer et al., Usenix Security 2016 
 
 



Fake News Attacks 
 

Using GANs to generate fake content (a.k.a deep 
fakes) 
Strong societal implications: 
 elections,   automated trolling,  court 
evidence … 

 

Generative media: 

● Video of Obama saying things he 
never said,  ... 

● Automated reviews, tweets, 
comments, indistinguishable from 
human-generated content 

Abusive use of machine learning: 
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Attacks on the machine  learning pipeline 

✓ 
Learning algorithm 

Test input 
Test output 

X  
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Definition 
“Adversarial examples are inputs to  
machine learning models that an  attacker 
has intentionally designed  to cause the 
model to make a  mistake” 

(Goodfellow et al 2017) 
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What if the adversary systematically found 
these inputs? 

Biggio et al., Szegedy et al., Goodfellow et al., Papernot et al. 



Good models make surprising  
mistakes in non-IID setting 

Schoolbus Ostrich 

+  =  

Perturbation 
(rescaled for visualization) 

(Szegedy et al, 2013) 

“Adversarial examples” 



Adversarial examples... 
… beyond deep learning  
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… beyond computer vision 

Logistic Regression 

Support Vector Machines 

P[X=Malware] = 0.90 
P[X=Benign] = 0.10  

P[X*=Malware] = 0.10 
P[X*=Benign] = 0.90  Nearest Neighbors 

Decision Trees 



Threat Model 

• White Box 
• Complete access to the classifier 𝐹 

 

• Black Box 
• Oracle access to the classifier 𝐹   
• for a data 𝑥 receive 𝐹(𝑥) 

 

• Grey Box 
• Black-Box + “some other information” 
• Example: structure of the defense 

 



Metric 𝜇 for a vector < 𝑥1,… , 𝑥𝑛 > 

• 𝐿∞ 
• max 𝑖=1𝑛  | 𝑥𝑖 |  

• 𝐿1 
• 𝑥1 + …+ |𝑥𝑛| 

 
• 𝐿𝑝 (𝑝 ≥ 2) 

• 𝑥1 𝑝 + …+ 𝑥𝑛 𝑝 𝑞 
• Where 𝑞 = 1

𝑝 

 



White Box 

• Adversary’s problem  
• Given: 𝑥 ∈ 𝑋 
• Find 𝛿 

• min𝛿 𝜇 𝛿  

• Such that:  𝐹 𝑥 + 𝛿 ∈ 𝑇  
• Where: 𝑇 ⊆ 𝑌 

 

• Misclassification: 𝑇 = 𝑌 − 𝐹 𝑥  
• Targeted: 𝑇 = {𝑡} 

 



FGSM (misclassification) 

• Take a step in the  
• direction of the gradient of the loss function 
• 𝛿 = 𝜖 𝑠𝑖𝑔𝑛(Δ𝑥 𝑙 𝑤, 𝑥, 𝐹 𝑥 ) 
• Essentially opposite of what SGD step is doing 

• Paper 
• Goodfellow, Shlens, Szegedy. Explaining and harnessing adversarial examples. 

ICLR 2018 



PGD Attack (misclassification) 

• 𝐵 𝑥, 𝜖 𝑞 
• 𝑞 = ∞, 1 , 2, … . 
• A ϵ ball around 𝑥 

• Initial 
• 𝑥0 = 𝑥 

• Iterate 𝑘 ≥ 1 
• 𝑥𝑘 = 𝑃𝑟𝑜𝑗 𝐵 𝑥, 𝜖 𝑞  [ 𝑥 𝑘−1 + 𝜖 𝑠𝑖𝑔𝑛 Δ𝑥 𝑙 𝑤, 𝑥, 𝐹 𝑥  ] 

 
 



JSMA (Targetted) 
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The Limitations of Deep Learning in Adversarial Settings [IEEE EuroS&P 2016] 
Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami 



Carlini-Wagner (CW) (targeted) 
● Formulation 

○ min𝛿 | 𝛿 |2 

■ Such that 𝐹 𝑥 + 𝛿 = 𝑡 
● Define 

○ 𝑔 𝑥 = max(𝑚𝑎𝑥 𝑖 !=𝑡  𝑍 𝐹 𝑥 𝑖  − 𝑍 𝐹 𝑥 𝑡 , −𝜅) 
○ Replace the constraint  

■ 𝑔 𝑥 ≤ 0  
● Paper 

○ Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural Networks. 
Oakland 2017. 

 

 

 



CW (Contd) 
● The optimization problem 

○ min𝛿 𝛿 2 

■ Such that  𝑔 𝑥 ≤ 0 
● Lagrangian trick 

■ minδ   𝛿 2 + 𝑐 𝑔 𝑥  

 
● Use existing solvers for unconstrained optimization 

○ Adam 

○ Find 𝑐 using grid search 

 

 

 



CW (Contd) glitch! 

● Need to make sure 0 ≤ 𝑥 𝑖 + 𝛿[𝑖] ≤ 1 
● Change of variable 

○ 𝛿 𝑖 = 1
2 tanh 𝑤 𝑖 + 1 − 𝑥 𝑖  

○ Since −1 ≤ tanh 𝑤 𝑖 ≤ 1 

■ 0 ≤ 𝑥 𝑖 + 𝛿 𝑖 ≤ 1 
● Solve the following  

○ min𝑤  12 tanh w + 1 − x + c g (12 (tanh w + 1)  

 



Attacking remotely hosted black-box models 
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Remote 
ML sys 

“no truck 
sign” “STOP 

sign” “STOP 
sign” 

(1) The adversary queries remote ML system for labels on inputs of its choice.  
 

Practical Black-Box Attacks against Machine Learning [AsiaCCS 2017] 
Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z.Berkay Celik, and Ananthram Swami 



44 

Remote 
ML sys 

Local 
substitute 

“no truck 
sign” 

(2) The adversary uses this labeled data to train a local substitute for the remote 
system. 

Attacking remotely hosted black-box models 

Practical Black-Box Attacks against Machine Learning [AsiaCCS 2017] 
Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z.Berkay Celik, and Ananthram Swami 
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Remote 
ML sys 

Local 
substitute 

“no truck 
sign” “STOP sign” 

(3) The adversary selects new synthetic inputs for queries to the remote ML system based 
on the local substitute’s output surface sensitivity to input variations. 

Attacking remotely hosted black-box models 

Practical Black-Box Attacks against Machine Learning [AsiaCCS 2017] 
Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z.Berkay Celik, and Ananthram Swami 
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Remote ML 
sys Local 

substitute 

“yield sign” 

(4) The adversary then uses the local substitute to craft adversarial examples, which 
are misclassified by the remote ML system because of transferability.  

 

Attacking remotely hosted black-box models 

Practical Black-Box Attacks against Machine Learning [AsiaCCS 2017] 
Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z.Berkay Celik, and Ananthram Swami 



Cross-technique transferability 

47 
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples [arXiv preprint] 
Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow 

ML 



Properly-blinded attacks on real-world remote 
systems 
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All remote classifiers are trained on the MNIST dataset (10 classes, 60,000 training 
samples) 

 

Remote Platform ML technique Number of queries 
Adversarial examples 

misclassified  
(after querying) 

Deep Learning 6,400 84.24% 

Logistic 
Regression 800 96.19% 

Unknown 2,000 97.72% 



Fifty Shades of Gray Box Attacks 

• Does the attacker go first, and the defender reacts? 
 

• This is easy, just train on the attacks, or design some preprocessing to 
remove them 

• If the defender goes first 
 

• Does the attacker have full knowledge? This is “white box” 

• Limited knowledge: “black box” 
 

• Does the attacker know the task the model is solving (input space, 
output space, defender cost) ? 

 

• Does the attacker know the machine learning algorithm being used? 



Fifty Shades of Grey-Box Attacks 

• Details of the algorithm? (Neural net architecture, etc.) 
 

• Learned parameters of the model? 
• Can the attacker send “probes” to see how the defender processes 

different test inputs? 
 

• Does the attacker observe just the output class? Or also the 
probabilities? 
 



Real Attacks Will not be in 
the  Norm Ball 

(Eykholt et al, 2017) 

(Goodfellow 2018) 



Defense 



Robust Defense Has Proved Elusive 

• Quote 
• In a case study, examining noncertified white-box-secure defenses at ICLR 

2018, we find obfuscated gradients are a common occurrence, with 7 of 8 
defenses relying on obfuscated gradients. Our new attacks successfully 
circumvent 6 completely and 1 partially. 

• Paper 
• Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses 

to Adversarial Examples. 
• Anish Athalye, Nicholas Carlini, and David Wagner. 
• 35th International Conference on Machine Learning (ICML 2018). 

 



Certified Defenses 

• Robustness predicate 𝑅𝑜 𝑥, 𝐹, 𝜖  
• For all 𝑥′ ∈ 𝐵 𝑥, 𝜖   we have that 𝐹 𝑥 = 𝐹(𝑥′) 

 

• Robustness certificate 𝑅𝐶 𝑥, 𝐹, 𝜖   implies 𝑅𝑜 𝑥, 𝐹, 𝜖  
 

• We should be developing defenses with certified defenses 
 
 



Types of Defenses 

• Pre-Processing 
 
 

• Robust Optimization 



Pre-Processing 

• Pre-process data before you apply the classifier 
• On data 𝑥 
• Output 𝐹 𝐺 𝑥 , where 𝐺 .  is a randomized function 
• Example:  

• 𝐺 𝑥 = 𝑥 +  η 
• 𝑚𝑢𝑙𝑡𝑖 − 𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝐺𝑢𝑎𝑠𝑠𝑖𝑎𝑛   𝜂 

• Papers 
• Improving Adversarial Robustness by Data-Specific Discretization, J. Chen, X. 

Wu, Y. Liang, and S. Jha (arxiv) 
• Raghunathan, Aditi, Steinhardt, Jacob, & Liang, Percy. Certified defenses 

against adversarial examples. (arxiv) 

 
 



Robust Objectives 

• Use the following objective 
• min𝑤 𝐸𝑧 max

𝑧′∈𝐵 𝑧,𝜖
𝑙 𝑤, 𝑧′  

• Outer minimization use SGD 
• Inner maximization use PGD 

• A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu. Towards Deep 
Learning Models Resistant to Adversarial Attacks. ICLR 2018 

• A. Sinha, H. Namkoong, and J. Duchi. Certifying Some Distributional 
Robustness with Principled Adversarial Training. ICLR 2018 



Robust Training 

• Data set 
• 𝑆 =  𝑥1, … , 𝑥𝑛  

 

• Before you take a SGD step on data point 𝑥𝑖 
• 𝑧𝑖 = 𝑃𝐺𝐷(𝑥𝑖, 𝜖) 
• Run SGD step on 𝑧𝑖 
• Think of 𝑧𝑖 as worst-case example for 𝑥𝑖  

• 𝑧𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑧∈𝐵 𝑥𝑖,𝜖   𝑙(𝑤, 𝑧𝑖) 
• You can also use a regularizer 



Theoretical Explanations 



Three Directions (Representative Papers) 

• Lower Bounds 
• A. Fawzi, H. Fawzi, and O. Fawzi. Adversarial Vulnerability for any Classifier. 

 
• Sample Complexity 

• Analyzing the Robustness of Nearest Neighbors to Adversarial Examples, 
Yizhen Wang, Somesh Jha, Kamalika Chaudhuri, ICML 2018 

• Adversarially Robust Generalization Requires More Data. Ludwig Schmidt, 
Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Mądry 
• We show that already in a simple natural data model, the sample complexity of robust 

learning can be significantly larger than that of "standard" learning. 



Three Directions (Contd) 

• Computational Complexity 
• Adversarial examples from computational constraints. Sébastien Bubeck, Eric 

Price, Ilya Razenshteyn 
• More precisely we construct a binary classification task in high dimensional space which 

is (i) information theoretically easy to learn robustly for large perturbations, (ii) 
efficiently learnable (non-robustly) by a simple linear separator, (iii) yet is not efficiently 
robustly learnable, even for small perturbations, by any algorithm in the statistical query 
(SQ) model.  

• This example gives an exponential separation between classical learning and robust 
learning in the statistical query model. It suggests that adversarial examples may be an 
unavoidable byproduct of computational limitations of learning algorithms. 

• Jury is Still Out!! 



Resources 

• https://www.robust-ml.org/ 
 

• http://www.cleverhans.io/ 
 

• http://www.crystal-boli.com/teaching.html 
 



Future 



Future Directions: Indirect  Methods 

• Do not just optimize the performance measure exactly 
 

• Best methods so far: 
 

• Logit pairing (non-adversarial) 
 

• Label smoothing 
 

• Logit squeezing 

• Can we perform a lot better with other methods that are  similarly indirect? 



Future Directions: Better  Attack Models 

• Add new attack models other than norm balls 

• Study messy real problems in addition to clean toy  problems 

• Study certification methods that use other proof  strategies 
besides local smoothness 

 

• Study more problems other than vision 



Future Directions: Security Independent  from 
Traditional Supervised Learning 

• Common goal (AML and ML) 
 

• just make the model better 
• They still share this goal 
• It is now clear security research must have some independent 

goals.  For two models with the same error volume, for 
reasons of security we  prefer: 
• The model with lower confidence on mistakes 
• The model whose mistakes are harder to find 



Future Directions 

 
• A stochastic model that does not repeatedly 
make the same  mistake on the same input 

 
• A model whose mistakes are less valuable to the 

attacker / costly  to the defender 
 

• A model that is harder to reverse engineer with 
probes 

• A model that is less prone to transfer from related 
models 



(Goodfellow 2018) 

Some Non-Security Reasons to  
Study Adversarial Examples 

Gamaleldin et al 2018 

Improve Supervised Learning  
(Goodfellow et al 2014) 

Understand Human Perception 

Improve Semi-Supervised  
Learning 

(Miyato et al 2015) 

(Oliver+Odena+Raffel et al,  
2018) 



Clever Hans 
(“Clever Hans,  

Clever  
Algorithms,”  
Bob Sturm) 



Get involved! 
https://github.com/tensorflow/cleverhans 



Thanks 

• Ian Goodfellow and Nicolas Papernot 
 

• Collaborators 
• ……. 


